/* * * Copyright 2017 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern "C" { #include "src/core/ext/filters/client_channel/resolver/fake/fake_resolver.h" #include "src/core/lib/iomgr/sockaddr.h" } #include "test/core/util/port.h" #include "test/core/util/test_config.h" #include "test/cpp/end2end/test_service_impl.h" #include "src/proto/grpc/lb/v1/load_balancer.grpc.pb.h" #include "src/proto/grpc/testing/echo.grpc.pb.h" #include #include // TODO(dgq): Other scenarios in need of testing: // - Send a serverlist with faulty ip:port addresses (port > 2^16, etc). // - Test reception of invalid serverlist // - Test pinging // - Test against a non-LB server. // - Random LB server closing the stream unexpectedly. // - Test using DNS-resolvable names (localhost?) // - Test handling of creation of faulty RR instance by having the LB return a // serverlist with non-existent backends after having initially returned a // valid one. // // Findings from end to end testing to be covered here: // - Handling of LB servers restart, including reconnection after backing-off // retries. // - Destruction of load balanced channel (and therefore of grpclb instance) // while: // 1) the internal LB call is still active. This should work by virtue // of the weak reference the LB call holds. The call should be terminated as // part of the grpclb shutdown process. // 2) the retry timer is active. Again, the weak reference it holds should // prevent a premature call to \a glb_destroy. // - Restart of backend servers with no changes to serverlist. This exercises // the RR handover mechanism. using std::chrono::system_clock; using grpc::lb::v1::LoadBalanceRequest; using grpc::lb::v1::LoadBalanceResponse; using grpc::lb::v1::LoadBalancer; namespace grpc { namespace testing { namespace { template class CountedService : public ServiceType { public: size_t request_count() { std::unique_lock lock(mu_); return request_count_; } size_t response_count() { std::unique_lock lock(mu_); return response_count_; } void IncreaseResponseCount() { std::unique_lock lock(mu_); ++response_count_; } void IncreaseRequestCount() { std::unique_lock lock(mu_); ++request_count_; } void ResetCounters() { std::unique_lock lock(mu_); request_count_ = 0; response_count_ = 0; } protected: std::mutex mu_; private: size_t request_count_ = 0; size_t response_count_ = 0; }; using BackendService = CountedService; using BalancerService = CountedService; class BackendServiceImpl : public BackendService { public: BackendServiceImpl() {} Status Echo(ServerContext* context, const EchoRequest* request, EchoResponse* response) override { IncreaseRequestCount(); const auto status = TestServiceImpl::Echo(context, request, response); IncreaseResponseCount(); return status; } }; grpc::string Ip4ToPackedString(const char* ip_str) { struct in_addr ip4; GPR_ASSERT(inet_pton(AF_INET, ip_str, &ip4) == 1); return grpc::string(reinterpret_cast(&ip4), sizeof(ip4)); } struct ClientStats { size_t num_calls_started = 0; size_t num_calls_finished = 0; size_t num_calls_finished_with_client_failed_to_send = 0; size_t num_calls_finished_known_received = 0; std::map drop_token_counts; ClientStats& operator+=(const ClientStats& other) { num_calls_started += other.num_calls_started; num_calls_finished += other.num_calls_finished; num_calls_finished_with_client_failed_to_send += other.num_calls_finished_with_client_failed_to_send; num_calls_finished_known_received += other.num_calls_finished_known_received; for (const auto& p : other.drop_token_counts) { drop_token_counts[p.first] += p.second; } return *this; } }; class BalancerServiceImpl : public BalancerService { public: using Stream = ServerReaderWriter; using ResponseDelayPair = std::pair; explicit BalancerServiceImpl(int client_load_reporting_interval_seconds) : client_load_reporting_interval_seconds_( client_load_reporting_interval_seconds), shutdown_(false) {} Status BalanceLoad(ServerContext* context, Stream* stream) override { gpr_log(GPR_INFO, "LB: BalanceLoad"); LoadBalanceRequest request; stream->Read(&request); IncreaseRequestCount(); gpr_log(GPR_INFO, "LB: recv msg '%s'", request.DebugString().c_str()); if (client_load_reporting_interval_seconds_ > 0) { LoadBalanceResponse initial_response; initial_response.mutable_initial_response() ->mutable_client_stats_report_interval() ->set_seconds(client_load_reporting_interval_seconds_); stream->Write(initial_response); } std::vector responses_and_delays; { std::unique_lock lock(mu_); responses_and_delays = responses_and_delays_; } for (const auto& response_and_delay : responses_and_delays) { { std::unique_lock lock(mu_); if (shutdown_) goto done; } SendResponse(stream, response_and_delay.first, response_and_delay.second); } { std::unique_lock lock(mu_); if (shutdown_) goto done; serverlist_cond_.wait(lock); } if (client_load_reporting_interval_seconds_ > 0) { request.Clear(); stream->Read(&request); gpr_log(GPR_INFO, "LB: recv client load report msg: '%s'", request.DebugString().c_str()); GPR_ASSERT(request.has_client_stats()); // We need to acquire the lock here in order to prevent the notify_one // below from firing before its corresponding wait is executed. std::lock_guard lock(mu_); client_stats_.num_calls_started += request.client_stats().num_calls_started(); client_stats_.num_calls_finished += request.client_stats().num_calls_finished(); client_stats_.num_calls_finished_with_client_failed_to_send += request.client_stats() .num_calls_finished_with_client_failed_to_send(); client_stats_.num_calls_finished_known_received += request.client_stats().num_calls_finished_known_received(); for (const auto& drop_token_count : request.client_stats().calls_finished_with_drop()) { client_stats_ .drop_token_counts[drop_token_count.load_balance_token()] += drop_token_count.num_calls(); } load_report_cond_.notify_one(); } done: gpr_log(GPR_INFO, "LB: done"); return Status::OK; } void add_response(const LoadBalanceResponse& response, int send_after_ms) { std::unique_lock lock(mu_); responses_and_delays_.push_back(std::make_pair(response, send_after_ms)); } // Returns true on its first invocation, false otherwise. bool Shutdown() { NotifyDoneWithServerlists(); std::unique_lock lock(mu_); const bool prev = !shutdown_; shutdown_ = true; gpr_log(GPR_INFO, "LB: shut down"); return prev; } static LoadBalanceResponse BuildResponseForBackends( const std::vector& backend_ports, const std::map& drop_token_counts) { LoadBalanceResponse response; for (const auto& drop_token_count : drop_token_counts) { for (size_t i = 0; i < drop_token_count.second; ++i) { auto* server = response.mutable_server_list()->add_servers(); server->set_drop(true); server->set_load_balance_token(drop_token_count.first); } } for (const int& backend_port : backend_ports) { auto* server = response.mutable_server_list()->add_servers(); server->set_ip_address(Ip4ToPackedString("127.0.0.1")); server->set_port(backend_port); } return response; } const ClientStats& WaitForLoadReport() { std::unique_lock lock(mu_); load_report_cond_.wait(lock); return client_stats_; } void NotifyDoneWithServerlists() { std::lock_guard lock(mu_); serverlist_cond_.notify_one(); } private: void SendResponse(Stream* stream, const LoadBalanceResponse& response, int delay_ms) { gpr_log(GPR_INFO, "LB: sleeping for %d ms...", delay_ms); if (delay_ms > 0) { gpr_sleep_until( gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(delay_ms, GPR_TIMESPAN))); } gpr_log(GPR_INFO, "LB: Woke up! Sending response '%s'", response.DebugString().c_str()); IncreaseResponseCount(); stream->Write(response); } const int client_load_reporting_interval_seconds_; std::vector responses_and_delays_; std::mutex mu_; std::condition_variable load_report_cond_; std::condition_variable serverlist_cond_; ClientStats client_stats_; bool shutdown_; }; class GrpclbEnd2endTest : public ::testing::Test { protected: GrpclbEnd2endTest(int num_backends, int num_balancers, int client_load_reporting_interval_seconds) : server_host_("localhost"), num_backends_(num_backends), num_balancers_(num_balancers), client_load_reporting_interval_seconds_( client_load_reporting_interval_seconds) {} void SetUp() override { response_generator_ = grpc_fake_resolver_response_generator_create(); // Start the backends. for (size_t i = 0; i < num_backends_; ++i) { backends_.emplace_back(new BackendServiceImpl()); backend_servers_.emplace_back(ServerThread( "backend", server_host_, backends_.back().get())); } // Start the load balancers. for (size_t i = 0; i < num_balancers_; ++i) { balancers_.emplace_back( new BalancerServiceImpl(client_load_reporting_interval_seconds_)); balancer_servers_.emplace_back(ServerThread( "balancer", server_host_, balancers_.back().get())); } ResetStub(); std::vector addresses; for (size_t i = 0; i < balancer_servers_.size(); ++i) { addresses.emplace_back(AddressData{balancer_servers_[i].port_, true, ""}); } SetNextResolution(addresses); } void TearDown() override { for (size_t i = 0; i < backends_.size(); ++i) { backend_servers_[i].Shutdown(); } for (size_t i = 0; i < balancers_.size(); ++i) { if (balancers_[i]->Shutdown()) balancer_servers_[i].Shutdown(); } grpc_fake_resolver_response_generator_unref(response_generator_); } void ResetStub() { ChannelArguments args; args.SetPointer(GRPC_ARG_FAKE_RESOLVER_RESPONSE_GENERATOR, response_generator_); std::ostringstream uri; uri << "fake:///servername_not_used"; channel_ = CreateCustomChannel(uri.str(), InsecureChannelCredentials(), args); stub_ = grpc::testing::EchoTestService::NewStub(channel_); } ClientStats WaitForLoadReports() { ClientStats client_stats; for (const auto& balancer : balancers_) { client_stats += balancer->WaitForLoadReport(); } return client_stats; } struct AddressData { int port; bool is_balancer; grpc::string balancer_name; }; void SetNextResolution(const std::vector& address_data) { grpc_exec_ctx exec_ctx = GRPC_EXEC_CTX_INIT; grpc_lb_addresses* addresses = grpc_lb_addresses_create(address_data.size(), nullptr); for (size_t i = 0; i < address_data.size(); ++i) { char* lb_uri_str; gpr_asprintf(&lb_uri_str, "ipv4:127.0.0.1:%d", address_data[i].port); grpc_uri* lb_uri = grpc_uri_parse(&exec_ctx, lb_uri_str, true); GPR_ASSERT(lb_uri != nullptr); grpc_lb_addresses_set_address_from_uri( addresses, i, lb_uri, address_data[i].is_balancer, address_data[i].balancer_name.c_str(), nullptr); grpc_uri_destroy(lb_uri); gpr_free(lb_uri_str); } grpc_arg fake_addresses = grpc_lb_addresses_create_channel_arg(addresses); grpc_channel_args fake_result = {1, &fake_addresses}; grpc_fake_resolver_response_generator_set_response( &exec_ctx, response_generator_, &fake_result); grpc_lb_addresses_destroy(&exec_ctx, addresses); grpc_exec_ctx_finish(&exec_ctx); } const std::vector GetBackendPorts() const { std::vector backend_ports; for (const auto& bs : backend_servers_) { backend_ports.push_back(bs.port_); } return backend_ports; } void ScheduleResponseForBalancer(size_t i, const LoadBalanceResponse& response, int delay_ms) { balancers_.at(i)->add_response(response, delay_ms); } std::vector> SendRpc(const string& message, int num_rpcs, int timeout_ms = 1000) { std::vector> results; EchoRequest request; EchoResponse response; request.set_message(message); for (int i = 0; i < num_rpcs; i++) { ClientContext context; context.set_deadline(grpc_timeout_milliseconds_to_deadline(timeout_ms)); Status status = stub_->Echo(&context, request, &response); results.push_back(std::make_pair(status, response)); } return results; } template struct ServerThread { explicit ServerThread(const grpc::string& type, const grpc::string& server_host, T* service) : type_(type), service_(service) { std::mutex mu; // We need to acquire the lock here in order to prevent the notify_one // by ServerThread::Start from firing before the wait below is hit. std::unique_lock lock(mu); port_ = grpc_pick_unused_port_or_die(); gpr_log(GPR_INFO, "starting %s server on port %d", type_.c_str(), port_); std::condition_variable cond; thread_.reset(new std::thread( std::bind(&ServerThread::Start, this, server_host, &mu, &cond))); cond.wait(lock); gpr_log(GPR_INFO, "%s server startup complete", type_.c_str()); } void Start(const grpc::string& server_host, std::mutex* mu, std::condition_variable* cond) { // We need to acquire the lock here in order to prevent the notify_one // below from firing before its corresponding wait is executed. std::lock_guard lock(*mu); std::ostringstream server_address; server_address << server_host << ":" << port_; ServerBuilder builder; builder.AddListeningPort(server_address.str(), InsecureServerCredentials()); builder.RegisterService(service_); server_ = builder.BuildAndStart(); cond->notify_one(); } void Shutdown() { gpr_log(GPR_INFO, "%s about to shutdown", type_.c_str()); server_->Shutdown(grpc_timeout_milliseconds_to_deadline(0)); thread_->join(); gpr_log(GPR_INFO, "%s shutdown completed", type_.c_str()); } int port_; grpc::string type_; std::unique_ptr server_; T* service_; std::unique_ptr thread_; }; const grpc::string kMessage_ = "Live long and prosper."; const grpc::string server_host_; const size_t num_backends_; const size_t num_balancers_; const int client_load_reporting_interval_seconds_; std::shared_ptr channel_; std::unique_ptr stub_; std::vector> backends_; std::vector> balancers_; std::vector> backend_servers_; std::vector> balancer_servers_; grpc_fake_resolver_response_generator* response_generator_; }; class SingleBalancerTest : public GrpclbEnd2endTest { public: SingleBalancerTest() : GrpclbEnd2endTest(4, 1, 0) {} }; TEST_F(SingleBalancerTest, Vanilla) { const size_t kNumRpcsPerAddress = 100; ScheduleResponseForBalancer( 0, BalancerServiceImpl::BuildResponseForBackends(GetBackendPorts(), {}), 0); // Make sure that trying to connect works without a call. channel_->GetState(true /* try_to_connect */); // Send 100 RPCs per server. const auto& statuses_and_responses = SendRpc(kMessage_, kNumRpcsPerAddress * num_backends_); for (const auto& status_and_response : statuses_and_responses) { const Status& status = status_and_response.first; const EchoResponse& response = status_and_response.second; EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kMessage_); } // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backend_servers_[i].service_->request_count()); } balancers_[0]->NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancer_servers_[0].service_->request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_servers_[0].service_->response_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(SingleBalancerTest, InitiallyEmptyServerlist) { const int kServerlistDelayMs = 500 * grpc_test_slowdown_factor(); const int kCallDeadlineMs = 1000 * grpc_test_slowdown_factor(); // First response is an empty serverlist, sent right away. ScheduleResponseForBalancer(0, LoadBalanceResponse(), 0); // Send non-empty serverlist only after kServerlistDelayMs ScheduleResponseForBalancer( 0, BalancerServiceImpl::BuildResponseForBackends(GetBackendPorts(), {}), kServerlistDelayMs); const auto t0 = system_clock::now(); // Client will block: LB will initially send empty serverlist. const auto& statuses_and_responses = SendRpc(kMessage_, num_backends_, kCallDeadlineMs); const auto ellapsed_ms = std::chrono::duration_cast( system_clock::now() - t0); // but eventually, the LB sends a serverlist update that allows the call to // proceed. The call delay must be larger than the delay in sending the // populated serverlist but under the call's deadline. EXPECT_GT(ellapsed_ms.count(), kServerlistDelayMs); EXPECT_LT(ellapsed_ms.count(), kCallDeadlineMs); // Each backend should have gotten 1 request. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(1U, backend_servers_[i].service_->request_count()); } for (const auto& status_and_response : statuses_and_responses) { const Status& status = status_and_response.first; const EchoResponse& response = status_and_response.second; EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kMessage_); } balancers_[0]->NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancer_servers_[0].service_->request_count()); // and sent two responses. EXPECT_EQ(2U, balancer_servers_[0].service_->response_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(SingleBalancerTest, RepeatedServerlist) { constexpr int kServerlistDelayMs = 100; // Send a serverlist right away. ScheduleResponseForBalancer( 0, BalancerServiceImpl::BuildResponseForBackends(GetBackendPorts(), {}), 0); // ... and the same one a bit later. ScheduleResponseForBalancer( 0, BalancerServiceImpl::BuildResponseForBackends(GetBackendPorts(), {}), kServerlistDelayMs); // Send num_backends/2 requests. auto statuses_and_responses = SendRpc(kMessage_, num_backends_ / 2); // only the first half of the backends will receive them. for (size_t i = 0; i < backends_.size(); ++i) { if (i < backends_.size() / 2) EXPECT_EQ(1U, backend_servers_[i].service_->request_count()) << "for backend #" << i; else EXPECT_EQ(0U, backend_servers_[i].service_->request_count()) << "for backend #" << i; } EXPECT_EQ(statuses_and_responses.size(), num_backends_ / 2); for (const auto& status_and_response : statuses_and_responses) { const Status& status = status_and_response.first; const EchoResponse& response = status_and_response.second; EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kMessage_); } // Wait for the (duplicated) serverlist update. gpr_sleep_until(gpr_time_add( gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(kServerlistDelayMs * 1.1, GPR_TIMESPAN))); // Verify the LB has sent two responses. EXPECT_EQ(2U, balancer_servers_[0].service_->response_count()); // Some more calls to complete the total number of backends. statuses_and_responses = SendRpc( kMessage_, num_backends_ / 2 + (num_backends_ & 0x1) /* extra one if num_bes odd */); // Because a duplicated serverlist should have no effect, all backends must // have been hit once now. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(1U, backend_servers_[i].service_->request_count()); } EXPECT_EQ(statuses_and_responses.size(), num_backends_ / 2); for (const auto& status_and_response : statuses_and_responses) { const Status& status = status_and_response.first; const EchoResponse& response = status_and_response.second; EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kMessage_); } balancers_[0]->NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancer_servers_[0].service_->request_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } class UpdatesTest : public GrpclbEnd2endTest { public: UpdatesTest() : GrpclbEnd2endTest(4, 3, 0) {} }; TEST_F(UpdatesTest, UpdateBalancers) { const std::vector first_backend{GetBackendPorts()[0]}; const std::vector second_backend{GetBackendPorts()[1]}; ScheduleResponseForBalancer( 0, BalancerServiceImpl::BuildResponseForBackends(first_backend, {}), 0); ScheduleResponseForBalancer( 1, BalancerServiceImpl::BuildResponseForBackends(second_backend, {}), 0); // Start servers and send 10 RPCs per server. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); auto statuses_and_responses = SendRpc(kMessage_, 10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); for (const auto& status_and_response : statuses_and_responses) { EXPECT_TRUE(status_and_response.first.ok()); EXPECT_EQ(status_and_response.second.message(), kMessage_); } // All 10 requests should have gone to the first backend. EXPECT_EQ(10U, backend_servers_[0].service_->request_count()); balancers_[0]->NotifyDoneWithServerlists(); balancers_[1]->NotifyDoneWithServerlists(); balancers_[2]->NotifyDoneWithServerlists(); // Balancer 0 got a single request. EXPECT_EQ(1U, balancer_servers_[0].service_->request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_servers_[0].service_->response_count()); EXPECT_EQ(0U, balancer_servers_[1].service_->request_count()); EXPECT_EQ(0U, balancer_servers_[1].service_->response_count()); EXPECT_EQ(0U, balancer_servers_[2].service_->request_count()); EXPECT_EQ(0U, balancer_servers_[2].service_->response_count()); std::vector addresses; addresses.emplace_back(AddressData{balancer_servers_[1].port_, true, ""}); gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 =========="); SetNextResolution(addresses); gpr_log(GPR_INFO, "========= UPDATE 1 DONE =========="); // Wait until update has been processed, as signaled by the second backend // receiving a request. EXPECT_EQ(0U, backend_servers_[1].service_->request_count()); do { auto statuses_and_responses = SendRpc(kMessage_, 1); for (const auto& status_and_response : statuses_and_responses) { EXPECT_TRUE(status_and_response.first.ok()); EXPECT_EQ(status_and_response.second.message(), kMessage_); } } while (backend_servers_[1].service_->request_count() == 0); backend_servers_[1].service_->ResetCounters(); gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH =========="); statuses_and_responses = SendRpc(kMessage_, 10); gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH =========="); for (const auto& status_and_response : statuses_and_responses) { EXPECT_TRUE(status_and_response.first.ok()); EXPECT_EQ(status_and_response.second.message(), kMessage_); } // All 10 requests should have gone to the second backend. EXPECT_EQ(10U, backend_servers_[1].service_->request_count()); balancers_[0]->NotifyDoneWithServerlists(); balancers_[1]->NotifyDoneWithServerlists(); balancers_[2]->NotifyDoneWithServerlists(); EXPECT_EQ(1U, balancer_servers_[0].service_->request_count()); EXPECT_EQ(1U, balancer_servers_[0].service_->response_count()); EXPECT_EQ(1U, balancer_servers_[1].service_->request_count()); EXPECT_EQ(1U, balancer_servers_[1].service_->response_count()); EXPECT_EQ(0U, balancer_servers_[2].service_->request_count()); EXPECT_EQ(0U, balancer_servers_[2].service_->response_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } // Send an update with the same set of LBs as the one in SetUp() in order to // verify that the LB channel inside grpclb keeps the initial connection (which // by definition is also present in the update). TEST_F(UpdatesTest, UpdateBalancersRepeated) { const std::vector first_backend{GetBackendPorts()[0]}; const std::vector second_backend{GetBackendPorts()[0]}; ScheduleResponseForBalancer( 0, BalancerServiceImpl::BuildResponseForBackends(first_backend, {}), 0); ScheduleResponseForBalancer( 1, BalancerServiceImpl::BuildResponseForBackends(second_backend, {}), 0); // Start servers and send 10 RPCs per server. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); auto statuses_and_responses = SendRpc(kMessage_, 10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); for (const auto& status_and_response : statuses_and_responses) { EXPECT_TRUE(status_and_response.first.ok()); EXPECT_EQ(status_and_response.second.message(), kMessage_); } // All 10 requests should have gone to the first backend. EXPECT_EQ(10U, backend_servers_[0].service_->request_count()); balancers_[0]->NotifyDoneWithServerlists(); // Balancer 0 got a single request. EXPECT_EQ(1U, balancer_servers_[0].service_->request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_servers_[0].service_->response_count()); EXPECT_EQ(0U, balancer_servers_[1].service_->request_count()); EXPECT_EQ(0U, balancer_servers_[1].service_->response_count()); EXPECT_EQ(0U, balancer_servers_[2].service_->request_count()); EXPECT_EQ(0U, balancer_servers_[2].service_->response_count()); std::vector addresses; addresses.emplace_back(AddressData{balancer_servers_[0].port_, true, ""}); addresses.emplace_back(AddressData{balancer_servers_[1].port_, true, ""}); addresses.emplace_back(AddressData{balancer_servers_[2].port_, true, ""}); gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 =========="); SetNextResolution(addresses); gpr_log(GPR_INFO, "========= UPDATE 1 DONE =========="); EXPECT_EQ(0U, backend_servers_[1].service_->request_count()); gpr_timespec deadline = gpr_time_add( gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(10000, GPR_TIMESPAN)); // Send 10 seconds worth of RPCs do { statuses_and_responses = SendRpc(kMessage_, 1); for (const auto& status_and_response : statuses_and_responses) { EXPECT_TRUE(status_and_response.first.ok()); EXPECT_EQ(status_and_response.second.message(), kMessage_); } } while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0); // grpclb continued using the original LB call to the first balancer, which // doesn't assign the second backend. EXPECT_EQ(0U, backend_servers_[1].service_->request_count()); balancers_[0]->NotifyDoneWithServerlists(); addresses.clear(); addresses.emplace_back(AddressData{balancer_servers_[0].port_, true, ""}); addresses.emplace_back(AddressData{balancer_servers_[1].port_, true, ""}); gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 2 =========="); SetNextResolution(addresses); gpr_log(GPR_INFO, "========= UPDATE 2 DONE =========="); EXPECT_EQ(0U, backend_servers_[1].service_->request_count()); deadline = gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_millis(10000, GPR_TIMESPAN)); // Send 10 seconds worth of RPCs do { statuses_and_responses = SendRpc(kMessage_, 1); for (const auto& status_and_response : statuses_and_responses) { EXPECT_TRUE(status_and_response.first.ok()); EXPECT_EQ(status_and_response.second.message(), kMessage_); } } while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0); // grpclb continued using the original LB call to the first balancer, which // doesn't assign the second backend. EXPECT_EQ(0U, backend_servers_[1].service_->request_count()); balancers_[0]->NotifyDoneWithServerlists(); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(UpdatesTest, UpdateBalancersDeadUpdate) { const std::vector first_backend{GetBackendPorts()[0]}; const std::vector second_backend{GetBackendPorts()[1]}; ScheduleResponseForBalancer( 0, BalancerServiceImpl::BuildResponseForBackends(first_backend, {}), 0); ScheduleResponseForBalancer( 1, BalancerServiceImpl::BuildResponseForBackends(second_backend, {}), 0); // Start servers and send 10 RPCs per server. gpr_log(GPR_INFO, "========= BEFORE FIRST BATCH =========="); auto statuses_and_responses = SendRpc(kMessage_, 10); gpr_log(GPR_INFO, "========= DONE WITH FIRST BATCH =========="); for (const auto& status_and_response : statuses_and_responses) { EXPECT_TRUE(status_and_response.first.ok()); EXPECT_EQ(status_and_response.second.message(), kMessage_); } // All 10 requests should have gone to the first backend. EXPECT_EQ(10U, backend_servers_[0].service_->request_count()); // Kill balancer 0 gpr_log(GPR_INFO, "********** ABOUT TO KILL BALANCER 0 *************"); balancers_[0]->NotifyDoneWithServerlists(); if (balancers_[0]->Shutdown()) balancer_servers_[0].Shutdown(); gpr_log(GPR_INFO, "********** KILLED BALANCER 0 *************"); // This is serviced by the existing RR policy gpr_log(GPR_INFO, "========= BEFORE SECOND BATCH =========="); statuses_and_responses = SendRpc(kMessage_, 10); gpr_log(GPR_INFO, "========= DONE WITH SECOND BATCH =========="); for (const auto& status_and_response : statuses_and_responses) { EXPECT_TRUE(status_and_response.first.ok()); EXPECT_EQ(status_and_response.second.message(), kMessage_); } // All 10 requests should again have gone to the first backend. EXPECT_EQ(20U, backend_servers_[0].service_->request_count()); EXPECT_EQ(0U, backend_servers_[1].service_->request_count()); balancers_[0]->NotifyDoneWithServerlists(); balancers_[1]->NotifyDoneWithServerlists(); balancers_[2]->NotifyDoneWithServerlists(); // Balancer 0 got a single request. EXPECT_EQ(1U, balancer_servers_[0].service_->request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_servers_[0].service_->response_count()); EXPECT_EQ(0U, balancer_servers_[1].service_->request_count()); EXPECT_EQ(0U, balancer_servers_[1].service_->response_count()); EXPECT_EQ(0U, balancer_servers_[2].service_->request_count()); EXPECT_EQ(0U, balancer_servers_[2].service_->response_count()); std::vector addresses; addresses.emplace_back(AddressData{balancer_servers_[1].port_, true, ""}); gpr_log(GPR_INFO, "========= ABOUT TO UPDATE 1 =========="); SetNextResolution(addresses); gpr_log(GPR_INFO, "========= UPDATE 1 DONE =========="); // Wait until update has been processed, as signaled by the second backend // receiving a request. In the meantime, the client continues to be serviced // (by the first backend) without interruption. EXPECT_EQ(0U, backend_servers_[1].service_->request_count()); do { auto statuses_and_responses = SendRpc(kMessage_, 1); for (const auto& status_and_response : statuses_and_responses) { EXPECT_TRUE(status_and_response.first.ok()); EXPECT_EQ(status_and_response.second.message(), kMessage_); } } while (backend_servers_[1].service_->request_count() == 0); // This is serviced by the existing RR policy backend_servers_[1].service_->ResetCounters(); gpr_log(GPR_INFO, "========= BEFORE THIRD BATCH =========="); statuses_and_responses = SendRpc(kMessage_, 10); gpr_log(GPR_INFO, "========= DONE WITH THIRD BATCH =========="); for (const auto& status_and_response : statuses_and_responses) { EXPECT_TRUE(status_and_response.first.ok()); EXPECT_EQ(status_and_response.second.message(), kMessage_); } // All 10 requests should have gone to the second backend. EXPECT_EQ(10U, backend_servers_[1].service_->request_count()); balancers_[0]->NotifyDoneWithServerlists(); balancers_[1]->NotifyDoneWithServerlists(); balancers_[2]->NotifyDoneWithServerlists(); EXPECT_EQ(1U, balancer_servers_[0].service_->request_count()); EXPECT_EQ(1U, balancer_servers_[0].service_->response_count()); EXPECT_EQ(1U, balancer_servers_[1].service_->request_count()); EXPECT_EQ(1U, balancer_servers_[1].service_->response_count()); EXPECT_EQ(0U, balancer_servers_[2].service_->request_count()); EXPECT_EQ(0U, balancer_servers_[2].service_->response_count()); // Check LB policy name for the channel. EXPECT_EQ("grpclb", channel_->GetLoadBalancingPolicyName()); } TEST_F(SingleBalancerTest, Drop) { const size_t kNumRpcsPerAddress = 100; ScheduleResponseForBalancer( 0, BalancerServiceImpl::BuildResponseForBackends( GetBackendPorts(), {{"rate_limiting", 1}, {"load_balancing", 2}}), 0); // Send 100 RPCs for each server and drop address. const auto& statuses_and_responses = SendRpc(kMessage_, kNumRpcsPerAddress * (num_backends_ + 3)); size_t num_drops = 0; for (const auto& status_and_response : statuses_and_responses) { const Status& status = status_and_response.first; const EchoResponse& response = status_and_response.second; if (!status.ok() && status.error_message() == "Call dropped by load balancing policy") { ++num_drops; } else { EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kMessage_); } } EXPECT_EQ(kNumRpcsPerAddress * 3, num_drops); // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backend_servers_[i].service_->request_count()); } // The balancer got a single request. EXPECT_EQ(1U, balancer_servers_[0].service_->request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_servers_[0].service_->response_count()); } TEST_F(SingleBalancerTest, DropAllFirst) { // All registered addresses are marked as "drop". ScheduleResponseForBalancer( 0, BalancerServiceImpl::BuildResponseForBackends( {}, {{"rate_limiting", 1}, {"load_balancing", 1}}), 0); const auto& statuses_and_responses = SendRpc(kMessage_, 1); for (const auto& status_and_response : statuses_and_responses) { const Status& status = status_and_response.first; EXPECT_FALSE(status.ok()); EXPECT_EQ(status.error_message(), "Call dropped by load balancing policy"); } } TEST_F(SingleBalancerTest, DropAll) { ScheduleResponseForBalancer( 0, BalancerServiceImpl::BuildResponseForBackends(GetBackendPorts(), {}), 0); ScheduleResponseForBalancer( 0, BalancerServiceImpl::BuildResponseForBackends( {}, {{"rate_limiting", 1}, {"load_balancing", 1}}), 1000); // First call succeeds. auto statuses_and_responses = SendRpc(kMessage_, 1); for (const auto& status_and_response : statuses_and_responses) { const Status& status = status_and_response.first; const EchoResponse& response = status_and_response.second; EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kMessage_); } // But eventually, the update with only dropped servers is processed and calls // fail. do { statuses_and_responses = SendRpc(kMessage_, 1); ASSERT_EQ(statuses_and_responses.size(), 1UL); } while (statuses_and_responses[0].first.ok()); const Status& status = statuses_and_responses[0].first; EXPECT_FALSE(status.ok()); EXPECT_EQ(status.error_message(), "Call dropped by load balancing policy"); } class SingleBalancerWithClientLoadReportingTest : public GrpclbEnd2endTest { public: SingleBalancerWithClientLoadReportingTest() : GrpclbEnd2endTest(4, 1, 2) {} }; TEST_F(SingleBalancerWithClientLoadReportingTest, Vanilla) { const size_t kNumRpcsPerAddress = 100; ScheduleResponseForBalancer( 0, BalancerServiceImpl::BuildResponseForBackends(GetBackendPorts(), {}), 0); // Send 100 RPCs per server. const auto& statuses_and_responses = SendRpc(kMessage_, kNumRpcsPerAddress * num_backends_); for (const auto& status_and_response : statuses_and_responses) { const Status& status = status_and_response.first; const EchoResponse& response = status_and_response.second; EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kMessage_); } // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backend_servers_[i].service_->request_count()); } balancers_[0]->NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancer_servers_[0].service_->request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_servers_[0].service_->response_count()); const ClientStats client_stats = WaitForLoadReports(); EXPECT_EQ(kNumRpcsPerAddress * num_backends_, client_stats.num_calls_started); EXPECT_EQ(kNumRpcsPerAddress * num_backends_, client_stats.num_calls_finished); EXPECT_EQ(0U, client_stats.num_calls_finished_with_client_failed_to_send); EXPECT_EQ(kNumRpcsPerAddress * num_backends_, client_stats.num_calls_finished_known_received); EXPECT_THAT(client_stats.drop_token_counts, ::testing::ElementsAre()); } TEST_F(SingleBalancerWithClientLoadReportingTest, Drop) { const size_t kNumRpcsPerAddress = 3; ScheduleResponseForBalancer( 0, BalancerServiceImpl::BuildResponseForBackends( GetBackendPorts(), {{"rate_limiting", 2}, {"load_balancing", 1}}), 0); // Send 100 RPCs for each server and drop address. const auto& statuses_and_responses = SendRpc(kMessage_, kNumRpcsPerAddress * (num_backends_ + 3)); size_t num_drops = 0; for (const auto& status_and_response : statuses_and_responses) { const Status& status = status_and_response.first; const EchoResponse& response = status_and_response.second; if (!status.ok() && status.error_message() == "Call dropped by load balancing policy") { ++num_drops; } else { EXPECT_TRUE(status.ok()) << "code=" << status.error_code() << " message=" << status.error_message(); EXPECT_EQ(response.message(), kMessage_); } } EXPECT_EQ(kNumRpcsPerAddress * 3, num_drops); // Each backend should have gotten 100 requests. for (size_t i = 0; i < backends_.size(); ++i) { EXPECT_EQ(kNumRpcsPerAddress, backend_servers_[i].service_->request_count()); } balancers_[0]->NotifyDoneWithServerlists(); // The balancer got a single request. EXPECT_EQ(1U, balancer_servers_[0].service_->request_count()); // and sent a single response. EXPECT_EQ(1U, balancer_servers_[0].service_->response_count()); const ClientStats client_stats = WaitForLoadReports(); EXPECT_EQ(kNumRpcsPerAddress * (num_backends_ + 3), client_stats.num_calls_started); EXPECT_EQ(kNumRpcsPerAddress * (num_backends_ + 3), client_stats.num_calls_finished); EXPECT_EQ(0U, client_stats.num_calls_finished_with_client_failed_to_send); EXPECT_EQ(kNumRpcsPerAddress * num_backends_, client_stats.num_calls_finished_known_received); EXPECT_THAT(client_stats.drop_token_counts, ::testing::ElementsAre( ::testing::Pair("load_balancing", kNumRpcsPerAddress), ::testing::Pair("rate_limiting", kNumRpcsPerAddress * 2))); } } // namespace } // namespace testing } // namespace grpc int main(int argc, char** argv) { grpc_init(); grpc_test_init(argc, argv); ::testing::InitGoogleTest(&argc, argv); const auto result = RUN_ALL_TESTS(); grpc_shutdown(); return result; }