/* * * Copyright 2016, Google Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /* Benchmark gRPC end2end in various configurations */ #include #include #include #include #include #include #include #include #include extern "C" { #include "src/core/ext/transport/chttp2/transport/chttp2_transport.h" #include "src/core/ext/transport/chttp2/transport/internal.h" #include "src/core/lib/channel/channel_args.h" #include "src/core/lib/iomgr/endpoint.h" #include "src/core/lib/iomgr/endpoint_pair.h" #include "src/core/lib/iomgr/exec_ctx.h" #include "src/core/lib/iomgr/tcp_posix.h" #include "src/core/lib/surface/channel.h" #include "src/core/lib/surface/completion_queue.h" #include "src/core/lib/surface/server.h" #include "test/core/util/memory_counters.h" #include "test/core/util/passthru_endpoint.h" #include "test/core/util/port.h" #include "test/core/util/trickle_endpoint.h" } #include "src/core/lib/profiling/timers.h" #include "src/cpp/client/create_channel_internal.h" #include "src/proto/grpc/testing/echo.grpc.pb.h" #include "third_party/benchmark/include/benchmark/benchmark.h" namespace grpc { namespace testing { static class InitializeStuff { public: InitializeStuff() { grpc_memory_counters_init(); init_lib_.init(); rq_ = grpc_resource_quota_create("bm"); } ~InitializeStuff() { init_lib_.shutdown(); } grpc_resource_quota* rq() { return rq_; } private: internal::GrpcLibrary init_lib_; grpc_resource_quota* rq_; } initialize_stuff; /******************************************************************************* * FIXTURES */ static void ApplyCommonServerBuilderConfig(ServerBuilder* b) { b->SetMaxReceiveMessageSize(INT_MAX); b->SetMaxSendMessageSize(INT_MAX); } static void ApplyCommonChannelArguments(ChannelArguments* c) { c->SetInt(GRPC_ARG_MAX_RECEIVE_MESSAGE_LENGTH, INT_MAX); c->SetInt(GRPC_ARG_MAX_SEND_MESSAGE_LENGTH, INT_MAX); } #ifdef GPR_LOW_LEVEL_COUNTERS extern "C" gpr_atm gpr_mu_locks; extern "C" gpr_atm gpr_counter_atm_cas; extern "C" gpr_atm gpr_counter_atm_add; #endif class BaseFixture { public: void Finish(benchmark::State& s) { std::ostringstream out; this->AddToLabel(out, s); #ifdef GPR_LOW_LEVEL_COUNTERS out << " locks/iter:" << ((double)(gpr_atm_no_barrier_load(&gpr_mu_locks) - mu_locks_at_start_) / (double)s.iterations()) << " atm_cas/iter:" << ((double)(gpr_atm_no_barrier_load(&gpr_counter_atm_cas) - atm_cas_at_start_) / (double)s.iterations()) << " atm_add/iter:" << ((double)(gpr_atm_no_barrier_load(&gpr_counter_atm_add) - atm_add_at_start_) / (double)s.iterations()); #endif grpc_memory_counters counters_at_end = grpc_memory_counters_snapshot(); out << " allocs/iter:" << ((double)(counters_at_end.total_allocs_absolute - counters_at_start_.total_allocs_absolute) / (double)s.iterations()); auto label = out.str(); if (label.length() && label[0] == ' ') { label = label.substr(1); } s.SetLabel(label); } virtual void AddToLabel(std::ostream& out, benchmark::State& s) = 0; private: #ifdef GPR_LOW_LEVEL_COUNTERS const size_t mu_locks_at_start_ = gpr_atm_no_barrier_load(&gpr_mu_locks); const size_t atm_cas_at_start_ = gpr_atm_no_barrier_load(&gpr_counter_atm_cas); const size_t atm_add_at_start_ = gpr_atm_no_barrier_load(&gpr_counter_atm_add); #endif grpc_memory_counters counters_at_start_ = grpc_memory_counters_snapshot(); }; class FullstackFixture : public BaseFixture { public: FullstackFixture(Service* service, const grpc::string& address) { ServerBuilder b; b.AddListeningPort(address, InsecureServerCredentials()); cq_ = b.AddCompletionQueue(true); b.RegisterService(service); ApplyCommonServerBuilderConfig(&b); server_ = b.BuildAndStart(); ChannelArguments args; ApplyCommonChannelArguments(&args); channel_ = CreateCustomChannel(address, InsecureChannelCredentials(), args); } virtual ~FullstackFixture() { server_->Shutdown(); cq_->Shutdown(); void* tag; bool ok; while (cq_->Next(&tag, &ok)) { } } ServerCompletionQueue* cq() { return cq_.get(); } std::shared_ptr channel() { return channel_; } private: std::unique_ptr server_; std::unique_ptr cq_; std::shared_ptr channel_; }; class TCP : public FullstackFixture { public: TCP(Service* service) : FullstackFixture(service, MakeAddress()) {} void AddToLabel(std::ostream& out, benchmark::State& state) {} private: static grpc::string MakeAddress() { int port = grpc_pick_unused_port_or_die(); std::stringstream addr; addr << "localhost:" << port; return addr.str(); } }; class UDS : public FullstackFixture { public: UDS(Service* service) : FullstackFixture(service, MakeAddress()) {} void AddToLabel(std::ostream& out, benchmark::State& state) override {} private: static grpc::string MakeAddress() { int port = grpc_pick_unused_port_or_die(); // just for a unique id - not a // real port std::stringstream addr; addr << "unix:/tmp/bm_fullstack." << port; return addr.str(); } }; class EndpointPairFixture : public BaseFixture { public: EndpointPairFixture(Service* service, grpc_endpoint_pair endpoints) : endpoint_pair_(endpoints) { ServerBuilder b; cq_ = b.AddCompletionQueue(true); b.RegisterService(service); ApplyCommonServerBuilderConfig(&b); server_ = b.BuildAndStart(); grpc_exec_ctx exec_ctx = GRPC_EXEC_CTX_INIT; /* add server endpoint to server_ */ { const grpc_channel_args* server_args = grpc_server_get_channel_args(server_->c_server()); server_transport_ = grpc_create_chttp2_transport( &exec_ctx, server_args, endpoints.server, 0 /* is_client */); grpc_pollset** pollsets; size_t num_pollsets = 0; grpc_server_get_pollsets(server_->c_server(), &pollsets, &num_pollsets); for (size_t i = 0; i < num_pollsets; i++) { grpc_endpoint_add_to_pollset(&exec_ctx, endpoints.server, pollsets[i]); } grpc_server_setup_transport(&exec_ctx, server_->c_server(), server_transport_, NULL, server_args); grpc_chttp2_transport_start_reading(&exec_ctx, server_transport_, NULL); } /* create channel */ { ChannelArguments args; args.SetString(GRPC_ARG_DEFAULT_AUTHORITY, "test.authority"); ApplyCommonChannelArguments(&args); grpc_channel_args c_args = args.c_channel_args(); client_transport_ = grpc_create_chttp2_transport(&exec_ctx, &c_args, endpoints.client, 1); GPR_ASSERT(client_transport_); grpc_channel* channel = grpc_channel_create(&exec_ctx, "target", &c_args, GRPC_CLIENT_DIRECT_CHANNEL, client_transport_); grpc_chttp2_transport_start_reading(&exec_ctx, client_transport_, NULL); channel_ = CreateChannelInternal("", channel); } grpc_exec_ctx_finish(&exec_ctx); } virtual ~EndpointPairFixture() { server_->Shutdown(); cq_->Shutdown(); void* tag; bool ok; while (cq_->Next(&tag, &ok)) { } } ServerCompletionQueue* cq() { return cq_.get(); } std::shared_ptr channel() { return channel_; } protected: grpc_endpoint_pair endpoint_pair_; grpc_transport* client_transport_; grpc_transport* server_transport_; private: std::unique_ptr server_; std::unique_ptr cq_; std::shared_ptr channel_; }; class SockPair : public EndpointPairFixture { public: SockPair(Service* service) : EndpointPairFixture(service, grpc_iomgr_create_endpoint_pair( "test", initialize_stuff.rq(), 8192)) { } void AddToLabel(std::ostream& out, benchmark::State& state) {} }; class InProcessCHTTP2 : public EndpointPairFixture { public: InProcessCHTTP2(Service* service) : EndpointPairFixture(service, MakeEndpoints()) {} void AddToLabel(std::ostream& out, benchmark::State& state) { out << " writes/iter:" << ((double)stats_.num_writes / (double)state.iterations()); } private: grpc_passthru_endpoint_stats stats_; grpc_endpoint_pair MakeEndpoints() { grpc_endpoint_pair p; grpc_passthru_endpoint_create(&p.client, &p.server, initialize_stuff.rq(), &stats_); return p; } }; class TrickledCHTTP2 : public EndpointPairFixture { public: TrickledCHTTP2(Service* service, size_t megabits_per_second) : EndpointPairFixture(service, MakeEndpoints(megabits_per_second)) {} void AddToLabel(std::ostream& out, benchmark::State& state) { out << " writes/iter:" << ((double)stats_.num_writes / (double)state.iterations()) << " cli_transport_stalls/iter:" << ((double) client_stats_.streams_stalled_due_to_transport_flow_control / (double)state.iterations()) << " cli_stream_stalls/iter:" << ((double)client_stats_.streams_stalled_due_to_stream_flow_control / (double)state.iterations()) << " svr_transport_stalls/iter:" << ((double) server_stats_.streams_stalled_due_to_transport_flow_control / (double)state.iterations()) << " svr_stream_stalls/iter:" << ((double)server_stats_.streams_stalled_due_to_stream_flow_control / (double)state.iterations()); } void Step() { grpc_exec_ctx exec_ctx = GRPC_EXEC_CTX_INIT; size_t client_backlog = grpc_trickle_endpoint_trickle(&exec_ctx, endpoint_pair_.client); size_t server_backlog = grpc_trickle_endpoint_trickle(&exec_ctx, endpoint_pair_.server); grpc_exec_ctx_finish(&exec_ctx); UpdateStats((grpc_chttp2_transport*)client_transport_, &client_stats_, client_backlog); UpdateStats((grpc_chttp2_transport*)server_transport_, &server_stats_, server_backlog); } private: grpc_passthru_endpoint_stats stats_; struct Stats { int streams_stalled_due_to_stream_flow_control = 0; int streams_stalled_due_to_transport_flow_control = 0; }; Stats client_stats_; Stats server_stats_; grpc_endpoint_pair MakeEndpoints(size_t kilobits) { grpc_endpoint_pair p; grpc_passthru_endpoint_create(&p.client, &p.server, initialize_stuff.rq(), &stats_); double bytes_per_second = 125.0 * kilobits; p.client = grpc_trickle_endpoint_create(p.client, bytes_per_second); p.server = grpc_trickle_endpoint_create(p.server, bytes_per_second); return p; } void UpdateStats(grpc_chttp2_transport* t, Stats* s, size_t backlog) { if (backlog == 0) { if (t->lists[GRPC_CHTTP2_LIST_STALLED_BY_STREAM].head != NULL) { s->streams_stalled_due_to_stream_flow_control++; } if (t->lists[GRPC_CHTTP2_LIST_STALLED_BY_TRANSPORT].head != NULL) { s->streams_stalled_due_to_transport_flow_control++; } } } }; /******************************************************************************* * CONTEXT MUTATORS */ static const int kPregenerateKeyCount = 100000; template auto MakeVector(size_t length, F f) -> std::vector { std::vector out; out.reserve(length); for (size_t i = 0; i < length; i++) { out.push_back(f()); } return out; } class NoOpMutator { public: template NoOpMutator(ContextType* context) {} }; template class RandomBinaryMetadata { public: static const grpc::string& Key() { return kKey; } static const grpc::string& Value() { return kValues[rand() % kValues.size()]; } private: static const grpc::string kKey; static const std::vector kValues; static grpc::string GenerateOneString() { grpc::string s; s.reserve(length + 1); for (int i = 0; i < length; i++) { s += (char)rand(); } return s; } }; template const grpc::string RandomBinaryMetadata::kKey = "foo-bin"; template const std::vector RandomBinaryMetadata::kValues = MakeVector(kPregenerateKeyCount, GenerateOneString); template class RandomAsciiMetadata { public: static const grpc::string& Key() { return kKey; } static const grpc::string& Value() { return kValues[rand() % kValues.size()]; } private: static const grpc::string kKey; static const std::vector kValues; static grpc::string GenerateOneString() { grpc::string s; s.reserve(length + 1); for (int i = 0; i < length; i++) { s += (char)(rand() % 26 + 'a'); } return s; } }; template const grpc::string RandomAsciiMetadata::kKey = "foo"; template const std::vector RandomAsciiMetadata::kValues = MakeVector(kPregenerateKeyCount, GenerateOneString); template class Client_AddMetadata : public NoOpMutator { public: Client_AddMetadata(ClientContext* context) : NoOpMutator(context) { for (int i = 0; i < kNumKeys; i++) { context->AddMetadata(Generator::Key(), Generator::Value()); } } }; template class Server_AddInitialMetadata : public NoOpMutator { public: Server_AddInitialMetadata(ServerContext* context) : NoOpMutator(context) { for (int i = 0; i < kNumKeys; i++) { context->AddInitialMetadata(Generator::Key(), Generator::Value()); } } }; /******************************************************************************* * BENCHMARKING KERNELS */ static void* tag(intptr_t x) { return reinterpret_cast(x); } template static void BM_UnaryPingPong(benchmark::State& state) { EchoTestService::AsyncService service; std::unique_ptr fixture(new Fixture(&service)); EchoRequest send_request; EchoResponse send_response; EchoResponse recv_response; if (state.range(0) > 0) { send_request.set_message(std::string(state.range(0), 'a')); } if (state.range(1) > 0) { send_response.set_message(std::string(state.range(1), 'a')); } Status recv_status; struct ServerEnv { ServerContext ctx; EchoRequest recv_request; grpc::ServerAsyncResponseWriter response_writer; ServerEnv() : response_writer(&ctx) {} }; uint8_t server_env_buffer[2 * sizeof(ServerEnv)]; ServerEnv* server_env[2] = { reinterpret_cast(server_env_buffer), reinterpret_cast(server_env_buffer + sizeof(ServerEnv))}; new (server_env[0]) ServerEnv; new (server_env[1]) ServerEnv; service.RequestEcho(&server_env[0]->ctx, &server_env[0]->recv_request, &server_env[0]->response_writer, fixture->cq(), fixture->cq(), tag(0)); service.RequestEcho(&server_env[1]->ctx, &server_env[1]->recv_request, &server_env[1]->response_writer, fixture->cq(), fixture->cq(), tag(1)); std::unique_ptr stub( EchoTestService::NewStub(fixture->channel())); while (state.KeepRunning()) { GPR_TIMER_SCOPE("BenchmarkCycle", 0); recv_response.Clear(); ClientContext cli_ctx; ClientContextMutator cli_ctx_mut(&cli_ctx); std::unique_ptr> response_reader( stub->AsyncEcho(&cli_ctx, send_request, fixture->cq())); void* t; bool ok; GPR_ASSERT(fixture->cq()->Next(&t, &ok)); GPR_ASSERT(ok); GPR_ASSERT(t == tag(0) || t == tag(1)); intptr_t slot = reinterpret_cast(t); ServerEnv* senv = server_env[slot]; ServerContextMutator svr_ctx_mut(&senv->ctx); senv->response_writer.Finish(send_response, Status::OK, tag(3)); response_reader->Finish(&recv_response, &recv_status, tag(4)); for (int i = (1 << 3) | (1 << 4); i != 0;) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); GPR_ASSERT(ok); int tagnum = (int)reinterpret_cast(t); GPR_ASSERT(i & (1 << tagnum)); i -= 1 << tagnum; } GPR_ASSERT(recv_status.ok()); senv->~ServerEnv(); senv = new (senv) ServerEnv(); service.RequestEcho(&senv->ctx, &senv->recv_request, &senv->response_writer, fixture->cq(), fixture->cq(), tag(slot)); } fixture->Finish(state); fixture.reset(); server_env[0]->~ServerEnv(); server_env[1]->~ServerEnv(); state.SetBytesProcessed(state.range(0) * state.iterations() + state.range(1) * state.iterations()); } // Repeatedly makes Streaming Bidi calls (exchanging a configurable number of // messages in each call) in a loop on a single channel // // First parmeter (i.e state.range(0)): Message size (in bytes) to use // Second parameter (i.e state.range(1)): Number of ping pong messages. // Note: One ping-pong means two messages (one from client to server and // the other from server to client): template static void BM_StreamingPingPong(benchmark::State& state) { const int msg_size = state.range(0); const int max_ping_pongs = state.range(1); EchoTestService::AsyncService service; std::unique_ptr fixture(new Fixture(&service)); { EchoResponse send_response; EchoResponse recv_response; EchoRequest send_request; EchoRequest recv_request; if (msg_size > 0) { send_request.set_message(std::string(msg_size, 'a')); send_response.set_message(std::string(msg_size, 'b')); } std::unique_ptr stub( EchoTestService::NewStub(fixture->channel())); while (state.KeepRunning()) { ServerContext svr_ctx; ServerContextMutator svr_ctx_mut(&svr_ctx); ServerAsyncReaderWriter response_rw(&svr_ctx); service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(), fixture->cq(), tag(0)); ClientContext cli_ctx; ClientContextMutator cli_ctx_mut(&cli_ctx); auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1)); // Establish async stream between client side and server side void* t; bool ok; int need_tags = (1 << 0) | (1 << 1); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); GPR_ASSERT(ok); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } // Send 'max_ping_pongs' number of ping pong messages int ping_pong_cnt = 0; while (ping_pong_cnt < max_ping_pongs) { request_rw->Write(send_request, tag(0)); // Start client send response_rw.Read(&recv_request, tag(1)); // Start server recv request_rw->Read(&recv_response, tag(2)); // Start client recv need_tags = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); GPR_ASSERT(ok); int i = (int)(intptr_t)t; // If server recv is complete, start the server send operation if (i == 1) { response_rw.Write(send_response, tag(3)); } GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } ping_pong_cnt++; } request_rw->WritesDone(tag(0)); response_rw.Finish(Status::OK, tag(1)); Status recv_status; request_rw->Finish(&recv_status, tag(2)); need_tags = (1 << 0) | (1 << 1) | (1 << 2); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } GPR_ASSERT(recv_status.ok()); } } fixture->Finish(state); fixture.reset(); state.SetBytesProcessed(msg_size * state.iterations() * max_ping_pongs * 2); } // Repeatedly sends ping pong messages in a single streaming Bidi call in a loop // First parmeter (i.e state.range(0)): Message size (in bytes) to use template static void BM_StreamingPingPongMsgs(benchmark::State& state) { const int msg_size = state.range(0); EchoTestService::AsyncService service; std::unique_ptr fixture(new Fixture(&service)); { EchoResponse send_response; EchoResponse recv_response; EchoRequest send_request; EchoRequest recv_request; if (msg_size > 0) { send_request.set_message(std::string(msg_size, 'a')); send_response.set_message(std::string(msg_size, 'b')); } std::unique_ptr stub( EchoTestService::NewStub(fixture->channel())); ServerContext svr_ctx; ServerContextMutator svr_ctx_mut(&svr_ctx); ServerAsyncReaderWriter response_rw(&svr_ctx); service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(), fixture->cq(), tag(0)); ClientContext cli_ctx; ClientContextMutator cli_ctx_mut(&cli_ctx); auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1)); // Establish async stream between client side and server side void* t; bool ok; int need_tags = (1 << 0) | (1 << 1); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); GPR_ASSERT(ok); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } while (state.KeepRunning()) { GPR_TIMER_SCOPE("BenchmarkCycle", 0); request_rw->Write(send_request, tag(0)); // Start client send response_rw.Read(&recv_request, tag(1)); // Start server recv request_rw->Read(&recv_response, tag(2)); // Start client recv need_tags = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); GPR_ASSERT(ok); int i = (int)(intptr_t)t; // If server recv is complete, start the server send operation if (i == 1) { response_rw.Write(send_response, tag(3)); } GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } } request_rw->WritesDone(tag(0)); response_rw.Finish(Status::OK, tag(1)); Status recv_status; request_rw->Finish(&recv_status, tag(2)); need_tags = (1 << 0) | (1 << 1) | (1 << 2); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } GPR_ASSERT(recv_status.ok()); } fixture->Finish(state); fixture.reset(); state.SetBytesProcessed(msg_size * state.iterations() * 2); } template static void BM_PumpStreamClientToServer(benchmark::State& state) { EchoTestService::AsyncService service; std::unique_ptr fixture(new Fixture(&service)); { EchoRequest send_request; EchoRequest recv_request; if (state.range(0) > 0) { send_request.set_message(std::string(state.range(0), 'a')); } Status recv_status; ServerContext svr_ctx; ServerAsyncReaderWriter response_rw(&svr_ctx); service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(), fixture->cq(), tag(0)); std::unique_ptr stub( EchoTestService::NewStub(fixture->channel())); ClientContext cli_ctx; auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1)); int need_tags = (1 << 0) | (1 << 1); void* t; bool ok; while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); GPR_ASSERT(ok); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } response_rw.Read(&recv_request, tag(0)); while (state.KeepRunning()) { GPR_TIMER_SCOPE("BenchmarkCycle", 0); request_rw->Write(send_request, tag(1)); while (true) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); if (t == tag(0)) { response_rw.Read(&recv_request, tag(0)); } else if (t == tag(1)) { break; } else { GPR_ASSERT(false); } } } request_rw->WritesDone(tag(1)); need_tags = (1 << 0) | (1 << 1); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } } fixture->Finish(state); fixture.reset(); state.SetBytesProcessed(state.range(0) * state.iterations()); } template static void BM_PumpStreamServerToClient(benchmark::State& state) { EchoTestService::AsyncService service; std::unique_ptr fixture(new Fixture(&service)); { EchoResponse send_response; EchoResponse recv_response; if (state.range(0) > 0) { send_response.set_message(std::string(state.range(0), 'a')); } Status recv_status; ServerContext svr_ctx; ServerAsyncReaderWriter response_rw(&svr_ctx); service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(), fixture->cq(), tag(0)); std::unique_ptr stub( EchoTestService::NewStub(fixture->channel())); ClientContext cli_ctx; auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1)); int need_tags = (1 << 0) | (1 << 1); void* t; bool ok; while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); GPR_ASSERT(ok); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } request_rw->Read(&recv_response, tag(0)); while (state.KeepRunning()) { GPR_TIMER_SCOPE("BenchmarkCycle", 0); response_rw.Write(send_response, tag(1)); while (true) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); if (t == tag(0)) { request_rw->Read(&recv_response, tag(0)); } else if (t == tag(1)) { break; } else { GPR_ASSERT(false); } } } response_rw.Finish(Status::OK, tag(1)); need_tags = (1 << 0) | (1 << 1); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } } fixture->Finish(state); fixture.reset(); state.SetBytesProcessed(state.range(0) * state.iterations()); } static void TrickleCQNext(TrickledCHTTP2* fixture, void** t, bool* ok) { while (true) { switch (fixture->cq()->AsyncNext( t, ok, gpr_time_add(gpr_now(GPR_CLOCK_MONOTONIC), gpr_time_from_micros(100, GPR_TIMESPAN)))) { case CompletionQueue::TIMEOUT: fixture->Step(); break; case CompletionQueue::SHUTDOWN: GPR_ASSERT(false); break; case CompletionQueue::GOT_EVENT: return; } } } static void BM_PumpStreamServerToClient_Trickle(benchmark::State& state) { EchoTestService::AsyncService service; std::unique_ptr fixture( new TrickledCHTTP2(&service, state.range(1))); { EchoResponse send_response; EchoResponse recv_response; if (state.range(0) > 0) { send_response.set_message(std::string(state.range(0), 'a')); } Status recv_status; ServerContext svr_ctx; ServerAsyncReaderWriter response_rw(&svr_ctx); service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(), fixture->cq(), tag(0)); std::unique_ptr stub( EchoTestService::NewStub(fixture->channel())); ClientContext cli_ctx; auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1)); int need_tags = (1 << 0) | (1 << 1); void* t; bool ok; while (need_tags) { TrickleCQNext(fixture.get(), &t, &ok); GPR_ASSERT(ok); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } request_rw->Read(&recv_response, tag(0)); while (state.KeepRunning()) { GPR_TIMER_SCOPE("BenchmarkCycle", 0); response_rw.Write(send_response, tag(1)); while (true) { TrickleCQNext(fixture.get(), &t, &ok); if (t == tag(0)) { request_rw->Read(&recv_response, tag(0)); } else if (t == tag(1)) { break; } else { GPR_ASSERT(false); } } } response_rw.Finish(Status::OK, tag(1)); need_tags = (1 << 0) | (1 << 1); while (need_tags) { TrickleCQNext(fixture.get(), &t, &ok); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } } fixture->Finish(state); fixture.reset(); state.SetBytesProcessed(state.range(0) * state.iterations()); } /******************************************************************************* * CONFIGURATIONS */ static void SweepSizesArgs(benchmark::internal::Benchmark* b) { b->Args({0, 0}); for (int i = 1; i <= 128 * 1024 * 1024; i *= 8) { b->Args({i, 0}); b->Args({0, i}); b->Args({i, i}); } } BENCHMARK_TEMPLATE(BM_UnaryPingPong, TCP, NoOpMutator, NoOpMutator) ->Apply(SweepSizesArgs); BENCHMARK_TEMPLATE(BM_UnaryPingPong, UDS, NoOpMutator, NoOpMutator) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, SockPair, NoOpMutator, NoOpMutator) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator, NoOpMutator) ->Apply(SweepSizesArgs); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, Client_AddMetadata, 1>, NoOpMutator) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, Client_AddMetadata, 1>, NoOpMutator) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, Client_AddMetadata, 1>, NoOpMutator) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, Client_AddMetadata, 2>, NoOpMutator) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, Client_AddMetadata, 2>, NoOpMutator) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, Client_AddMetadata, 2>, NoOpMutator) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator, Server_AddInitialMetadata, 1>) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator, Server_AddInitialMetadata, 1>) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator, Server_AddInitialMetadata, 1>) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, Client_AddMetadata, 1>, NoOpMutator) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, Client_AddMetadata, 1>, NoOpMutator) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, Client_AddMetadata, 1>, NoOpMutator) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator, Server_AddInitialMetadata, 1>) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator, Server_AddInitialMetadata, 1>) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator, Server_AddInitialMetadata, 1>) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_UnaryPingPong, InProcessCHTTP2, NoOpMutator, Server_AddInitialMetadata, 100>) ->Args({0, 0}); BENCHMARK_TEMPLATE(BM_PumpStreamClientToServer, TCP) ->Range(0, 128 * 1024 * 1024); BENCHMARK_TEMPLATE(BM_PumpStreamClientToServer, UDS) ->Range(0, 128 * 1024 * 1024); BENCHMARK_TEMPLATE(BM_PumpStreamClientToServer, SockPair) ->Range(0, 128 * 1024 * 1024); BENCHMARK_TEMPLATE(BM_PumpStreamClientToServer, InProcessCHTTP2) ->Range(0, 128 * 1024 * 1024); BENCHMARK_TEMPLATE(BM_PumpStreamServerToClient, TCP) ->Range(0, 128 * 1024 * 1024); BENCHMARK_TEMPLATE(BM_PumpStreamServerToClient, UDS) ->Range(0, 128 * 1024 * 1024); BENCHMARK_TEMPLATE(BM_PumpStreamServerToClient, SockPair) ->Range(0, 128 * 1024 * 1024); BENCHMARK_TEMPLATE(BM_PumpStreamServerToClient, InProcessCHTTP2) ->Range(0, 128 * 1024 * 1024); static void TrickleArgs(benchmark::internal::Benchmark* b) { for (int i = 1; i <= 128 * 1024 * 1024; i *= 8) { for (int j = 1; j <= 128 * 1024 * 1024; j *= 8) { double expected_time = static_cast(14 + i) / (125.0 * static_cast(j)); if (expected_time > 0.01) continue; b->Args({i, j}); } } } BENCHMARK(BM_PumpStreamServerToClient_Trickle)->Apply(TrickleArgs); // Generate Args for StreamingPingPong benchmarks. Currently generates args for // only "small streams" (i.e streams with 0, 1 or 2 messages) static void StreamingPingPongArgs(benchmark::internal::Benchmark* b) { int msg_size = 0; b->Args({0, 0}); // spl case: 0 ping-pong msgs (msg_size doesn't matter here) for (msg_size = 0; msg_size <= 128 * 1024 * 1024; msg_size == 0 ? msg_size++ : msg_size *= 8) { b->Args({msg_size, 1}); b->Args({msg_size, 2}); } } BENCHMARK_TEMPLATE(BM_StreamingPingPong, InProcessCHTTP2, NoOpMutator, NoOpMutator) ->Apply(StreamingPingPongArgs); BENCHMARK_TEMPLATE(BM_StreamingPingPong, TCP, NoOpMutator, NoOpMutator) ->Apply(StreamingPingPongArgs); BENCHMARK_TEMPLATE(BM_StreamingPingPongMsgs, InProcessCHTTP2, NoOpMutator, NoOpMutator) ->Range(0, 128 * 1024 * 1024); BENCHMARK_TEMPLATE(BM_StreamingPingPongMsgs, TCP, NoOpMutator, NoOpMutator) ->Range(0, 128 * 1024 * 1024); } // namespace testing } // namespace grpc BENCHMARK_MAIN();