|
|
|
@ -49,6 +49,14 @@ def changed_ratio(n, o): |
|
|
|
|
if o == 0: return 100 |
|
|
|
|
return (float(n)-float(o))/float(o) |
|
|
|
|
|
|
|
|
|
def median(ary): |
|
|
|
|
ary = sorted(ary) |
|
|
|
|
n = len(ary) |
|
|
|
|
if n%2 == 0: |
|
|
|
|
return (ary[n/2] + ary[n/2+1]) / 2.0 |
|
|
|
|
else: |
|
|
|
|
return ary[n/2] |
|
|
|
|
|
|
|
|
|
def min_change(pct): |
|
|
|
|
return lambda n, o: abs(changed_ratio(n,o)) > pct/100.0 |
|
|
|
|
|
|
|
|
@ -90,8 +98,8 @@ args = argp.parse_args() |
|
|
|
|
assert args.diff_base |
|
|
|
|
|
|
|
|
|
def avg(lst): |
|
|
|
|
sum = 0 |
|
|
|
|
n = 0 |
|
|
|
|
sum = 0.0 |
|
|
|
|
n = 0.0 |
|
|
|
|
for el in lst: |
|
|
|
|
sum += el |
|
|
|
|
n += 1 |
|
|
|
@ -162,11 +170,11 @@ class Benchmark: |
|
|
|
|
old = self.samples[False][f] |
|
|
|
|
if not new or not old: continue |
|
|
|
|
p = stats.ttest_ind(new, old)[1] |
|
|
|
|
new_avg = avg(new) |
|
|
|
|
old_avg = avg(old) |
|
|
|
|
delta = new_avg - old_avg |
|
|
|
|
ratio = changed_ratio(new_avg, old_avg) |
|
|
|
|
if p < args.p_threshold and abs(delta) > 0.1 and abs(ratio) > 0.05: |
|
|
|
|
new_mdn = median(new) |
|
|
|
|
old_mdn = median(old) |
|
|
|
|
delta = new_mdn - old_mdn |
|
|
|
|
ratio = changed_ratio(new_mdn, old_mdn) |
|
|
|
|
if p < args.p_threshold and abs(delta) > 0.1 and abs(ratio) > 0.1: |
|
|
|
|
self.final[f] = delta |
|
|
|
|
return self.final.keys() |
|
|
|
|
|
|
|
|
|