clang-format

pull/1948/head
Vijay Pai 10 years ago
parent c7de81e57e
commit cf3fb092cc
  1. 22
      include/grpc++/config.h
  2. 18
      include/grpc++/time.h
  3. 2
      src/cpp/util/time.cc
  4. 49
      test/cpp/qps/client.h
  5. 287
      test/cpp/qps/client_async.cc
  6. 90
      test/cpp/qps/interarrival.h
  7. 20
      test/cpp/qps/qps_interarrival_test.cc
  8. 19
      test/cpp/qps/qpstest.proto

@ -99,24 +99,28 @@
::google::protobuf::io::ZeroCopyOutputStream
#define GRPC_CUSTOM_ZEROCOPYINPUTSTREAM \
::google::protobuf::io::ZeroCopyInputStream
#define GRPC_CUSTOM_CODEDINPUTSTREAM \
::google::protobuf::io::CodedInputStream
#define GRPC_CUSTOM_CODEDINPUTSTREAM ::google::protobuf::io::CodedInputStream
#endif
#ifdef GRPC_CXX0X_NO_NULLPTR
#include <memory>
const class {
public:
template <class T> operator T*() const {return static_cast<T *>(0);}
template <class T> operator std::unique_ptr<T>() const {
public:
template <class T>
operator T *() const {
return static_cast<T *>(0);
}
template <class T>
operator std::unique_ptr<T>() const {
return std::unique_ptr<T>(static_cast<T *>(0));
}
template <class T> operator std::shared_ptr<T>() const {
template <class T>
operator std::shared_ptr<T>() const {
return std::shared_ptr<T>(static_cast<T *>(0));
}
operator bool() const {return false;}
private:
operator bool() const { return false; }
private:
void operator&() const = delete;
} nullptr = {};
#endif

@ -52,22 +52,22 @@ namespace grpc {
template <typename T>
class TimePoint {
public:
TimePoint(const T& time) {
you_need_a_specialization_of_TimePoint();
}
TimePoint(const T& time) { you_need_a_specialization_of_TimePoint(); }
gpr_timespec raw_time() {
gpr_timespec t;
return t;
}
private:
void you_need_a_specialization_of_TimePoint();
};
template<>
template <>
class TimePoint<gpr_timespec> {
public:
TimePoint(const gpr_timespec& time) : time_(time) { }
TimePoint(const gpr_timespec& time) : time_(time) {}
gpr_timespec raw_time() { return time_; }
private:
gpr_timespec time_;
};
@ -85,8 +85,9 @@ namespace grpc {
// from and to should be absolute time.
void Timepoint2Timespec(const std::chrono::system_clock::time_point& from,
gpr_timespec* to);
void TimepointHR2Timespec(const std::chrono::high_resolution_clock::time_point& from,
gpr_timespec* to);
void TimepointHR2Timespec(
const std::chrono::high_resolution_clock::time_point& from,
gpr_timespec* to);
std::chrono::system_clock::time_point Timespec2Timepoint(gpr_timespec t);
@ -94,9 +95,10 @@ template <>
class TimePoint<std::chrono::system_clock::time_point> {
public:
TimePoint(const std::chrono::system_clock::time_point& time) {
Timepoint2Timespec(time, &time_);
Timepoint2Timespec(time, &time_);
}
gpr_timespec raw_time() const { return time_; }
private:
gpr_timespec time_;
};

@ -61,7 +61,7 @@ void Timepoint2Timespec(const system_clock::time_point& from,
}
void TimepointHR2Timespec(const high_resolution_clock::time_point& from,
gpr_timespec* to) {
gpr_timespec* to) {
high_resolution_clock::duration deadline = from.time_since_epoch();
seconds secs = duration_cast<seconds>(deadline);
if (from == high_resolution_clock::time_point::max() ||

@ -50,9 +50,10 @@ template <>
class TimePoint<std::chrono::high_resolution_clock::time_point> {
public:
TimePoint(const std::chrono::high_resolution_clock::time_point& time) {
TimepointHR2Timespec(time, &time_);
TimepointHR2Timespec(time, &time_);
}
gpr_timespec raw_time() const { return time_; }
private:
gpr_timespec time_;
};
@ -65,8 +66,8 @@ typedef std::chrono::time_point<grpc_time_source> grpc_time;
class Client {
public:
explicit Client(const ClientConfig& config) : timer_(new Timer),
interarrival_timer_() {
explicit Client(const ClientConfig& config)
: timer_(new Timer), interarrival_timer_() {
for (int i = 0; i < config.client_channels(); i++) {
channels_.push_back(ClientChannelInfo(
config.server_targets(i % config.server_targets_size()), config));
@ -131,30 +132,29 @@ class Client {
// Set up the load distribution based on the number of threads
if (config.load_type() == CLOSED_LOOP) {
closed_loop_ = true;
}
else {
} else {
closed_loop_ = false;
std::unique_ptr<RandomDist> random_dist;
auto& load = config.load_params();
switch (config.load_type()) {
case POISSON:
random_dist.reset
(new ExpDist(load.poisson().offered_load()/num_threads));
random_dist.reset(
new ExpDist(load.poisson().offered_load() / num_threads));
break;
case UNIFORM:
random_dist.reset
(new UniformDist(load.uniform().interarrival_lo()*num_threads,
load.uniform().interarrival_hi()*num_threads));
random_dist.reset(
new UniformDist(load.uniform().interarrival_lo() * num_threads,
load.uniform().interarrival_hi() * num_threads));
break;
case DETERMINISTIC:
random_dist.reset
(new DetDist(num_threads/load.determ().offered_load()));
random_dist.reset(
new DetDist(num_threads / load.determ().offered_load()));
break;
case PARETO:
random_dist.reset
(new ParetoDist(load.pareto().interarrival_base()*num_threads,
load.pareto().alpha()));
random_dist.reset(
new ParetoDist(load.pareto().interarrival_base() * num_threads,
load.pareto().alpha()));
break;
default:
GPR_ASSERT(false);
@ -162,23 +162,26 @@ class Client {
}
interarrival_timer_.init(*random_dist, num_threads);
for (size_t i = 0; i<num_threads; i++) {
next_time_.push_back(grpc_time_source::now() +
std::chrono::duration_cast<grpc_time_source::duration>(interarrival_timer_(i)));
for (size_t i = 0; i < num_threads; i++) {
next_time_.push_back(
grpc_time_source::now() +
std::chrono::duration_cast<grpc_time_source::duration>(
interarrival_timer_(i)));
}
}
}
bool NextIssueTime(int thread_idx, grpc_time *time_delay) {
bool NextIssueTime(int thread_idx, grpc_time* time_delay) {
if (closed_loop_) {
return false;
}
else {
} else {
*time_delay = next_time_[thread_idx];
next_time_[thread_idx] += std::chrono::duration_cast<grpc_time_source::duration>(interarrival_timer_(thread_idx));
next_time_[thread_idx] +=
std::chrono::duration_cast<grpc_time_source::duration>(
interarrival_timer_(thread_idx));
return true;
}
}
private:
class Thread {
public:

@ -62,7 +62,7 @@ typedef std::list<grpc_time> deadline_list;
class ClientRpcContext {
public:
ClientRpcContext(int ch): channel_id_(ch) {}
ClientRpcContext(int ch) : channel_id_(ch) {}
virtual ~ClientRpcContext() {}
// next state, return false if done. Collect stats when appropriate
virtual bool RunNextState(bool, Histogram* hist) = 0;
@ -72,12 +72,16 @@ class ClientRpcContext {
return reinterpret_cast<ClientRpcContext*>(t);
}
deadline_list::iterator deadline_posn() const {return deadline_posn_;}
void set_deadline_posn(const deadline_list::iterator& it) {deadline_posn_ = it;}
virtual void Start(CompletionQueue *cq) = 0;
int channel_id() const {return channel_id_;}
deadline_list::iterator deadline_posn() const { return deadline_posn_; }
void set_deadline_posn(const deadline_list::iterator& it) {
deadline_posn_ = it;
}
virtual void Start(CompletionQueue* cq) = 0;
int channel_id() const { return channel_id_; }
protected:
int channel_id_;
private:
deadline_list::iterator deadline_posn_;
};
@ -85,23 +89,22 @@ class ClientRpcContext {
template <class RequestType, class ResponseType>
class ClientRpcContextUnaryImpl : public ClientRpcContext {
public:
ClientRpcContextUnaryImpl(int channel_id,
TestService::Stub* stub, const RequestType& req,
ClientRpcContextUnaryImpl(
int channel_id, TestService::Stub* stub, const RequestType& req,
std::function<
std::unique_ptr<grpc::ClientAsyncResponseReader<ResponseType>>(
TestService::Stub*, grpc::ClientContext*, const RequestType&,
CompletionQueue*)>
start_req,
CompletionQueue*)> start_req,
std::function<void(grpc::Status, ResponseType*)> on_done)
: ClientRpcContext(channel_id), context_(),
: ClientRpcContext(channel_id),
context_(),
stub_(stub),
req_(req),
response_(),
next_state_(&ClientRpcContextUnaryImpl::RespDone),
callback_(on_done),
start_req_(start_req) {
}
void Start(CompletionQueue *cq) GRPC_OVERRIDE {
start_req_(start_req) {}
void Start(CompletionQueue* cq) GRPC_OVERRIDE {
start_ = Timer::Now();
response_reader_ = start_req_(stub_, &context_, req_, cq);
response_reader_->Finish(&response_, &status_, ClientRpcContext::tag(this));
@ -116,8 +119,8 @@ class ClientRpcContextUnaryImpl : public ClientRpcContext {
}
ClientRpcContext* StartNewClone() GRPC_OVERRIDE {
return new ClientRpcContextUnaryImpl(channel_id_,
stub_, req_, start_req_, callback_);
return new ClientRpcContextUnaryImpl(channel_id_, stub_, req_, start_req_,
callback_);
}
private:
@ -125,9 +128,9 @@ class ClientRpcContextUnaryImpl : public ClientRpcContext {
next_state_ = &ClientRpcContextUnaryImpl::DoCallBack;
return false;
}
bool DoCallBack (bool) {
bool DoCallBack(bool) {
callback_(status_, &response_);
return true; // we're done, this'll be ignored
return true; // we're done, this'll be ignored
}
grpc::ClientContext context_;
TestService::Stub* stub_;
@ -136,27 +139,28 @@ class ClientRpcContextUnaryImpl : public ClientRpcContext {
bool (ClientRpcContextUnaryImpl::*next_state_)(bool);
std::function<void(grpc::Status, ResponseType*)> callback_;
std::function<std::unique_ptr<grpc::ClientAsyncResponseReader<ResponseType>>(
TestService::Stub*, grpc::ClientContext*,
const RequestType&, CompletionQueue *)> start_req_;
TestService::Stub*, grpc::ClientContext*, const RequestType&,
CompletionQueue*)> start_req_;
grpc::Status status_;
double start_;
std::unique_ptr<grpc::ClientAsyncResponseReader<ResponseType>>
response_reader_;
};
typedef std::forward_list<ClientRpcContext *> context_list;
typedef std::forward_list<ClientRpcContext*> context_list;
class AsyncClient : public Client {
public:
explicit AsyncClient(const ClientConfig& config,
std::function<ClientRpcContext*(int, TestService::Stub*,
const SimpleRequest&)> setup_ctx) :
Client(config), channel_lock_(config.client_channels()),
contexts_(config.client_channels()),
max_outstanding_per_channel_(config.outstanding_rpcs_per_channel()),
channel_count_(config.client_channels()),
pref_channel_inc_(config.async_client_threads()) {
explicit AsyncClient(
const ClientConfig& config,
std::function<ClientRpcContext*(int, TestService::Stub*,
const SimpleRequest&)> setup_ctx)
: Client(config),
channel_lock_(config.client_channels()),
contexts_(config.client_channels()),
max_outstanding_per_channel_(config.outstanding_rpcs_per_channel()),
channel_count_(config.client_channels()),
pref_channel_inc_(config.async_client_threads()) {
SetupLoadTest(config, config.async_client_threads());
for (int i = 0; i < config.async_client_threads(); i++) {
@ -181,8 +185,7 @@ class AsyncClient : public Client {
auto ctx = setup_ctx(ch, channel.get_stub(), request_);
if (closed_loop_) {
ctx->Start(cq);
}
else {
} else {
contexts_[ch].push_front(ctx);
}
}
@ -210,24 +213,24 @@ class AsyncClient : public Client {
} else {
if (rpc_deadlines_[thread_idx].empty()) {
deadline = grpc_time_source::now() + std::chrono::seconds(1);
}
else {
} else {
deadline = *(rpc_deadlines_[thread_idx].begin());
}
short_deadline = issue_allowed_[thread_idx] ?
next_issue_[thread_idx] : deadline;
short_deadline =
issue_allowed_[thread_idx] ? next_issue_[thread_idx] : deadline;
}
bool got_event;
switch (cli_cqs_[thread_idx]->AsyncNext(&got_tag, &ok, short_deadline)) {
case CompletionQueue::SHUTDOWN: return false;
case CompletionQueue::SHUTDOWN:
return false;
case CompletionQueue::TIMEOUT:
got_event = false;
break;
got_event = false;
break;
case CompletionQueue::GOT_EVENT:
got_event = true;
break;
got_event = true;
break;
default:
GPR_ASSERT(false);
break;
@ -239,89 +242,87 @@ class AsyncClient : public Client {
return false;
}
if (got_event) {
ClientRpcContext* ctx = ClientRpcContext::detag(got_tag);
if (ctx->RunNextState(ok, histogram) == false) {
// call the callback and then clone the ctx
ctx->RunNextState(ok, histogram);
ClientRpcContext *clone_ctx = ctx->StartNewClone();
if (closed_loop_) {
clone_ctx->Start(cli_cqs_[thread_idx].get());
}
else {
// Remove the entry from the rpc deadlines list
rpc_deadlines_[thread_idx].erase(ctx->deadline_posn());
// Put the clone_ctx in the list of idle contexts for this channel
// Under lock
int ch = clone_ctx->channel_id();
std::lock_guard<std::mutex> g(channel_lock_[ch]);
contexts_[ch].push_front(clone_ctx);
}
// delete the old version
delete ctx;
}
if (!closed_loop_)
issue_allowed_[thread_idx] = true; // may be ok now even if it hadn't been
}
if (!closed_loop_ && issue_allowed_[thread_idx] &&
grpc_time_source::now() >= next_issue_[thread_idx]) {
// Attempt to issue
bool issued = false;
for (int num_attempts = 0, channel_attempt = next_channel_[thread_idx];
num_attempts < channel_count_ && !issued; num_attempts++) {
bool can_issue = false;
ClientRpcContext* ctx = nullptr;
{
std::lock_guard<std::mutex>
g(channel_lock_[channel_attempt]);
if (!contexts_[channel_attempt].empty()) {
// Get an idle context from the front of the list
ctx = *(contexts_[channel_attempt].begin());
contexts_[channel_attempt].pop_front();
can_issue = true;
}
}
if (can_issue) {
// do the work to issue
rpc_deadlines_[thread_idx].emplace_back(
grpc_time_source::now() + std::chrono::seconds(1));
auto it = rpc_deadlines_[thread_idx].end();
--it;
ctx->set_deadline_posn(it);
ctx->Start(cli_cqs_[thread_idx].get());
issued = true;
// If we did issue, then next time, try our thread's next
// preferred channel
next_channel_[thread_idx] += pref_channel_inc_;
if (next_channel_[thread_idx] >= channel_count_)
next_channel_[thread_idx] = (thread_idx % channel_count_);
} else {
// Do a modular increment of channel attempt if we couldn't issue
channel_attempt = (channel_attempt+1) % channel_count_;
}
}
if (issued) {
// We issued one; see when we can issue the next
grpc_time next_issue;
NextIssueTime(thread_idx, &next_issue);
next_issue_[thread_idx]=next_issue;
}
else {
issue_allowed_[thread_idx] = false;
}
}
return true;
ClientRpcContext* ctx = ClientRpcContext::detag(got_tag);
if (ctx->RunNextState(ok, histogram) == false) {
// call the callback and then clone the ctx
ctx->RunNextState(ok, histogram);
ClientRpcContext* clone_ctx = ctx->StartNewClone();
if (closed_loop_) {
clone_ctx->Start(cli_cqs_[thread_idx].get());
} else {
// Remove the entry from the rpc deadlines list
rpc_deadlines_[thread_idx].erase(ctx->deadline_posn());
// Put the clone_ctx in the list of idle contexts for this channel
// Under lock
int ch = clone_ctx->channel_id();
std::lock_guard<std::mutex> g(channel_lock_[ch]);
contexts_[ch].push_front(clone_ctx);
}
// delete the old version
delete ctx;
}
if (!closed_loop_)
issue_allowed_[thread_idx] =
true; // may be ok now even if it hadn't been
}
if (!closed_loop_ && issue_allowed_[thread_idx] &&
grpc_time_source::now() >= next_issue_[thread_idx]) {
// Attempt to issue
bool issued = false;
for (int num_attempts = 0, channel_attempt = next_channel_[thread_idx];
num_attempts < channel_count_ && !issued; num_attempts++) {
bool can_issue = false;
ClientRpcContext* ctx = nullptr;
{
std::lock_guard<std::mutex> g(channel_lock_[channel_attempt]);
if (!contexts_[channel_attempt].empty()) {
// Get an idle context from the front of the list
ctx = *(contexts_[channel_attempt].begin());
contexts_[channel_attempt].pop_front();
can_issue = true;
}
}
if (can_issue) {
// do the work to issue
rpc_deadlines_[thread_idx].emplace_back(grpc_time_source::now() +
std::chrono::seconds(1));
auto it = rpc_deadlines_[thread_idx].end();
--it;
ctx->set_deadline_posn(it);
ctx->Start(cli_cqs_[thread_idx].get());
issued = true;
// If we did issue, then next time, try our thread's next
// preferred channel
next_channel_[thread_idx] += pref_channel_inc_;
if (next_channel_[thread_idx] >= channel_count_)
next_channel_[thread_idx] = (thread_idx % channel_count_);
} else {
// Do a modular increment of channel attempt if we couldn't issue
channel_attempt = (channel_attempt + 1) % channel_count_;
}
}
if (issued) {
// We issued one; see when we can issue the next
grpc_time next_issue;
NextIssueTime(thread_idx, &next_issue);
next_issue_[thread_idx] = next_issue;
} else {
issue_allowed_[thread_idx] = false;
}
}
return true;
}
private:
std::vector<std::unique_ptr<CompletionQueue>> cli_cqs_;
std::vector<deadline_list> rpc_deadlines_; // per thread deadlines
std::vector<int> next_channel_; // per thread round-robin channel ctr
std::vector<bool> issue_allowed_; // may this thread attempt to issue
std::vector<grpc_time> next_issue_; // when should it issue?
std::vector<deadline_list> rpc_deadlines_; // per thread deadlines
std::vector<int> next_channel_; // per thread round-robin channel ctr
std::vector<bool> issue_allowed_; // may this thread attempt to issue
std::vector<grpc_time> next_issue_; // when should it issue?
std::vector<std::mutex> channel_lock_;
std::vector<context_list> contexts_; // per-channel list of idle contexts
std::vector<context_list> contexts_; // per-channel list of idle contexts
int max_outstanding_per_channel_;
int channel_count_;
int pref_channel_inc_;
@ -334,34 +335,31 @@ class AsyncUnaryClient GRPC_FINAL : public AsyncClient {
StartThreads(config.async_client_threads());
}
~AsyncUnaryClient() GRPC_OVERRIDE { EndThreads(); }
private:
static ClientRpcContext *SetupCtx(int channel_id,
TestService::Stub* stub,
const SimpleRequest& req) {
private:
static ClientRpcContext* SetupCtx(int channel_id, TestService::Stub* stub,
const SimpleRequest& req) {
auto check_done = [](grpc::Status s, SimpleResponse* response) {};
auto start_req = [](TestService::Stub* stub, grpc::ClientContext* ctx,
const SimpleRequest& request, CompletionQueue* cq) {
return stub->AsyncUnaryCall(ctx, request, cq);
};
return new ClientRpcContextUnaryImpl<SimpleRequest,
SimpleResponse>(channel_id, stub, req,
start_req, check_done);
return new ClientRpcContextUnaryImpl<SimpleRequest, SimpleResponse>(
channel_id, stub, req, start_req, check_done);
}
};
template <class RequestType, class ResponseType>
class ClientRpcContextStreamingImpl : public ClientRpcContext {
public:
ClientRpcContextStreamingImpl(int channel_id,
TestService::Stub* stub, const RequestType& req,
std::function<std::unique_ptr<
grpc::ClientAsyncReaderWriter<RequestType, ResponseType>>(
TestService::Stub*, grpc::ClientContext*, CompletionQueue*,
void*)> start_req,
ClientRpcContextStreamingImpl(
int channel_id, TestService::Stub* stub, const RequestType& req,
std::function<std::unique_ptr<grpc::ClientAsyncReaderWriter<
RequestType, ResponseType>>(TestService::Stub*, grpc::ClientContext*,
CompletionQueue*, void*)> start_req,
std::function<void(grpc::Status, ResponseType*)> on_done)
: ClientRpcContext(channel_id),
context_(),
context_(),
stub_(stub),
req_(req),
response_(),
@ -374,12 +372,13 @@ class ClientRpcContextStreamingImpl : public ClientRpcContext {
return (this->*next_state_)(ok, hist);
}
ClientRpcContext* StartNewClone() GRPC_OVERRIDE {
return new ClientRpcContextStreamingImpl(channel_id_,
stub_, req_, start_req_, callback_);
return new ClientRpcContextStreamingImpl(channel_id_, stub_, req_,
start_req_, callback_);
}
void Start(CompletionQueue *cq) GRPC_OVERRIDE {
void Start(CompletionQueue* cq) GRPC_OVERRIDE {
stream_ = start_req_(stub_, &context_, cq, ClientRpcContext::tag(this));
}
private:
bool ReqSent(bool ok, Histogram*) { return StartWrite(ok); }
bool StartWrite(bool ok) {
@ -411,8 +410,8 @@ class ClientRpcContextStreamingImpl : public ClientRpcContext {
std::function<void(grpc::Status, ResponseType*)> callback_;
std::function<
std::unique_ptr<grpc::ClientAsyncReaderWriter<RequestType, ResponseType>>(
TestService::Stub*, grpc::ClientContext*,
CompletionQueue *, void*)> start_req_;
TestService::Stub*, grpc::ClientContext*, CompletionQueue*, void*)>
start_req_;
grpc::Status status_;
double start_;
std::unique_ptr<grpc::ClientAsyncReaderWriter<RequestType, ResponseType>>
@ -430,20 +429,18 @@ class AsyncStreamingClient GRPC_FINAL : public AsyncClient {
}
~AsyncStreamingClient() GRPC_OVERRIDE { EndThreads(); }
private:
static ClientRpcContext *SetupCtx(int channel_id,
TestService::Stub* stub,
const SimpleRequest& req) {
private:
static ClientRpcContext* SetupCtx(int channel_id, TestService::Stub* stub,
const SimpleRequest& req) {
auto check_done = [](grpc::Status s, SimpleResponse* response) {};
auto start_req = [](TestService::Stub* stub, grpc::ClientContext* ctx,
CompletionQueue *cq, void* tag) {
CompletionQueue* cq, void* tag) {
auto stream = stub->AsyncStreamingCall(ctx, cq, tag);
return stream;
};
return new ClientRpcContextStreamingImpl<SimpleRequest,
SimpleResponse>(channel_id, stub,
req, start_req,
check_done);
return new ClientRpcContextStreamingImpl<SimpleRequest, SimpleResponse>(
channel_id, stub, req, start_req, check_done);
}
};

@ -55,53 +55,60 @@ class RandomDist {
RandomDist() {}
virtual ~RandomDist() = 0;
// Argument to operator() is a uniform double in the range [0,1)
virtual double operator() (double uni) const = 0;
virtual double operator()(double uni) const = 0;
};
inline RandomDist::~RandomDist() {}
class UniformDist GRPC_FINAL: public RandomDist {
public:
UniformDist(double lo, double hi): lo_(lo), range_(hi-lo) {}
~UniformDist() GRPC_OVERRIDE {}
double operator() (double uni) const GRPC_OVERRIDE {return uni*range_+lo_;}
private:
class UniformDist GRPC_FINAL : public RandomDist {
public:
UniformDist(double lo, double hi) : lo_(lo), range_(hi - lo) {}
~UniformDist() GRPC_OVERRIDE {}
double operator()(double uni) const GRPC_OVERRIDE {
return uni * range_ + lo_;
}
private:
double lo_;
double range_;
};
class ExpDist GRPC_FINAL : public RandomDist {
public:
explicit ExpDist(double lambda): lambda_recip_(1.0/lambda) {}
~ExpDist() GRPC_OVERRIDE {}
double operator() (double uni) const GRPC_OVERRIDE {
// Note: Use 1.0-uni above to avoid NaN if uni is 0
return lambda_recip_ * (-log(1.0-uni));
}
private:
public:
explicit ExpDist(double lambda) : lambda_recip_(1.0 / lambda) {}
~ExpDist() GRPC_OVERRIDE {}
double operator()(double uni) const GRPC_OVERRIDE {
// Note: Use 1.0-uni above to avoid NaN if uni is 0
return lambda_recip_ * (-log(1.0 - uni));
}
private:
double lambda_recip_;
};
class DetDist GRPC_FINAL : public RandomDist {
public:
explicit DetDist(double val): val_(val) {}
~DetDist() GRPC_OVERRIDE {}
double operator() (double uni) const GRPC_OVERRIDE {return val_;}
private:
public:
explicit DetDist(double val) : val_(val) {}
~DetDist() GRPC_OVERRIDE {}
double operator()(double uni) const GRPC_OVERRIDE { return val_; }
private:
double val_;
};
class ParetoDist GRPC_FINAL : public RandomDist {
public:
ParetoDist(double base, double alpha): base_(base), alpha_recip_(1.0/alpha) {}
public:
ParetoDist(double base, double alpha)
: base_(base), alpha_recip_(1.0 / alpha) {}
~ParetoDist() GRPC_OVERRIDE {}
double operator() (double uni) const GRPC_OVERRIDE {
// Note: Use 1.0-uni above to avoid div by zero if uni is 0
return base_ / pow(1.0-uni, alpha_recip_);
}
private:
double base_;
double alpha_recip_;
double operator()(double uni) const GRPC_OVERRIDE {
// Note: Use 1.0-uni above to avoid div by zero if uni is 0
return base_ / pow(1.0 - uni, alpha_recip_);
}
private:
double base_;
double alpha_recip_;
};
// A class library for generating pseudo-random interarrival times
@ -111,38 +118,37 @@ private:
using qps_random_engine = std::default_random_engine;
class InterarrivalTimer {
public:
public:
InterarrivalTimer() {}
InterarrivalTimer(const RandomDist& r, int threads, int entries=1000000) {
InterarrivalTimer(const RandomDist& r, int threads, int entries = 1000000) {
init(r, threads, entries);
}
void init(const RandomDist& r, int threads, int entries=1000000) {
void init(const RandomDist& r, int threads, int entries = 1000000) {
qps_random_engine gen;
std::uniform_real_distribution<double> uniform(0.0,1.0);
for (int i=0; i<entries; i++) {
random_table_.push_back(
std::chrono::nanoseconds(
static_cast<int64_t>(1e9*r(uniform(gen)))));
std::uniform_real_distribution<double> uniform(0.0, 1.0);
for (int i = 0; i < entries; i++) {
random_table_.push_back(std::chrono::nanoseconds(
static_cast<int64_t>(1e9 * r(uniform(gen)))));
}
// Now set up the thread positions
for (int i=0; i<threads; i++) {
thread_posns_.push_back(random_table_.begin() + (entries * i)/threads);
for (int i = 0; i < threads; i++) {
thread_posns_.push_back(random_table_.begin() + (entries * i) / threads);
}
}
virtual ~InterarrivalTimer() {};
virtual ~InterarrivalTimer(){};
std::chrono::nanoseconds operator() (int thread_num) {
std::chrono::nanoseconds operator()(int thread_num) {
auto ret = *(thread_posns_[thread_num]++);
if (thread_posns_[thread_num] == random_table_.end())
thread_posns_[thread_num] = random_table_.begin();
return ret;
}
private:
typedef std::vector<std::chrono::nanoseconds> time_table;
std::vector<time_table::const_iterator> thread_posns_;
time_table random_table_;
};
}
}

@ -42,21 +42,21 @@
using grpc::testing::ExpDist;
using grpc::testing::InterarrivalTimer;
void RunTest(InterarrivalTimer&& timer, std::string title) {
gpr_histogram *h(gpr_histogram_create(0.01,60e9));
for (int i=0; i<10000000; i++) {
for (int j=0; j<5; j++) {
void RunTest(InterarrivalTimer &&timer, std::string title) {
gpr_histogram *h(gpr_histogram_create(0.01, 60e9));
for (int i = 0; i < 10000000; i++) {
for (int j = 0; j < 5; j++) {
gpr_histogram_add(h, timer(j).count());
}
}
std::cout << title << " Distribution" << std::endl;
std::cout << title << " Distribution" << std::endl;
std::cout << "Value, Percentile" << std::endl;
for (double pct = 0.0; pct < 100.0; pct += 1.0) {
std::cout << gpr_histogram_percentile(h, pct) << "," << pct << std::endl;
}
gpr_histogram_destroy(h);
}
@ -68,9 +68,9 @@ using grpc::testing::ParetoDist;
int main(int argc, char **argv) {
RunTest(InterarrivalTimer(ExpDist(10.0), 5), std::string("Exponential(10)"));
RunTest(InterarrivalTimer(DetDist(5.0), 5), std::string("Det(5)"));
RunTest(InterarrivalTimer(UniformDist(0.0,10.0), 5),
RunTest(InterarrivalTimer(UniformDist(0.0, 10.0), 5),
std::string("Uniform(1,10)"));
RunTest(InterarrivalTimer(ParetoDist(1.0,1.0), 5),
RunTest(InterarrivalTimer(ParetoDist(1.0, 1.0), 5),
std::string("Pareto(1,1)"));
return 0;

@ -36,7 +36,7 @@ package grpc.testing;
enum PayloadType {
// Compressable text format.
COMPRESSABLE= 1;
COMPRESSABLE = 1;
// Uncompressable binary format.
UNCOMPRESSABLE = 2;
@ -130,20 +130,21 @@ message LoadParams {
message ClientConfig {
repeated string server_targets = 1;
required ClientType client_type = 2;
optional bool enable_ssl = 3 [default=false];
optional bool enable_ssl = 3 [default = false];
required int32 outstanding_rpcs_per_channel = 4;
required int32 client_channels = 5;
required int32 payload_size = 6;
// only for async client:
optional int32 async_client_threads = 7;
optional RpcType rpc_type = 8 [default=UNARY];
optional RpcType rpc_type = 8 [default = UNARY];
optional string host = 9;
optional LoadType load_type = 10 [default=CLOSED_LOOP];
optional LoadType load_type = 10 [default = CLOSED_LOOP];
optional LoadParams load_params = 11;
}
// Request current stats
message Mark {}
message Mark {
}
message ClientArgs {
oneof argtype {
@ -165,8 +166,8 @@ message ClientStatus {
message ServerConfig {
required ServerType server_type = 1;
optional int32 threads = 2 [default=1];
optional bool enable_ssl = 3 [default=false];
optional int32 threads = 2 [default = 1];
optional bool enable_ssl = 3 [default = false];
optional string host = 4;
}
@ -185,11 +186,11 @@ message ServerStatus {
message SimpleRequest {
// Desired payload type in the response from the server.
// If response_type is RANDOM, server randomly chooses one from other formats.
optional PayloadType response_type = 1 [default=COMPRESSABLE];
optional PayloadType response_type = 1 [default = COMPRESSABLE];
// Desired payload size in the response from the server.
// If response_type is COMPRESSABLE, this denotes the size before compression.
optional int32 response_size = 2 [default=0];
optional int32 response_size = 2 [default = 0];
// Optional input payload sent along with the request.
optional Payload payload = 3;

Loading…
Cancel
Save