Speed up latency profiling (and tune down the memory usage)

pull/9782/head
Craig Tiller 8 years ago
parent 9c30e98ce5
commit ece502fa12
  1. 6
      tools/run_tests/run_microbenchmark.py

@ -91,7 +91,9 @@ def collect_latency(bm_name, args):
'--benchmark_list_tests']).splitlines():
link(line, '%s.txt' % fnize(line))
benchmarks.append(
jobset.JobSpec(['bins/basicprof/%s' % bm_name, '--benchmark_filter=^%s$' % line],
jobset.JobSpec(['bins/basicprof/%s' % bm_name,
'--benchmark_filter=^%s$' % line,
'--benchmark_min_time=0.05'],
environ={'LATENCY_TRACE': '%s.trace' % fnize(line)}))
profile_analysis.append(
jobset.JobSpec([sys.executable,
@ -103,7 +105,7 @@ def collect_latency(bm_name, args):
# consume upwards of five gigabytes of ram in some cases, and so analysing
# hundreds of them at once is impractical -- but we want at least some
# concurrency or the work takes too long
if len(benchmarks) >= min(4, multiprocessing.cpu_count()):
if len(benchmarks) >= min(16, multiprocessing.cpu_count()):
# run up to half the cpu count: each benchmark can use up to two cores
# (one for the microbenchmark, one for the data flush)
jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count()/2),

Loading…
Cancel
Save