Merge pull request #175 from LisaFC/master

Update Python route guide to proto3
pull/3109/head
Nathaniel Manista 10 years ago
commit 9240f69d7a
  1. 11
      python/route_guide/README.md
  2. 119
      python/route_guide/route_guide.proto

@ -6,7 +6,10 @@ This tutorial provides a basic Python programmer's introduction to working with
- Generate server and client code using the protocol buffer compiler.
- Use the Python gRPC API to write a simple client and server for your service.
It assumes that you have read the [Getting started](https://github.com/grpc/grpc-common) guide and are familiar with [protocol buffers] (https://developers.google.com/protocol-buffers/docs/overview).
It assumes that you have read the [Getting started](https://github.com/grpc/grpc-common) guide and are familiar with [protocol buffers] (https://developers.google.com/protocol-buffers/docs/overview). Note that the example in this tutorial uses the proto3 version of the protocol buffers language, which is currently in alpha release: you can see the [release notes](https://github.com/google/protobuf/releases) for the new version in the protocol buffers Github repository.
This isn't a comprehensive guide to using gRPC in Python: more reference documentation is coming soon.
## Why use gRPC?
@ -85,15 +88,15 @@ message Point {
## Generating client and server code
Next you need to generate the gRPC client and server interfaces from your .proto service definition. You may do this using the protocol buffer compiler `protoc` with a special gRPC Python plugin. Make sure you've installed protoc and followed the gRPC Python plugin [installation instructions](https://github.com/grpc/grpc/blob/master/INSTALL) first):
Next you need to generate the gRPC client and server interfaces from your .proto service definition. You do this using the protocol buffer compiler `protoc` with a special gRPC Python plugin. Make sure you've installed protoc and followed the gRPC Python plugin [installation instructions](https://github.com/grpc/grpc/blob/master/INSTALL) first):
With `protoc` and the gRPC Python plugin installed, use the following command to generate the Python code:
```shell
$ protoc -I . --python_out=. --grpc_out=. --plugin=protoc-gen-grpc=`which grpc_python_plugin` route_guide.proto
$ protoc -I ../../protos --python_out=. --grpc_out=. --plugin=protoc-gen-grpc=`which grpc_python_plugin` ../../protos/route_guide.proto
```
Note that as we've already provided a version of the generated code in the example repository, running this command regenerates the appropriate file rather than creates a new one. The generated code file is called route_guide_pb2.py and contains:
Note that as we've already provided a version of the generated code in the example repository, running this command regenerates the appropriate file rather than creates a new one. The generated code file is called `route_guide_pb2.py` and contains:
- classes for the messages defined in route_guide.proto
- abstract classes for the service defined in route_guide.proto
- `EarlyAdopterRouteGuideServicer`, which defines the interface for implementations of the RouteGuide service

@ -1,119 +0,0 @@
// Copyright 2015, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
syntax = "proto2";
//TODO: see https://github.com/grpc/grpc/issues/814
//package examples;
// Interface exported by the server.
service RouteGuide {
// A simple RPC.
//
// Obtains the feature at a given position.
rpc GetFeature(Point) returns (Feature) {}
// A server-to-client streaming RPC.
//
// Obtains the Features available within the given Rectangle. Results are
// streamed rather than returned at once (e.g. in a response message with a
// repeated field), as the rectangle may cover a large area and contain a
// huge number of features.
rpc ListFeatures(Rectangle) returns (stream Feature) {}
// A client-to-server streaming RPC.
//
// Accepts a stream of Points on a route being traversed, returning a
// RouteSummary when traversal is completed.
rpc RecordRoute(stream Point) returns (RouteSummary) {}
// A Bidirectional streaming RPC.
//
// Accepts a stream of RouteNotes sent while a route is being traversed,
// while receiving other RouteNotes (e.g. from other users).
rpc RouteChat(stream RouteNote) returns (stream RouteNote) {}
}
// Points are represented as latitude-longitude pairs in the E7 representation
// (degrees multiplied by 10**7 and rounded to the nearest integer).
// Latitudes should be in the range +/- 90 degrees and longitude should be in
// the range +/- 180 degrees (inclusive).
message Point {
optional int32 latitude = 1;
optional int32 longitude = 2;
}
// A latitude-longitude rectangle, represented as two diagonally opposite
// points "lo" and "hi".
message Rectangle {
// One corner of the rectangle.
optional Point lo = 1;
// The other corner of the rectangle.
optional Point hi = 2;
}
// A feature names something at a given point.
//
// If a feature could not be named, the name is empty.
message Feature {
// The name of the feature.
optional string name = 1;
// The point where the feature is detected.
optional Point location = 2;
}
// A RouteNote is a message sent while at a given point.
message RouteNote {
// The location from which the message is sent.
optional Point location = 1;
// The message to be sent.
optional string message = 2;
}
// A RouteSummary is received in response to a RecordRoute rpc.
//
// It contains the number of individual points received, the number of
// detected features, and the total distance covered as the cumulative sum of
// the distance between each point.
message RouteSummary {
// The number of points received.
optional int32 point_count = 1;
// The number of known features passed while traversing the route.
optional int32 feature_count = 2;
// The distance covered in metres.
optional int32 distance = 3;
// The duration of the traversal in seconds.
optional int32 elapsed_time = 4;
}
Loading…
Cancel
Save