|
|
|
@ -176,7 +176,7 @@ class Benchmark: |
|
|
|
|
self.samples[new][f].append(float(data[f])) |
|
|
|
|
|
|
|
|
|
def process(self): |
|
|
|
|
for f in args.track: |
|
|
|
|
for f in sorted(args.track): |
|
|
|
|
new = self.samples[True][f] |
|
|
|
|
old = self.samples[False][f] |
|
|
|
|
if not new or not old: continue |
|
|
|
@ -185,10 +185,10 @@ class Benchmark: |
|
|
|
|
old_mdn = median(old) |
|
|
|
|
delta = new_mdn - old_mdn |
|
|
|
|
ratio = changed_ratio(new_mdn, old_mdn) |
|
|
|
|
print 'new=%r old=%r new_mdn=%f old_mdn=%f delta=%f ratio=%f p=%f' % ( |
|
|
|
|
new, old, new_mdn, old_mdn, delta, ratio, p |
|
|
|
|
print '%s: new=%r old=%r new_mdn=%f old_mdn=%f delta=%f(%f:%f) ratio=%f(%f:%f) p=%f' % ( |
|
|
|
|
f, new, old, new_mdn, old_mdn, delta, abs(delta), _INTERESTING[f]['abs_diff'], ratio, abs(ratio), _INTERESTING[f]['pct_diff']/100.0, p |
|
|
|
|
) |
|
|
|
|
if p < args.p_threshold and abs(delta) > _INTERESTING[f]['abs_diff'] and abs(ratio) > _INTERESTING[f]['pct_diff']: |
|
|
|
|
if p < args.p_threshold and abs(delta) > _INTERESTING[f]['abs_diff'] and abs(ratio) > _INTERESTING[f]['pct_diff']/100.0: |
|
|
|
|
self.final[f] = delta |
|
|
|
|
return self.final.keys() |
|
|
|
|
|
|
|
|
|