Further fixes and eye candy.

In particular, fixed the handling of } when nesting gets complex.
Made the reporting of block percentiles consistent with the ! reporting.
pull/1496/head
David Garcia Quintas 10 years ago
parent 7cff3ee205
commit 9b0a94b5c7
  1. 135
      tools/profile_analyzer/profile_analyzer.py

@ -41,7 +41,6 @@ import collections
import itertools
import math
import re
import sys
# Create a regex to parse output of the C core basic profiler,
# as defined in src/core/profiling/basic_timers.c.
@ -65,6 +64,10 @@ class ImportantMark(object):
def entry(self):
return self._entry
@property
def max_depth(self):
return self._n
def append_post_entry(self, post_entry):
if self._n > 0 and post_entry.thread == self._entry.thread:
self._post_stack.append(post_entry)
@ -77,6 +80,16 @@ class ImportantMark(object):
for stack_entry in pre_and_post_stacks)
def print_block_statistics(block_times):
print '{:<12s} {:>12s} {:>12s} {:>12s} {:>12s}'.format(
'Block tag', '50th p.', '90th p.', '95th p.', '99th p.')
for tag, tag_times in sorted(block_times.iteritems()):
times = sorted(tag_times)
print '{:<12d}: {:>12.3f} {:>12.3f} {:>12.3f} {:>12.3f}'.format(
tag, percentile(times, 50), percentile(times, 90),
percentile(times, 95), percentile(times, 99))
print
def print_grouped_imark_statistics(group_key, imarks_group):
values = collections.OrderedDict()
for imark in imarks_group:
@ -87,55 +100,15 @@ def print_grouped_imark_statistics(group_key, imarks_group):
l.append(time_delta_us)
print group_key
print '{:>40s}: {:>15s} {:>15s} {:>15s} {:>15s}'.format(
print '{:<50s} {:>12s} {:>12s} {:>12s} {:>12s}'.format(
'Relative mark', '50th p.', '90th p.', '95th p.', '99th p.')
for key, time_values in values.iteritems():
time_values = sorted(time_values)
print '{:>40s}: {:>15.3f} {:>15.3f} {:>15.3f} {:>15.3f}'.format(
print '{:<50s}: {:>12.3f} {:>12.3f} {:>12.3f} {:>12.3f}'.format(
key, percentile(time_values, 50), percentile(time_values, 90),
percentile(time_values, 95), percentile(time_values, 99))
print
def entries():
for line in sys.stdin:
m = _RE_LINE.match(line)
if not m: continue
yield Entry(time=float(m.group(1)),
thread=m.group(2),
type=m.group(3),
tag=int(m.group(4)),
id=m.group(5),
file=m.group(6),
line=m.group(7))
threads = collections.defaultdict(lambda: collections.defaultdict(list))
times = collections.defaultdict(list)
important_marks = collections.defaultdict(list)
stack_depth = 0
for entry in entries():
thread = threads[entry.thread]
if entry.type == '{':
thread[entry.tag].append(entry)
stack_depth += 1
if entry.type == '!':
# Save a snapshot of the current stack inside a new ImportantMark instance.
# Get all entries _for any tag in the thread_.
stack = [e for entries_for_tag in thread.itervalues()
for e in entries_for_tag]
imark_group_key = '{tag}/{thread}@{file}:{line}'.format(**entry._asdict())
important_marks[imark_group_key].append(ImportantMark(entry, stack))
elif entry.type == '}':
last = thread[entry.tag].pop()
times[entry.tag].append(entry.time - last.time)
# Update accounting for important marks.
for imarks_group in important_marks.itervalues():
# only access the last "stack_depth" imarks.
for imark in imarks_group[-stack_depth:]:
imark.append_post_entry(entry)
stack_depth -= 1
def percentile(vals, percent):
""" Calculates the interpolated percentile given a sorted sequence and a
percent (in the usual 0-100 range)."""
@ -151,17 +124,65 @@ def percentile(vals, percent):
d1 = vals[int(c)] * (k-f)
return d0 + d1
print 'tag 50%/90%/95%/99% us'
for tag in sorted(times.keys()):
vals = sorted(times[tag])
print '%d %.2f/%.2f/%.2f/%.2f' % (tag,
percentile(vals, 50),
percentile(vals, 90),
percentile(vals, 95),
percentile(vals, 99))
print
print 'Important marks:'
print '================'
for group_key, imarks_group in important_marks.iteritems():
print_grouped_imark_statistics(group_key, imarks_group)
def entries(f):
for line in f:
m = _RE_LINE.match(line)
if not m: continue
yield Entry(time=float(m.group(1)),
thread=m.group(2),
type=m.group(3),
tag=int(m.group(4)),
id=m.group(5),
file=m.group(6),
line=m.group(7))
def main(f):
percentiles = (50, 90, 95, 99)
threads = collections.defaultdict(lambda: collections.defaultdict(list))
times = collections.defaultdict(list)
important_marks = collections.defaultdict(list)
stack_depth = collections.defaultdict(int)
for entry in entries(f):
thread = threads[entry.thread]
if entry.type == '{':
thread[entry.tag].append(entry)
stack_depth[entry.thread] += 1
if entry.type == '!':
# Save a snapshot of the current stack inside a new ImportantMark instance.
# Get all entries _for any tag in the thread_.
stack = [e for entries_for_tag in thread.itervalues()
for e in entries_for_tag]
imark_group_key = '{tag}/{thread}@{file}:{line}'.format(**entry._asdict())
important_marks[imark_group_key].append(ImportantMark(entry, stack))
elif entry.type == '}':
last = thread[entry.tag].pop()
times[entry.tag].append(entry.time - last.time)
# only access the last "depth" imarks for the tag.
depth = stack_depth[entry.thread]
for imarks_group in important_marks.itervalues():
for imark in imarks_group[-depth:]:
# if at a '}' deeper than where the current "imark" was found, ignore.
if depth > imark.max_depth: continue
imark.append_post_entry(entry)
stack_depth[entry.thread] -= 1
print
print 'Block marks:'
print '============'
print_block_statistics(times)
print
print 'Important marks:'
print '================'
for group_key, imarks_group in important_marks.iteritems():
print_grouped_imark_statistics(group_key, imarks_group)
if __name__ == '__main__':
# If invoked without arguments, read off sys.stdin. If one argument is given,
# take it as a file name and open it for reading.
import sys
f = sys.stdin
if len(sys.argv) == 2:
f = open(sys.argv[1], 'r')
main(f)

Loading…
Cancel
Save