Merge pull request #5402 from sreecha/stress_test_scripts
Stress test scripts to launch in GKEpull/5483/head
commit
8ba6a6b321
11 changed files with 1306 additions and 32 deletions
@ -0,0 +1,187 @@ |
||||
#!/usr/bin/env python2.7 |
||||
# Copyright 2015-2016, Google Inc. |
||||
# All rights reserved. |
||||
# |
||||
# Redistribution and use in source and binary forms, with or without |
||||
# modification, are permitted provided that the following conditions are |
||||
# met: |
||||
# |
||||
# * Redistributions of source code must retain the above copyright |
||||
# notice, this list of conditions and the following disclaimer. |
||||
# * Redistributions in binary form must reproduce the above |
||||
# copyright notice, this list of conditions and the following disclaimer |
||||
# in the documentation and/or other materials provided with the |
||||
# distribution. |
||||
# * Neither the name of Google Inc. nor the names of its |
||||
# contributors may be used to endorse or promote products derived from |
||||
# this software without specific prior written permission. |
||||
# |
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
||||
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
||||
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
||||
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
||||
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||||
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||||
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||||
|
||||
import datetime |
||||
import os |
||||
import re |
||||
import select |
||||
import subprocess |
||||
import sys |
||||
import time |
||||
|
||||
from stress_test_utils import EventType |
||||
from stress_test_utils import BigQueryHelper |
||||
|
||||
|
||||
# TODO (sree): Write a python grpc client to directly query the metrics instead |
||||
# of calling metrics_client |
||||
def _get_qps(metrics_cmd): |
||||
qps = 0 |
||||
try: |
||||
# Note: gpr_log() writes even non-error messages to stderr stream. So it is |
||||
# important that we set stderr=subprocess.STDOUT |
||||
p = subprocess.Popen(args=metrics_cmd, |
||||
stdout=subprocess.PIPE, |
||||
stderr=subprocess.STDOUT) |
||||
retcode = p.wait() |
||||
(out_str, err_str) = p.communicate() |
||||
if retcode != 0: |
||||
print 'Error in reading metrics information' |
||||
print 'Output: ', out_str |
||||
else: |
||||
# The overall qps is printed at the end of the line |
||||
m = re.search('\d+$', out_str) |
||||
qps = int(m.group()) if m else 0 |
||||
except Exception as ex: |
||||
print 'Exception while reading metrics information: ' + str(ex) |
||||
return qps |
||||
|
||||
|
||||
def run_client(): |
||||
"""This is a wrapper around the stress test client and performs the following: |
||||
1) Create the following two tables in Big Query: |
||||
(i) Summary table: To record events like the test started, completed |
||||
successfully or failed |
||||
(ii) Qps table: To periodically record the QPS sent by this client |
||||
2) Start the stress test client and add a row in the Big Query summary |
||||
table |
||||
3) Once every few seconds (as specificed by the poll_interval_secs) poll |
||||
the status of the stress test client process and perform the |
||||
following: |
||||
3.1) If the process is still running, get the current qps by invoking |
||||
the metrics client program and add a row in the Big Query |
||||
Qps table. Sleep for a duration specified by poll_interval_secs |
||||
3.2) If the process exited successfully, add a row in the Big Query |
||||
Summary table and exit |
||||
3.3) If the process failed, add a row in Big Query summary table and |
||||
wait forever. |
||||
NOTE: This script typically runs inside a GKE pod which means |
||||
that the pod gets destroyed when the script exits. However, in |
||||
case the stress test client fails, we would not want the pod to |
||||
be destroyed (since we might want to connect to the pod for |
||||
examining logs). This is the reason why the script waits forever |
||||
in case of failures |
||||
""" |
||||
env = dict(os.environ) |
||||
image_type = env['STRESS_TEST_IMAGE_TYPE'] |
||||
image_name = env['STRESS_TEST_IMAGE'] |
||||
args_str = env['STRESS_TEST_ARGS_STR'] |
||||
metrics_client_image = env['METRICS_CLIENT_IMAGE'] |
||||
metrics_client_args_str = env['METRICS_CLIENT_ARGS_STR'] |
||||
run_id = env['RUN_ID'] |
||||
pod_name = env['POD_NAME'] |
||||
logfile_name = env.get('LOGFILE_NAME') |
||||
poll_interval_secs = float(env['POLL_INTERVAL_SECS']) |
||||
project_id = env['GCP_PROJECT_ID'] |
||||
dataset_id = env['DATASET_ID'] |
||||
summary_table_id = env['SUMMARY_TABLE_ID'] |
||||
qps_table_id = env['QPS_TABLE_ID'] |
||||
|
||||
bq_helper = BigQueryHelper(run_id, image_type, pod_name, project_id, |
||||
dataset_id, summary_table_id, qps_table_id) |
||||
bq_helper.initialize() |
||||
|
||||
# Create BigQuery Dataset and Tables: Summary Table and Metrics Table |
||||
if not bq_helper.setup_tables(): |
||||
print 'Error in creating BigQuery tables' |
||||
return |
||||
|
||||
start_time = datetime.datetime.now() |
||||
|
||||
logfile = None |
||||
details = 'Logging to stdout' |
||||
if logfile_name is not None: |
||||
print 'Opening logfile: %s ...' % logfile_name |
||||
details = 'Logfile: %s' % logfile_name |
||||
logfile = open(logfile_name, 'w') |
||||
|
||||
# Update status that the test is starting (in the status table) |
||||
bq_helper.insert_summary_row(EventType.STARTING, details) |
||||
|
||||
metrics_cmd = [metrics_client_image |
||||
] + [x for x in metrics_client_args_str.split()] |
||||
stress_cmd = [image_name] + [x for x in args_str.split()] |
||||
|
||||
print 'Launching process %s ...' % stress_cmd |
||||
stress_p = subprocess.Popen(args=stress_cmd, |
||||
stdout=logfile, |
||||
stderr=subprocess.STDOUT) |
||||
|
||||
qps_history = [1, 1, 1] # Maintain the last 3 qps readings |
||||
qps_history_idx = 0 # Index into the qps_history list |
||||
|
||||
is_error = False |
||||
while True: |
||||
# Check if stress_client is still running. If so, collect metrics and upload |
||||
# to BigQuery status table |
||||
if stress_p.poll() is not None: |
||||
end_time = datetime.datetime.now().isoformat() |
||||
event_type = EventType.SUCCESS |
||||
details = 'End time: %s' % end_time |
||||
if stress_p.returncode != 0: |
||||
event_type = EventType.FAILURE |
||||
details = 'Return code = %d. End time: %s' % (stress_p.returncode, |
||||
end_time) |
||||
is_error = True |
||||
bq_helper.insert_summary_row(event_type, details) |
||||
print details |
||||
break |
||||
|
||||
# Stress client still running. Get metrics |
||||
qps = _get_qps(metrics_cmd) |
||||
qps_recorded_at = datetime.datetime.now().isoformat() |
||||
print 'qps: %d at %s' % (qps, qps_recorded_at) |
||||
|
||||
# If QPS has been zero for the last 3 iterations, flag it as error and exit |
||||
qps_history[qps_history_idx] = qps |
||||
qps_history_idx = (qps_history_idx + 1) % len(qps_history) |
||||
if sum(qps_history) == 0: |
||||
details = 'QPS has been zero for the last %d seconds - as of : %s' % ( |
||||
poll_interval_secs * 3, qps_recorded_at) |
||||
is_error = True |
||||
bq_helper.insert_summary_row(EventType.FAILURE, details) |
||||
print details |
||||
break |
||||
|
||||
# Upload qps metrics to BiqQuery |
||||
bq_helper.insert_qps_row(qps, qps_recorded_at) |
||||
|
||||
time.sleep(poll_interval_secs) |
||||
|
||||
if is_error: |
||||
print 'Waiting indefinitely..' |
||||
select.select([], [], []) |
||||
|
||||
print 'Completed' |
||||
return |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
run_client() |
@ -0,0 +1,120 @@ |
||||
#!/usr/bin/env python2.7 |
||||
# Copyright 2015-2016, Google Inc. |
||||
# All rights reserved. |
||||
# |
||||
# Redistribution and use in source and binary forms, with or without |
||||
# modification, are permitted provided that the following conditions are |
||||
# met: |
||||
# |
||||
# * Redistributions of source code must retain the above copyright |
||||
# notice, this list of conditions and the following disclaimer. |
||||
# * Redistributions in binary form must reproduce the above |
||||
# copyright notice, this list of conditions and the following disclaimer |
||||
# in the documentation and/or other materials provided with the |
||||
# distribution. |
||||
# * Neither the name of Google Inc. nor the names of its |
||||
# contributors may be used to endorse or promote products derived from |
||||
# this software without specific prior written permission. |
||||
# |
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
||||
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
||||
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
||||
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
||||
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||||
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||||
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||||
|
||||
import datetime |
||||
import os |
||||
import select |
||||
import subprocess |
||||
import sys |
||||
import time |
||||
|
||||
from stress_test_utils import BigQueryHelper |
||||
from stress_test_utils import EventType |
||||
|
||||
|
||||
def run_server(): |
||||
"""This is a wrapper around the interop server and performs the following: |
||||
1) Create a 'Summary table' in Big Query to record events like the server |
||||
started, completed successfully or failed. NOTE: This also creates |
||||
another table called the QPS table which is currently NOT needed on the |
||||
server (it is needed on the stress test clients) |
||||
2) Start the server process and add a row in Big Query summary table |
||||
3) Wait for the server process to terminate. The server process does not |
||||
terminate unless there is an error. |
||||
If the server process terminated with a failure, add a row in Big Query |
||||
and wait forever. |
||||
NOTE: This script typically runs inside a GKE pod which means that the |
||||
pod gets destroyed when the script exits. However, in case the server |
||||
process fails, we would not want the pod to be destroyed (since we |
||||
might want to connect to the pod for examining logs). This is the |
||||
reason why the script waits forever in case of failures. |
||||
""" |
||||
|
||||
# Read the parameters from environment variables |
||||
env = dict(os.environ) |
||||
|
||||
run_id = env['RUN_ID'] # The unique run id for this test |
||||
image_type = env['STRESS_TEST_IMAGE_TYPE'] |
||||
image_name = env['STRESS_TEST_IMAGE'] |
||||
args_str = env['STRESS_TEST_ARGS_STR'] |
||||
pod_name = env['POD_NAME'] |
||||
project_id = env['GCP_PROJECT_ID'] |
||||
dataset_id = env['DATASET_ID'] |
||||
summary_table_id = env['SUMMARY_TABLE_ID'] |
||||
qps_table_id = env['QPS_TABLE_ID'] |
||||
|
||||
logfile_name = env.get('LOGFILE_NAME') |
||||
|
||||
print('pod_name: %s, project_id: %s, run_id: %s, dataset_id: %s, ' |
||||
'summary_table_id: %s, qps_table_id: %s') % ( |
||||
pod_name, project_id, run_id, dataset_id, summary_table_id, |
||||
qps_table_id) |
||||
|
||||
bq_helper = BigQueryHelper(run_id, image_type, pod_name, project_id, |
||||
dataset_id, summary_table_id, qps_table_id) |
||||
bq_helper.initialize() |
||||
|
||||
# Create BigQuery Dataset and Tables: Summary Table and Metrics Table |
||||
if not bq_helper.setup_tables(): |
||||
print 'Error in creating BigQuery tables' |
||||
return |
||||
|
||||
start_time = datetime.datetime.now() |
||||
|
||||
logfile = None |
||||
details = 'Logging to stdout' |
||||
if logfile_name is not None: |
||||
print 'Opening log file: ', logfile_name |
||||
logfile = open(logfile_name, 'w') |
||||
details = 'Logfile: %s' % logfile_name |
||||
|
||||
# Update status that the test is starting (in the status table) |
||||
bq_helper.insert_summary_row(EventType.STARTING, details) |
||||
|
||||
stress_cmd = [image_name] + [x for x in args_str.split()] |
||||
|
||||
print 'Launching process %s ...' % stress_cmd |
||||
stress_p = subprocess.Popen(args=stress_cmd, |
||||
stdout=logfile, |
||||
stderr=subprocess.STDOUT) |
||||
|
||||
returncode = stress_p.wait() |
||||
if returncode != 0: |
||||
end_time = datetime.datetime.now().isoformat() |
||||
event_type = EventType.FAILURE |
||||
details = 'Returncode: %d; End time: %s' % (returncode, end_time) |
||||
bq_helper.insert_summary_row(event_type, details) |
||||
print 'Waiting indefinitely..' |
||||
select.select([], [], []) |
||||
return returncode |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
run_server() |
@ -0,0 +1,197 @@ |
||||
#!/usr/bin/env python2.7 |
||||
# Copyright 2015-2016, Google Inc. |
||||
# All rights reserved. |
||||
# |
||||
# Redistribution and use in source and binary forms, with or without |
||||
# modification, are permitted provided that the following conditions are |
||||
# met: |
||||
# |
||||
# * Redistributions of source code must retain the above copyright |
||||
# notice, this list of conditions and the following disclaimer. |
||||
# * Redistributions in binary form must reproduce the above |
||||
# copyright notice, this list of conditions and the following disclaimer |
||||
# in the documentation and/or other materials provided with the |
||||
# distribution. |
||||
# * Neither the name of Google Inc. nor the names of its |
||||
# contributors may be used to endorse or promote products derived from |
||||
# this software without specific prior written permission. |
||||
# |
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
||||
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
||||
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
||||
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
||||
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||||
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||||
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||||
|
||||
import datetime |
||||
import json |
||||
import os |
||||
import re |
||||
import select |
||||
import subprocess |
||||
import sys |
||||
import time |
||||
|
||||
# Import big_query_utils module |
||||
bq_utils_dir = os.path.abspath(os.path.join( |
||||
os.path.dirname(__file__), '../utils')) |
||||
sys.path.append(bq_utils_dir) |
||||
import big_query_utils as bq_utils |
||||
|
||||
|
||||
class EventType: |
||||
STARTING = 'STARTING' |
||||
SUCCESS = 'SUCCESS' |
||||
FAILURE = 'FAILURE' |
||||
|
||||
|
||||
class BigQueryHelper: |
||||
"""Helper class for the stress test wrappers to interact with BigQuery. |
||||
""" |
||||
|
||||
def __init__(self, run_id, image_type, pod_name, project_id, dataset_id, |
||||
summary_table_id, qps_table_id): |
||||
self.run_id = run_id |
||||
self.image_type = image_type |
||||
self.pod_name = pod_name |
||||
self.project_id = project_id |
||||
self.dataset_id = dataset_id |
||||
self.summary_table_id = summary_table_id |
||||
self.qps_table_id = qps_table_id |
||||
|
||||
def initialize(self): |
||||
self.bq = bq_utils.create_big_query() |
||||
|
||||
def setup_tables(self): |
||||
return bq_utils.create_dataset(self.bq, self.project_id, self.dataset_id) \ |
||||
and self.__create_summary_table() \ |
||||
and self.__create_qps_table() |
||||
|
||||
def insert_summary_row(self, event_type, details): |
||||
row_values_dict = { |
||||
'run_id': self.run_id, |
||||
'image_type': self.image_type, |
||||
'pod_name': self.pod_name, |
||||
'event_date': datetime.datetime.now().isoformat(), |
||||
'event_type': event_type, |
||||
'details': details |
||||
} |
||||
# row_unique_id is something that uniquely identifies the row (BigQuery uses |
||||
# it for duplicate detection). |
||||
row_unique_id = '%s_%s_%s' % (self.run_id, self.pod_name, event_type) |
||||
row = bq_utils.make_row(row_unique_id, row_values_dict) |
||||
return bq_utils.insert_rows(self.bq, self.project_id, self.dataset_id, |
||||
self.summary_table_id, [row]) |
||||
|
||||
def insert_qps_row(self, qps, recorded_at): |
||||
row_values_dict = { |
||||
'run_id': self.run_id, |
||||
'pod_name': self.pod_name, |
||||
'recorded_at': recorded_at, |
||||
'qps': qps |
||||
} |
||||
|
||||
# row_unique_id is something that uniquely identifies the row (BigQuery uses |
||||
# it for duplicate detection). |
||||
row_unique_id = '%s_%s_%s' % (self.run_id, self.pod_name, recorded_at) |
||||
row = bq_utils.make_row(row_unique_id, row_values_dict) |
||||
return bq_utils.insert_rows(self.bq, self.project_id, self.dataset_id, |
||||
self.qps_table_id, [row]) |
||||
|
||||
def check_if_any_tests_failed(self, num_query_retries=3): |
||||
query = ('SELECT event_type FROM %s.%s WHERE run_id = \'%s\' AND ' |
||||
'event_type="%s"') % (self.dataset_id, self.summary_table_id, |
||||
self.run_id, EventType.FAILURE) |
||||
query_job = bq_utils.sync_query_job(self.bq, self.project_id, query) |
||||
page = self.bq.jobs().getQueryResults(**query_job['jobReference']).execute( |
||||
num_retries=num_query_retries) |
||||
num_failures = int(page['totalRows']) |
||||
print 'num rows: ', num_failures |
||||
return num_failures > 0 |
||||
|
||||
def print_summary_records(self, num_query_retries=3): |
||||
line = '-' * 120 |
||||
print line |
||||
print 'Summary records' |
||||
print 'Run Id: ', self.run_id |
||||
print 'Dataset Id: ', self.dataset_id |
||||
print line |
||||
query = ('SELECT pod_name, image_type, event_type, event_date, details' |
||||
' FROM %s.%s WHERE run_id = \'%s\' ORDER by event_date;') % ( |
||||
self.dataset_id, self.summary_table_id, self.run_id) |
||||
query_job = bq_utils.sync_query_job(self.bq, self.project_id, query) |
||||
|
||||
print '{:<25} {:<12} {:<12} {:<30} {}'.format( |
||||
'Pod name', 'Image type', 'Event type', 'Date', 'Details') |
||||
print line |
||||
page_token = None |
||||
while True: |
||||
page = self.bq.jobs().getQueryResults( |
||||
pageToken=page_token, |
||||
**query_job['jobReference']).execute(num_retries=num_query_retries) |
||||
rows = page.get('rows', []) |
||||
for row in rows: |
||||
print '{:<25} {:<12} {:<12} {:<30} {}'.format( |
||||
row['f'][0]['v'], row['f'][1]['v'], row['f'][2]['v'], |
||||
row['f'][3]['v'], row['f'][4]['v']) |
||||
page_token = page.get('pageToken') |
||||
if not page_token: |
||||
break |
||||
|
||||
def print_qps_records(self, num_query_retries=3): |
||||
line = '-' * 80 |
||||
print line |
||||
print 'QPS Summary' |
||||
print 'Run Id: ', self.run_id |
||||
print 'Dataset Id: ', self.dataset_id |
||||
print line |
||||
query = ( |
||||
'SELECT pod_name, recorded_at, qps FROM %s.%s WHERE run_id = \'%s\' ' |
||||
'ORDER by recorded_at;') % (self.dataset_id, self.qps_table_id, |
||||
self.run_id) |
||||
query_job = bq_utils.sync_query_job(self.bq, self.project_id, query) |
||||
print '{:<25} {:30} {}'.format('Pod name', 'Recorded at', 'Qps') |
||||
print line |
||||
page_token = None |
||||
while True: |
||||
page = self.bq.jobs().getQueryResults( |
||||
pageToken=page_token, |
||||
**query_job['jobReference']).execute(num_retries=num_query_retries) |
||||
rows = page.get('rows', []) |
||||
for row in rows: |
||||
print '{:<25} {:30} {}'.format(row['f'][0]['v'], row['f'][1]['v'], |
||||
row['f'][2]['v']) |
||||
page_token = page.get('pageToken') |
||||
if not page_token: |
||||
break |
||||
|
||||
def __create_summary_table(self): |
||||
summary_table_schema = [ |
||||
('run_id', 'STRING', 'Test run id'), |
||||
('image_type', 'STRING', 'Client or Server?'), |
||||
('pod_name', 'STRING', 'GKE pod hosting this image'), |
||||
('event_date', 'STRING', 'The date of this event'), |
||||
('event_type', 'STRING', 'STARTED/SUCCESS/FAILURE'), |
||||
('details', 'STRING', 'Any other relevant details') |
||||
] |
||||
desc = ('The table that contains START/SUCCESS/FAILURE events for ' |
||||
' the stress test clients and servers') |
||||
return bq_utils.create_table(self.bq, self.project_id, self.dataset_id, |
||||
self.summary_table_id, summary_table_schema, |
||||
desc) |
||||
|
||||
def __create_qps_table(self): |
||||
qps_table_schema = [ |
||||
('run_id', 'STRING', 'Test run id'), |
||||
('pod_name', 'STRING', 'GKE pod hosting this image'), |
||||
('recorded_at', 'STRING', 'Metrics recorded at time'), |
||||
('qps', 'INTEGER', 'Queries per second') |
||||
] |
||||
desc = 'The table that cointains the qps recorded at various intervals' |
||||
return bq_utils.create_table(self.bq, self.project_id, self.dataset_id, |
||||
self.qps_table_id, qps_table_schema, desc) |
@ -0,0 +1,140 @@ |
||||
#!/usr/bin/env python2.7 |
||||
# Copyright 2015-2016, Google Inc. |
||||
# All rights reserved. |
||||
# |
||||
# Redistribution and use in source and binary forms, with or without |
||||
# modification, are permitted provided that the following conditions are |
||||
# met: |
||||
# |
||||
# * Redistributions of source code must retain the above copyright |
||||
# notice, this list of conditions and the following disclaimer. |
||||
# * Redistributions in binary form must reproduce the above |
||||
# copyright notice, this list of conditions and the following disclaimer |
||||
# in the documentation and/or other materials provided with the |
||||
# distribution. |
||||
# * Neither the name of Google Inc. nor the names of its |
||||
# contributors may be used to endorse or promote products derived from |
||||
# this software without specific prior written permission. |
||||
# |
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
||||
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
||||
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
||||
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
||||
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||||
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||||
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||||
|
||||
import argparse |
||||
import json |
||||
import uuid |
||||
import httplib2 |
||||
|
||||
from apiclient import discovery |
||||
from apiclient.errors import HttpError |
||||
from oauth2client.client import GoogleCredentials |
||||
|
||||
NUM_RETRIES = 3 |
||||
|
||||
|
||||
def create_big_query(): |
||||
"""Authenticates with cloud platform and gets a BiqQuery service object |
||||
""" |
||||
creds = GoogleCredentials.get_application_default() |
||||
return discovery.build('bigquery', 'v2', credentials=creds) |
||||
|
||||
|
||||
def create_dataset(biq_query, project_id, dataset_id): |
||||
is_success = True |
||||
body = { |
||||
'datasetReference': { |
||||
'projectId': project_id, |
||||
'datasetId': dataset_id |
||||
} |
||||
} |
||||
|
||||
try: |
||||
dataset_req = biq_query.datasets().insert(projectId=project_id, body=body) |
||||
dataset_req.execute(num_retries=NUM_RETRIES) |
||||
except HttpError as http_error: |
||||
if http_error.resp.status == 409: |
||||
print 'Warning: The dataset %s already exists' % dataset_id |
||||
else: |
||||
# Note: For more debugging info, print "http_error.content" |
||||
print 'Error in creating dataset: %s. Err: %s' % (dataset_id, http_error) |
||||
is_success = False |
||||
return is_success |
||||
|
||||
|
||||
def create_table(big_query, project_id, dataset_id, table_id, table_schema, |
||||
description): |
||||
is_success = True |
||||
|
||||
body = { |
||||
'description': description, |
||||
'schema': { |
||||
'fields': [{ |
||||
'name': field_name, |
||||
'type': field_type, |
||||
'description': field_description |
||||
} for (field_name, field_type, field_description) in table_schema] |
||||
}, |
||||
'tableReference': { |
||||
'datasetId': dataset_id, |
||||
'projectId': project_id, |
||||
'tableId': table_id |
||||
} |
||||
} |
||||
|
||||
try: |
||||
table_req = big_query.tables().insert(projectId=project_id, |
||||
datasetId=dataset_id, |
||||
body=body) |
||||
res = table_req.execute(num_retries=NUM_RETRIES) |
||||
print 'Successfully created %s "%s"' % (res['kind'], res['id']) |
||||
except HttpError as http_error: |
||||
if http_error.resp.status == 409: |
||||
print 'Warning: Table %s already exists' % table_id |
||||
else: |
||||
print 'Error in creating table: %s. Err: %s' % (table_id, http_error) |
||||
is_success = False |
||||
return is_success |
||||
|
||||
|
||||
def insert_rows(big_query, project_id, dataset_id, table_id, rows_list): |
||||
is_success = True |
||||
body = {'rows': rows_list} |
||||
try: |
||||
insert_req = big_query.tabledata().insertAll(projectId=project_id, |
||||
datasetId=dataset_id, |
||||
tableId=table_id, |
||||
body=body) |
||||
print body |
||||
res = insert_req.execute(num_retries=NUM_RETRIES) |
||||
print res |
||||
except HttpError as http_error: |
||||
print 'Error in inserting rows in the table %s' % table_id |
||||
is_success = False |
||||
return is_success |
||||
|
||||
|
||||
def sync_query_job(big_query, project_id, query, timeout=5000): |
||||
query_data = {'query': query, 'timeoutMs': timeout} |
||||
query_job = None |
||||
try: |
||||
query_job = big_query.jobs().query( |
||||
projectId=project_id, |
||||
body=query_data).execute(num_retries=NUM_RETRIES) |
||||
except HttpError as http_error: |
||||
print 'Query execute job failed with error: %s' % http_error |
||||
print http_error.content |
||||
return query_job |
||||
|
||||
# List of (column name, column type, description) tuples |
||||
def make_row(unique_row_id, row_values_dict): |
||||
"""row_values_dict is a dictionary of column name and column value. |
||||
""" |
||||
return {'insertId': unique_row_id, 'json': row_values_dict} |
@ -0,0 +1,556 @@ |
||||
#!/usr/bin/env python2.7 |
||||
# Copyright 2015-2016, Google Inc. |
||||
# All rights reserved. |
||||
# |
||||
# Redistribution and use in source and binary forms, with or without |
||||
# modification, are permitted provided that the following conditions are |
||||
# met: |
||||
# |
||||
# * Redistributions of source code must retain the above copyright |
||||
# notice, this list of conditions and the following disclaimer. |
||||
# * Redistributions in binary form must reproduce the above |
||||
# copyright notice, this list of conditions and the following disclaimer |
||||
# in the documentation and/or other materials provided with the |
||||
# distribution. |
||||
# * Neither the name of Google Inc. nor the names of its |
||||
# contributors may be used to endorse or promote products derived from |
||||
# this software without specific prior written permission. |
||||
# |
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
||||
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
||||
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
||||
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
||||
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||||
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||||
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||||
import argparse |
||||
import datetime |
||||
import os |
||||
import subprocess |
||||
import sys |
||||
import time |
||||
|
||||
stress_test_utils_dir = os.path.abspath(os.path.join( |
||||
os.path.dirname(__file__), '../../gcp/stress_test')) |
||||
sys.path.append(stress_test_utils_dir) |
||||
from stress_test_utils import BigQueryHelper |
||||
|
||||
kubernetes_api_dir = os.path.abspath(os.path.join( |
||||
os.path.dirname(__file__), '../../gcp/utils')) |
||||
sys.path.append(kubernetes_api_dir) |
||||
|
||||
import kubernetes_api |
||||
|
||||
_GRPC_ROOT = os.path.abspath(os.path.join( |
||||
os.path.dirname(sys.argv[0]), '../../..')) |
||||
os.chdir(_GRPC_ROOT) |
||||
|
||||
# num of seconds to wait for the GKE image to start and warmup |
||||
_GKE_IMAGE_WARMUP_WAIT_SECS = 60 |
||||
|
||||
_SERVER_POD_NAME = 'stress-server' |
||||
_CLIENT_POD_NAME_PREFIX = 'stress-client' |
||||
_DATASET_ID_PREFIX = 'stress_test' |
||||
_SUMMARY_TABLE_ID = 'summary' |
||||
_QPS_TABLE_ID = 'qps' |
||||
|
||||
_DEFAULT_DOCKER_IMAGE_NAME = 'grpc_stress_test' |
||||
|
||||
# The default port on which the kubernetes proxy server is started on localhost |
||||
# (i.e kubectl proxy --port=<port>) |
||||
_DEFAULT_KUBERNETES_PROXY_PORT = 8001 |
||||
|
||||
# How frequently should the stress client wrapper script (running inside a GKE |
||||
# container) poll the health of the stress client (also running inside the GKE |
||||
# container) and upload metrics to BigQuery |
||||
_DEFAULT_STRESS_CLIENT_POLL_INTERVAL_SECS = 60 |
||||
|
||||
# The default setting for stress test server and client |
||||
_DEFAULT_STRESS_SERVER_PORT = 8080 |
||||
_DEFAULT_METRICS_PORT = 8081 |
||||
_DEFAULT_TEST_CASES_STR = 'empty_unary:1,large_unary:1,client_streaming:1,server_streaming:1,empty_stream:1' |
||||
_DEFAULT_NUM_CHANNELS_PER_SERVER = 5 |
||||
_DEFAULT_NUM_STUBS_PER_CHANNEL = 10 |
||||
_DEFAULT_METRICS_COLLECTION_INTERVAL_SECS = 30 |
||||
|
||||
# Number of stress client instances to launch |
||||
_DEFAULT_NUM_CLIENTS = 3 |
||||
|
||||
# How frequently should this test monitor the health of Stress clients and |
||||
# Servers running in GKE |
||||
_DEFAULT_TEST_POLL_INTERVAL_SECS = 60 |
||||
|
||||
# Default run time for this test (2 hour) |
||||
_DEFAULT_TEST_DURATION_SECS = 7200 |
||||
|
||||
# The number of seconds it would take a GKE pod to warm up (i.e get to 'Running' |
||||
# state from the time of creation). Ideally this is something the test should |
||||
# automatically determine by using Kubernetes API to poll the pods status. |
||||
_DEFAULT_GKE_WARMUP_SECS = 60 |
||||
|
||||
|
||||
class KubernetesProxy: |
||||
""" Class to start a proxy on localhost to the Kubernetes API server """ |
||||
|
||||
def __init__(self, api_port): |
||||
self.port = api_port |
||||
self.p = None |
||||
self.started = False |
||||
|
||||
def start(self): |
||||
cmd = ['kubectl', 'proxy', '--port=%d' % self.port] |
||||
self.p = subprocess.Popen(args=cmd) |
||||
self.started = True |
||||
time.sleep(2) |
||||
print '..Started' |
||||
|
||||
def get_port(self): |
||||
return self.port |
||||
|
||||
def is_started(self): |
||||
return self.started |
||||
|
||||
def __del__(self): |
||||
if self.p is not None: |
||||
print 'Shutting down Kubernetes proxy..' |
||||
self.p.kill() |
||||
|
||||
|
||||
class TestSettings: |
||||
|
||||
def __init__(self, build_docker_image, test_poll_interval_secs, |
||||
test_duration_secs, kubernetes_proxy_port): |
||||
self.build_docker_image = build_docker_image |
||||
self.test_poll_interval_secs = test_poll_interval_secs |
||||
self.test_duration_secs = test_duration_secs |
||||
self.kubernetes_proxy_port = kubernetes_proxy_port |
||||
|
||||
|
||||
class GkeSettings: |
||||
|
||||
def __init__(self, project_id, docker_image_name): |
||||
self.project_id = project_id |
||||
self.docker_image_name = docker_image_name |
||||
self.tag_name = 'gcr.io/%s/%s' % (project_id, docker_image_name) |
||||
|
||||
|
||||
class BigQuerySettings: |
||||
|
||||
def __init__(self, run_id, dataset_id, summary_table_id, qps_table_id): |
||||
self.run_id = run_id |
||||
self.dataset_id = dataset_id |
||||
self.summary_table_id = summary_table_id |
||||
self.qps_table_id = qps_table_id |
||||
|
||||
|
||||
class StressServerSettings: |
||||
|
||||
def __init__(self, server_pod_name, server_port): |
||||
self.server_pod_name = server_pod_name |
||||
self.server_port = server_port |
||||
|
||||
|
||||
class StressClientSettings: |
||||
|
||||
def __init__(self, num_clients, client_pod_name_prefix, server_pod_name, |
||||
server_port, metrics_port, metrics_collection_interval_secs, |
||||
stress_client_poll_interval_secs, num_channels_per_server, |
||||
num_stubs_per_channel, test_cases_str): |
||||
self.num_clients = num_clients |
||||
self.client_pod_name_prefix = client_pod_name_prefix |
||||
self.server_pod_name = server_pod_name |
||||
self.server_port = server_port |
||||
self.metrics_port = metrics_port |
||||
self.metrics_collection_interval_secs = metrics_collection_interval_secs |
||||
self.stress_client_poll_interval_secs = stress_client_poll_interval_secs |
||||
self.num_channels_per_server = num_channels_per_server |
||||
self.num_stubs_per_channel = num_stubs_per_channel |
||||
self.test_cases_str = test_cases_str |
||||
|
||||
# == Derived properties == |
||||
# Note: Client can accept a list of server addresses (a comma separated list |
||||
# of 'server_name:server_port'). In this case, we only have one server |
||||
# address to pass |
||||
self.server_addresses = '%s.default.svc.cluster.local:%d' % ( |
||||
server_pod_name, server_port) |
||||
self.client_pod_names_list = ['%s-%d' % (client_pod_name_prefix, i) |
||||
for i in range(1, num_clients + 1)] |
||||
|
||||
|
||||
def _build_docker_image(image_name, tag_name): |
||||
""" Build the docker image and add tag it to the GKE repository """ |
||||
print 'Building docker image: %s' % image_name |
||||
os.environ['INTEROP_IMAGE'] = image_name |
||||
os.environ['INTEROP_IMAGE_REPOSITORY_TAG'] = tag_name |
||||
# Note that 'BASE_NAME' HAS to be 'grpc_interop_stress_cxx' since the script |
||||
# build_interop_stress_image.sh invokes the following script: |
||||
# tools/dockerfile/$BASE_NAME/build_interop_stress.sh |
||||
os.environ['BASE_NAME'] = 'grpc_interop_stress_cxx' |
||||
cmd = ['tools/jenkins/build_interop_stress_image.sh'] |
||||
retcode = subprocess.call(args=cmd) |
||||
if retcode != 0: |
||||
print 'Error in building docker image' |
||||
return False |
||||
return True |
||||
|
||||
|
||||
def _push_docker_image_to_gke_registry(docker_tag_name): |
||||
"""Executes 'gcloud docker push <docker_tag_name>' to push the image to GKE registry""" |
||||
cmd = ['gcloud', 'docker', 'push', docker_tag_name] |
||||
print 'Pushing %s to GKE registry..' % docker_tag_name |
||||
retcode = subprocess.call(args=cmd) |
||||
if retcode != 0: |
||||
print 'Error in pushing docker image %s to the GKE registry' % docker_tag_name |
||||
return False |
||||
return True |
||||
|
||||
|
||||
def _launch_server(gke_settings, stress_server_settings, bq_settings, |
||||
kubernetes_proxy): |
||||
""" Launches a stress test server instance in GKE cluster """ |
||||
if not kubernetes_proxy.is_started: |
||||
print 'Kubernetes proxy must be started before calling this function' |
||||
return False |
||||
|
||||
# This is the wrapper script that is run in the container. This script runs |
||||
# the actual stress test server |
||||
server_cmd_list = ['/var/local/git/grpc/tools/gcp/stress_test/run_server.py'] |
||||
|
||||
# run_server.py does not take any args from the command line. The args are |
||||
# instead passed via environment variables (see server_env below) |
||||
server_arg_list = [] |
||||
|
||||
# The parameters to the script run_server.py are injected into the container |
||||
# via environment variables |
||||
server_env = { |
||||
'STRESS_TEST_IMAGE_TYPE': 'SERVER', |
||||
'STRESS_TEST_IMAGE': '/var/local/git/grpc/bins/opt/interop_server', |
||||
'STRESS_TEST_ARGS_STR': '--port=%s' % stress_server_settings.server_port, |
||||
'RUN_ID': bq_settings.run_id, |
||||
'POD_NAME': stress_server_settings.server_pod_name, |
||||
'GCP_PROJECT_ID': gke_settings.project_id, |
||||
'DATASET_ID': bq_settings.dataset_id, |
||||
'SUMMARY_TABLE_ID': bq_settings.summary_table_id, |
||||
'QPS_TABLE_ID': bq_settings.qps_table_id |
||||
} |
||||
|
||||
# Launch Server |
||||
is_success = kubernetes_api.create_pod_and_service( |
||||
'localhost', |
||||
kubernetes_proxy.get_port(), |
||||
'default', # Use 'default' namespace |
||||
stress_server_settings.server_pod_name, |
||||
gke_settings.tag_name, |
||||
[stress_server_settings.server_port], # Port that should be exposed |
||||
server_cmd_list, |
||||
server_arg_list, |
||||
server_env, |
||||
True # Headless = True for server. Since we want DNS records to be created by GKE |
||||
) |
||||
|
||||
return is_success |
||||
|
||||
|
||||
def _launch_client(gke_settings, stress_server_settings, stress_client_settings, |
||||
bq_settings, kubernetes_proxy): |
||||
""" Launches a configurable number of stress test clients on GKE cluster """ |
||||
if not kubernetes_proxy.is_started: |
||||
print 'Kubernetes proxy must be started before calling this function' |
||||
return False |
||||
|
||||
stress_client_arg_list = [ |
||||
'--server_addresses=%s' % stress_client_settings.server_addresses, |
||||
'--test_cases=%s' % stress_client_settings.test_cases_str, |
||||
'--num_stubs_per_channel=%d' % |
||||
stress_client_settings.num_stubs_per_channel |
||||
] |
||||
|
||||
# This is the wrapper script that is run in the container. This script runs |
||||
# the actual stress client |
||||
client_cmd_list = ['/var/local/git/grpc/tools/gcp/stress_test/run_client.py'] |
||||
|
||||
# run_client.py takes no args. All args are passed as env variables (see |
||||
# client_env) |
||||
client_arg_list = [] |
||||
|
||||
metrics_server_address = 'localhost:%d' % stress_client_settings.metrics_port |
||||
metrics_client_arg_list = [ |
||||
'--metrics_server_address=%s' % metrics_server_address, |
||||
'--total_only=true' |
||||
] |
||||
|
||||
# The parameters to the script run_client.py are injected into the container |
||||
# via environment variables |
||||
client_env = { |
||||
'STRESS_TEST_IMAGE_TYPE': 'CLIENT', |
||||
'STRESS_TEST_IMAGE': '/var/local/git/grpc/bins/opt/stress_test', |
||||
'STRESS_TEST_ARGS_STR': ' '.join(stress_client_arg_list), |
||||
'METRICS_CLIENT_IMAGE': '/var/local/git/grpc/bins/opt/metrics_client', |
||||
'METRICS_CLIENT_ARGS_STR': ' '.join(metrics_client_arg_list), |
||||
'RUN_ID': bq_settings.run_id, |
||||
'POLL_INTERVAL_SECS': |
||||
str(stress_client_settings.stress_client_poll_interval_secs), |
||||
'GCP_PROJECT_ID': gke_settings.project_id, |
||||
'DATASET_ID': bq_settings.dataset_id, |
||||
'SUMMARY_TABLE_ID': bq_settings.summary_table_id, |
||||
'QPS_TABLE_ID': bq_settings.qps_table_id |
||||
} |
||||
|
||||
for pod_name in stress_client_settings.client_pod_names_list: |
||||
client_env['POD_NAME'] = pod_name |
||||
is_success = kubernetes_api.create_pod_and_service( |
||||
'localhost', # Since proxy is running on localhost |
||||
kubernetes_proxy.get_port(), |
||||
'default', # default namespace |
||||
pod_name, |
||||
gke_settings.tag_name, |
||||
[stress_client_settings.metrics_port |
||||
], # Client pods expose metrics port |
||||
client_cmd_list, |
||||
client_arg_list, |
||||
client_env, |
||||
False # Client is not a headless service |
||||
) |
||||
if not is_success: |
||||
print 'Error in launching client %s' % pod_name |
||||
return False |
||||
|
||||
return True |
||||
|
||||
|
||||
def _launch_server_and_client(gke_settings, stress_server_settings, |
||||
stress_client_settings, bq_settings, |
||||
kubernetes_proxy_port): |
||||
# Start kubernetes proxy |
||||
print 'Kubernetes proxy' |
||||
kubernetes_proxy = KubernetesProxy(kubernetes_proxy_port) |
||||
kubernetes_proxy.start() |
||||
|
||||
print 'Launching server..' |
||||
is_success = _launch_server(gke_settings, stress_server_settings, bq_settings, |
||||
kubernetes_proxy) |
||||
if not is_success: |
||||
print 'Error in launching server' |
||||
return False |
||||
|
||||
# Server takes a while to start. |
||||
# TODO(sree) Use Kubernetes API to query the status of the server instead of |
||||
# sleeping |
||||
print 'Waiting for %s seconds for the server to start...' % _GKE_IMAGE_WARMUP_WAIT_SECS |
||||
time.sleep(_GKE_IMAGE_WARMUP_WAIT_SECS) |
||||
|
||||
# Launch client |
||||
client_pod_name_prefix = 'stress-client' |
||||
is_success = _launch_client(gke_settings, stress_server_settings, |
||||
stress_client_settings, bq_settings, |
||||
kubernetes_proxy) |
||||
|
||||
if not is_success: |
||||
print 'Error in launching client(s)' |
||||
return False |
||||
|
||||
print 'Waiting for %s seconds for the client images to start...' % _GKE_IMAGE_WARMUP_WAIT_SECS |
||||
time.sleep(_GKE_IMAGE_WARMUP_WAIT_SECS) |
||||
return True |
||||
|
||||
|
||||
def _delete_server_and_client(stress_server_settings, stress_client_settings, |
||||
kubernetes_proxy_port): |
||||
kubernetes_proxy = KubernetesProxy(kubernetes_proxy_port) |
||||
kubernetes_proxy.start() |
||||
|
||||
# Delete clients first |
||||
is_success = True |
||||
for pod_name in stress_client_settings.client_pod_names_list: |
||||
is_success = kubernetes_api.delete_pod_and_service( |
||||
'localhost', kubernetes_proxy_port, 'default', pod_name) |
||||
if not is_success: |
||||
return False |
||||
|
||||
# Delete server |
||||
is_success = kubernetes_api.delete_pod_and_service( |
||||
'localhost', kubernetes_proxy_port, 'default', |
||||
stress_server_settings.server_pod_name) |
||||
return is_success |
||||
|
||||
|
||||
def run_test_main(test_settings, gke_settings, stress_server_settings, |
||||
stress_client_clients): |
||||
is_success = True |
||||
|
||||
if test_settings.build_docker_image: |
||||
is_success = _build_docker_image(gke_settings.docker_image_name, |
||||
gke_settings.tag_name) |
||||
if not is_success: |
||||
return False |
||||
|
||||
is_success = _push_docker_image_to_gke_registry(gke_settings.tag_name) |
||||
if not is_success: |
||||
return False |
||||
|
||||
# Create a unique id for this run (Note: Using timestamp instead of UUID to |
||||
# make it easier to deduce the date/time of the run just by looking at the run |
||||
# run id. This is useful in debugging when looking at records in Biq query) |
||||
run_id = datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S') |
||||
dataset_id = '%s_%s' % (_DATASET_ID_PREFIX, run_id) |
||||
|
||||
# Big Query settings (common for both Stress Server and Client) |
||||
bq_settings = BigQuerySettings(run_id, dataset_id, _SUMMARY_TABLE_ID, |
||||
_QPS_TABLE_ID) |
||||
|
||||
bq_helper = BigQueryHelper(run_id, '', '', args.project_id, dataset_id, |
||||
_SUMMARY_TABLE_ID, _QPS_TABLE_ID) |
||||
bq_helper.initialize() |
||||
|
||||
try: |
||||
is_success = _launch_server_and_client(gke_settings, stress_server_settings, |
||||
stress_client_settings, bq_settings, |
||||
test_settings.kubernetes_proxy_port) |
||||
if not is_success: |
||||
return False |
||||
|
||||
start_time = datetime.datetime.now() |
||||
end_time = start_time + datetime.timedelta( |
||||
seconds=test_settings.test_duration_secs) |
||||
print 'Running the test until %s' % end_time.isoformat() |
||||
|
||||
while True: |
||||
if datetime.datetime.now() > end_time: |
||||
print 'Test was run for %d seconds' % test_settings.test_duration_secs |
||||
break |
||||
|
||||
# Check if either stress server or clients have failed |
||||
if bq_helper.check_if_any_tests_failed(): |
||||
is_success = False |
||||
print 'Some tests failed.' |
||||
break |
||||
|
||||
# Things seem to be running fine. Wait until next poll time to check the |
||||
# status |
||||
print 'Sleeping for %d seconds..' % test_settings.test_poll_interval_secs |
||||
time.sleep(test_settings.test_poll_interval_secs) |
||||
|
||||
# Print BiqQuery tables |
||||
bq_helper.print_summary_records() |
||||
bq_helper.print_qps_records() |
||||
|
||||
finally: |
||||
# If is_success is False at this point, it means that the stress tests were |
||||
# started successfully but failed while running the tests. In this case we |
||||
# do should not delete the pods (since they contain all the failure |
||||
# information) |
||||
if is_success: |
||||
_delete_server_and_client(stress_server_settings, stress_client_settings, |
||||
test_settings.kubernetes_proxy_port) |
||||
|
||||
return is_success |
||||
|
||||
|
||||
argp = argparse.ArgumentParser( |
||||
description='Launch stress tests in GKE', |
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
||||
argp.add_argument('--project_id', |
||||
required=True, |
||||
help='The Google Cloud Platform Project Id') |
||||
argp.add_argument('--num_clients', |
||||
default=1, |
||||
type=int, |
||||
help='Number of client instances to start') |
||||
argp.add_argument('--docker_image_name', |
||||
default=_DEFAULT_DOCKER_IMAGE_NAME, |
||||
help='The name of the docker image containing stress client ' |
||||
'and stress servers') |
||||
argp.add_argument('--build_docker_image', |
||||
dest='build_docker_image', |
||||
action='store_true', |
||||
help='Build a docker image and push to Google Container ' |
||||
'Registry') |
||||
argp.add_argument('--do_not_build_docker_image', |
||||
dest='build_docker_image', |
||||
action='store_false', |
||||
help='Do not build and push docker image to Google Container ' |
||||
'Registry') |
||||
argp.set_defaults(build_docker_image=True) |
||||
|
||||
argp.add_argument('--test_poll_interval_secs', |
||||
default=_DEFAULT_TEST_POLL_INTERVAL_SECS, |
||||
type=int, |
||||
help='How frequently should this script should monitor the ' |
||||
'health of stress clients and servers running in the GKE ' |
||||
'cluster') |
||||
argp.add_argument('--test_duration_secs', |
||||
default=_DEFAULT_TEST_DURATION_SECS, |
||||
type=int, |
||||
help='How long should this test be run') |
||||
argp.add_argument('--kubernetes_proxy_port', |
||||
default=_DEFAULT_KUBERNETES_PROXY_PORT, |
||||
type=int, |
||||
help='The port on which the kubernetes proxy (on localhost)' |
||||
' is started') |
||||
argp.add_argument('--stress_server_port', |
||||
default=_DEFAULT_STRESS_SERVER_PORT, |
||||
type=int, |
||||
help='The port on which the stress server (in GKE ' |
||||
'containers) listens') |
||||
argp.add_argument('--stress_client_metrics_port', |
||||
default=_DEFAULT_METRICS_PORT, |
||||
type=int, |
||||
help='The port on which the stress clients (in GKE ' |
||||
'containers) expose metrics') |
||||
argp.add_argument('--stress_client_poll_interval_secs', |
||||
default=_DEFAULT_STRESS_CLIENT_POLL_INTERVAL_SECS, |
||||
type=int, |
||||
help='How frequently should the stress client wrapper script' |
||||
' running inside GKE should monitor health of the actual ' |
||||
' stress client process and upload the metrics to BigQuery') |
||||
argp.add_argument('--stress_client_metrics_collection_interval_secs', |
||||
default=_DEFAULT_METRICS_COLLECTION_INTERVAL_SECS, |
||||
type=int, |
||||
help='How frequently should metrics be collected in-memory on' |
||||
' the stress clients (running inside GKE containers). Note ' |
||||
'that this is NOT the same as the upload-to-BigQuery ' |
||||
'frequency. The metrics upload frequency is controlled by the' |
||||
' --stress_client_poll_interval_secs flag') |
||||
argp.add_argument('--stress_client_num_channels_per_server', |
||||
default=_DEFAULT_NUM_CHANNELS_PER_SERVER, |
||||
type=int, |
||||
help='The number of channels created to each server from a ' |
||||
'stress client') |
||||
argp.add_argument('--stress_client_num_stubs_per_channel', |
||||
default=_DEFAULT_NUM_STUBS_PER_CHANNEL, |
||||
type=int, |
||||
help='The number of stubs created per channel. This number ' |
||||
'indicates the max number of RPCs that can be made in ' |
||||
'parallel on each channel at any given time') |
||||
argp.add_argument('--stress_client_test_cases', |
||||
default=_DEFAULT_TEST_CASES_STR, |
||||
help='List of test cases (with weights) to be executed by the' |
||||
' stress test client. The list is in the following format:\n' |
||||
' <testcase_1:w_1,<test_case2:w_2>..<testcase_n:w_n>\n' |
||||
' (Note: The weights do not have to add up to 100)') |
||||
|
||||
if __name__ == '__main__': |
||||
args = argp.parse_args() |
||||
|
||||
test_settings = TestSettings( |
||||
args.build_docker_image, args.test_poll_interval_secs, |
||||
args.test_duration_secs, args.kubernetes_proxy_port) |
||||
|
||||
gke_settings = GkeSettings(args.project_id, args.docker_image_name) |
||||
|
||||
stress_server_settings = StressServerSettings(_SERVER_POD_NAME, |
||||
args.stress_server_port) |
||||
stress_client_settings = StressClientSettings( |
||||
args.num_clients, _CLIENT_POD_NAME_PREFIX, _SERVER_POD_NAME, |
||||
args.stress_server_port, args.stress_client_metrics_port, |
||||
args.stress_client_metrics_collection_interval_secs, |
||||
args.stress_client_poll_interval_secs, |
||||
args.stress_client_num_channels_per_server, |
||||
args.stress_client_num_stubs_per_channel, args.stress_client_test_cases) |
||||
|
||||
run_test_main(test_settings, gke_settings, stress_server_settings, |
||||
stress_client_settings) |
Loading…
Reference in new issue