#!/usr/bin/env python2.7 # Copyright 2017, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import cgi import multiprocessing import os import subprocess import sys import argparse import python_utils.jobset as jobset import python_utils.start_port_server as start_port_server flamegraph_dir = os.path.join(os.path.expanduser('~'), 'FlameGraph') os.chdir(os.path.join(os.path.dirname(sys.argv[0]), '../..')) if not os.path.exists('reports'): os.makedirs('reports') start_port_server.start_port_server() def fnize(s): out = '' for c in s: if c in '<>, /': if len(out) and out[-1] == '_': continue out += '_' else: out += c return out # index html index_html = """ Microbenchmark Results """ def heading(name): global index_html index_html += "

%s

\n" % name def link(txt, tgt): global index_html index_html += "

%s

\n" % ( cgi.escape(tgt, quote=True), cgi.escape(txt)) def text(txt): global index_html index_html += "

%s

\n" % cgi.escape(txt) def collect_latency(bm_name, args): """generate latency profiles""" benchmarks = [] profile_analysis = [] cleanup = [] heading('Latency Profiles: %s' % bm_name) subprocess.check_call( ['make', bm_name, 'CONFIG=basicprof', '-j', '%d' % multiprocessing.cpu_count()]) for line in subprocess.check_output(['bins/basicprof/%s' % bm_name, '--benchmark_list_tests']).splitlines(): link(line, '%s.txt' % fnize(line)) benchmarks.append( jobset.JobSpec(['bins/basicprof/%s' % bm_name, '--benchmark_filter=^%s$' % line], environ={'LATENCY_TRACE': '%s.trace' % fnize(line)})) profile_analysis.append( jobset.JobSpec([sys.executable, 'tools/profiling/latency_profile/profile_analyzer.py', '--source', '%s.trace' % fnize(line), '--fmt', 'simple', '--out', 'reports/%s.txt' % fnize(line)], timeout_seconds=None)) cleanup.append(jobset.JobSpec(['rm', '%s.trace' % fnize(line)])) # periodically flush out the list of jobs: profile_analysis jobs at least # consume upwards of five gigabytes of ram in some cases, and so analysing # hundreds of them at once is impractical -- but we want at least some # concurrency or the work takes too long if len(benchmarks) >= min(4, multiprocessing.cpu_count()): # run up to half the cpu count: each benchmark can use up to two cores # (one for the microbenchmark, one for the data flush) jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count()/2)) jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) benchmarks = [] profile_analysis = [] cleanup = [] # run the remaining benchmarks that weren't flushed if len(benchmarks): jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count()/2)) jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) def collect_perf(bm_name, args): """generate flamegraphs""" heading('Flamegraphs: %s' % bm_name) subprocess.check_call( ['make', bm_name, 'CONFIG=mutrace', '-j', '%d' % multiprocessing.cpu_count()]) benchmarks = [] profile_analysis = [] cleanup = [] for line in subprocess.check_output(['bins/mutrace/%s' % bm_name, '--benchmark_list_tests']).splitlines(): link(line, '%s.svg' % fnize(line)) benchmarks.append( jobset.JobSpec(['perf', 'record', '-o', '%s-perf.data' % fnize(line), '-g', '-F', '997', 'bins/mutrace/%s' % bm_name, '--benchmark_filter=^%s$' % line, '--benchmark_min_time=10'])) profile_analysis.append( jobset.JobSpec(['tools/run_tests/performance/process_local_perf_flamegraphs.sh'], environ = { 'PERF_BASE_NAME': fnize(line), 'OUTPUT_DIR': 'reports', 'OUTPUT_FILENAME': fnize(line), })) cleanup.append(jobset.JobSpec(['rm', '%s-perf.data' % fnize(line)])) cleanup.append(jobset.JobSpec(['rm', '%s-out.perf' % fnize(line)])) # periodically flush out the list of jobs: temporary space required for this # processing is large if len(benchmarks) >= 20: # run up to half the cpu count: each benchmark can use up to two cores # (one for the microbenchmark, one for the data flush) jobset.run(benchmarks, maxjobs=1) jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) benchmarks = [] profile_analysis = [] cleanup = [] # run the remaining benchmarks that weren't flushed if len(benchmarks): jobset.run(benchmarks, maxjobs=1) jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) def collect_summary(bm_name, args): heading('Summary: %s' % bm_name) subprocess.check_call( ['make', bm_name, 'CONFIG=counters', '-j', '%d' % multiprocessing.cpu_count()]) cmd = ['bins/counters/%s' % bm_name, '--benchmark_out=out.json', '--benchmark_out_format=json'] if args.summary_time is not None: cmd += ['--benchmark_min_time=%d' % args.summary_time] text(subprocess.check_output(cmd)) if args.bigquery_upload: with open('out.csv', 'w') as f: f.write(subprocess.check_output(['tools/profiling/microbenchmarks/bm2bq.py', 'out.json'])) subprocess.check_call(['bq', 'load', 'microbenchmarks.microbenchmarks', 'out.csv']) collectors = { 'latency': collect_latency, 'perf': collect_perf, 'summary': collect_summary, } argp = argparse.ArgumentParser(description='Collect data from microbenchmarks') argp.add_argument('-c', '--collect', choices=sorted(collectors.keys()), nargs='+', default=sorted(collectors.keys()), help='Which collectors should be run against each benchmark') argp.add_argument('-b', '--benchmarks', default=['bm_fullstack', 'bm_closure'], nargs='+', type=str, help='Which microbenchmarks should be run') argp.add_argument('--bigquery_upload', default=False, action='store_const', const=True, help='Upload results from summary collection to bigquery') argp.add_argument('--summary_time', default=None, type=int, help='Minimum time to run benchmarks for the summary collection') args = argp.parse_args() for bm_name in args.benchmarks: for collect in args.collect: collectors[collect](bm_name, args) index_html += "\n\n" with open('reports/index.html', 'w') as f: f.write(index_html)