The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

588 lines
22 KiB

/*
*
* Copyright 2020 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <grpcpp/grpcpp.h>
#include <grpcpp/server.h>
#include <grpcpp/server_builder.h>
#include <grpcpp/server_context.h>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <deque>
#include <map>
#include <mutex>
#include <set>
#include <sstream>
#include <string>
#include <thread>
#include <vector>
#include "absl/algorithm/container.h"
#include "absl/flags/flag.h"
#include "absl/strings/str_split.h"
#include "src/core/lib/channel/status_util.h"
#include "src/core/lib/gpr/env.h"
#include "src/proto/grpc/testing/empty.pb.h"
#include "src/proto/grpc/testing/messages.pb.h"
#include "src/proto/grpc/testing/test.grpc.pb.h"
#include "test/core/util/test_config.h"
#include "test/cpp/util/test_config.h"
ABSL_FLAG(bool, fail_on_failed_rpc, false,
"Fail client if any RPCs fail after first successful RPC.");
ABSL_FLAG(int32_t, num_channels, 1, "Number of channels.");
ABSL_FLAG(bool, print_response, false, "Write RPC response to stdout.");
ABSL_FLAG(int32_t, qps, 1, "Qps per channel.");
// TODO(Capstan): Consider using absl::Duration
ABSL_FLAG(int32_t, rpc_timeout_sec, 30, "Per RPC timeout seconds.");
ABSL_FLAG(std::string, server, "localhost:50051", "Address of server.");
ABSL_FLAG(int32_t, stats_port, 50052,
"Port to expose peer distribution stats service.");
ABSL_FLAG(std::string, rpc, "UnaryCall",
"a comma separated list of rpc methods.");
ABSL_FLAG(std::string, metadata, "", "metadata to send with the RPC.");
ABSL_FLAG(std::string, expect_status, "OK",
"RPC status for the test RPC to be considered successful");
using grpc::Channel;
using grpc::ClientAsyncResponseReader;
using grpc::ClientContext;
using grpc::CompletionQueue;
using grpc::Server;
using grpc::ServerBuilder;
using grpc::ServerContext;
using grpc::Status;
using grpc::testing::ClientConfigureRequest;
using grpc::testing::ClientConfigureRequest_RpcType_Name;
using grpc::testing::ClientConfigureResponse;
using grpc::testing::Empty;
using grpc::testing::LoadBalancerAccumulatedStatsRequest;
using grpc::testing::LoadBalancerAccumulatedStatsResponse;
using grpc::testing::LoadBalancerStatsRequest;
using grpc::testing::LoadBalancerStatsResponse;
using grpc::testing::LoadBalancerStatsService;
using grpc::testing::SimpleRequest;
using grpc::testing::SimpleResponse;
using grpc::testing::TestService;
using grpc::testing::XdsUpdateClientConfigureService;
class XdsStatsWatcher;
struct StatsWatchers {
// Unique ID for each outgoing RPC
int global_request_id = 0;
// Unique ID for each outgoing RPC by RPC method type
std::map<int, int> global_request_id_by_type;
// Stores a set of watchers that should be notified upon outgoing RPC
// completion
std::set<XdsStatsWatcher*> watchers;
// Global watcher for accumululated stats.
XdsStatsWatcher* global_watcher;
// Mutex for global_request_id and watchers
std::mutex mu;
};
// Whether at least one RPC has succeeded, indicating xDS resolution completed.
std::atomic<bool> one_rpc_succeeded(false);
// RPC configuration detailing how RPC should be sent.
struct RpcConfig {
ClientConfigureRequest::RpcType type;
std::vector<std::pair<std::string, std::string>> metadata;
};
struct RpcConfigurationsQueue {
// A queue of RPC configurations detailing how RPCs should be sent.
std::deque<std::vector<RpcConfig>> rpc_configs_queue;
// Mutex for rpc_configs_queue
std::mutex mu_rpc_configs_queue;
};
/** Records the remote peer distribution for a given range of RPCs. */
class XdsStatsWatcher {
public:
XdsStatsWatcher(int start_id, int end_id)
: start_id_(start_id), end_id_(end_id), rpcs_needed_(end_id - start_id) {}
// Upon the completion of an RPC, we will look at the request_id, the
// rpc_type, and the peer the RPC was sent to in order to count
// this RPC into the right stats bin.
void RpcCompleted(int request_id,
const ClientConfigureRequest::RpcType rpc_type,
const std::string& peer) {
// We count RPCs for global watcher or if the request_id falls into the
// watcher's interested range of request ids.
if ((start_id_ == 0 && end_id_ == 0) ||
(start_id_ <= request_id && request_id < end_id_)) {
{
std::lock_guard<std::mutex> lock(m_);
if (peer.empty()) {
no_remote_peer_++;
++no_remote_peer_by_type_[rpc_type];
} else {
// RPC is counted into both per-peer bin and per-method-per-peer bin.
rpcs_by_peer_[peer]++;
rpcs_by_type_[rpc_type][peer]++;
}
rpcs_needed_--;
}
cv_.notify_one();
}
}
void WaitForRpcStatsResponse(LoadBalancerStatsResponse* response,
int timeout_sec) {
{
std::unique_lock<std::mutex> lock(m_);
cv_.wait_for(lock, std::chrono::seconds(timeout_sec),
[this] { return rpcs_needed_ == 0; });
response->mutable_rpcs_by_peer()->insert(rpcs_by_peer_.begin(),
rpcs_by_peer_.end());
auto& response_rpcs_by_method = *response->mutable_rpcs_by_method();
for (const auto& rpc_by_type : rpcs_by_type_) {
std::string method_name;
if (rpc_by_type.first == ClientConfigureRequest::EMPTY_CALL) {
method_name = "EmptyCall";
} else if (rpc_by_type.first == ClientConfigureRequest::UNARY_CALL) {
method_name = "UnaryCall";
} else {
GPR_ASSERT(0);
}
// TODO(@donnadionne): When the test runner changes to accept EMPTY_CALL
// and UNARY_CALL we will just use the name of the enum instead of the
// method_name variable.
auto& response_rpc_by_method = response_rpcs_by_method[method_name];
auto& response_rpcs_by_peer =
*response_rpc_by_method.mutable_rpcs_by_peer();
for (const auto& rpc_by_peer : rpc_by_type.second) {
auto& response_rpc_by_peer = response_rpcs_by_peer[rpc_by_peer.first];
response_rpc_by_peer = rpc_by_peer.second;
}
}
response->set_num_failures(no_remote_peer_ + rpcs_needed_);
}
}
void GetCurrentRpcStats(LoadBalancerAccumulatedStatsResponse* response,
StatsWatchers* stats_watchers) {
std::unique_lock<std::mutex> lock(m_);
auto& response_rpcs_started_by_method =
*response->mutable_num_rpcs_started_by_method();
auto& response_rpcs_succeeded_by_method =
*response->mutable_num_rpcs_succeeded_by_method();
auto& response_rpcs_failed_by_method =
*response->mutable_num_rpcs_failed_by_method();
for (const auto& rpc_by_type : rpcs_by_type_) {
auto total_succeeded = 0;
for (const auto& rpc_by_peer : rpc_by_type.second) {
total_succeeded += rpc_by_peer.second;
}
response_rpcs_succeeded_by_method[ClientConfigureRequest_RpcType_Name(
rpc_by_type.first)] = total_succeeded;
response_rpcs_started_by_method[ClientConfigureRequest_RpcType_Name(
rpc_by_type.first)] =
stats_watchers->global_request_id_by_type[rpc_by_type.first];
response_rpcs_failed_by_method[ClientConfigureRequest_RpcType_Name(
rpc_by_type.first)] = no_remote_peer_by_type_[rpc_by_type.first];
}
}
private:
int start_id_;
int end_id_;
int rpcs_needed_;
int no_remote_peer_ = 0;
std::map<int, int> no_remote_peer_by_type_;
// A map of stats keyed by peer name.
std::map<std::string, int> rpcs_by_peer_;
// A two-level map of stats keyed at top level by RPC method and second level
// by peer name.
std::map<int, std::map<std::string, int>> rpcs_by_type_;
std::mutex m_;
std::condition_variable cv_;
};
class TestClient {
public:
TestClient(const std::shared_ptr<Channel>& channel,
StatsWatchers* stats_watchers)
: stub_(TestService::NewStub(channel)), stats_watchers_(stats_watchers) {}
void AsyncUnaryCall(
std::vector<std::pair<std::string, std::string>> metadata) {
SimpleResponse response;
int saved_request_id;
{
std::lock_guard<std::mutex> lock(stats_watchers_->mu);
saved_request_id = ++stats_watchers_->global_request_id;
++stats_watchers_
->global_request_id_by_type[ClientConfigureRequest::UNARY_CALL];
}
std::chrono::system_clock::time_point deadline =
std::chrono::system_clock::now() +
std::chrono::seconds(absl::GetFlag(FLAGS_rpc_timeout_sec));
AsyncClientCall* call = new AsyncClientCall;
for (const auto& data : metadata) {
call->context.AddMetadata(data.first, data.second);
// TODO(@donnadionne): move deadline to separate proto.
if (data.first == "rpc-behavior" && data.second == "keep-open") {
deadline =
std::chrono::system_clock::now() + std::chrono::seconds(INT_MAX);
}
}
call->context.set_deadline(deadline);
call->saved_request_id = saved_request_id;
call->rpc_type = ClientConfigureRequest::UNARY_CALL;
call->simple_response_reader = stub_->PrepareAsyncUnaryCall(
&call->context, SimpleRequest::default_instance(), &cq_);
call->simple_response_reader->StartCall();
call->simple_response_reader->Finish(&call->simple_response, &call->status,
call);
}
void AsyncEmptyCall(
std::vector<std::pair<std::string, std::string>> metadata) {
Empty response;
int saved_request_id;
{
std::lock_guard<std::mutex> lock(stats_watchers_->mu);
saved_request_id = ++stats_watchers_->global_request_id;
++stats_watchers_
->global_request_id_by_type[ClientConfigureRequest::EMPTY_CALL];
}
std::chrono::system_clock::time_point deadline =
std::chrono::system_clock::now() +
std::chrono::seconds(absl::GetFlag(FLAGS_rpc_timeout_sec));
AsyncClientCall* call = new AsyncClientCall;
for (const auto& data : metadata) {
call->context.AddMetadata(data.first, data.second);
// TODO(@donnadionne): move deadline to separate proto.
if (data.first == "rpc-behavior" && data.second == "keep-open") {
deadline =
std::chrono::system_clock::now() + std::chrono::seconds(INT_MAX);
}
}
call->context.set_deadline(deadline);
call->saved_request_id = saved_request_id;
call->rpc_type = ClientConfigureRequest::EMPTY_CALL;
call->empty_response_reader = stub_->PrepareAsyncEmptyCall(
&call->context, Empty::default_instance(), &cq_);
call->empty_response_reader->StartCall();
call->empty_response_reader->Finish(&call->empty_response, &call->status,
call);
}
void AsyncCompleteRpc() {
void* got_tag;
bool ok = false;
while (cq_.Next(&got_tag, &ok)) {
AsyncClientCall* call = static_cast<AsyncClientCall*>(got_tag);
GPR_ASSERT(ok);
{
std::lock_guard<std::mutex> lock(stats_watchers_->mu);
auto server_initial_metadata = call->context.GetServerInitialMetadata();
auto metadata_hostname =
call->context.GetServerInitialMetadata().find("hostname");
std::string hostname =
metadata_hostname != call->context.GetServerInitialMetadata().end()
? std::string(metadata_hostname->second.data(),
metadata_hostname->second.length())
: call->simple_response.hostname();
for (auto watcher : stats_watchers_->watchers) {
watcher->RpcCompleted(call->saved_request_id, call->rpc_type,
hostname);
}
}
if (!RpcStatusCheckSuccess(call)) {
if (absl::GetFlag(FLAGS_print_response) ||
absl::GetFlag(FLAGS_fail_on_failed_rpc)) {
std::cout << "RPC failed: " << call->status.error_code() << ": "
<< call->status.error_message() << std::endl;
}
if (absl::GetFlag(FLAGS_fail_on_failed_rpc) &&
one_rpc_succeeded.load()) {
abort();
}
} else {
if (absl::GetFlag(FLAGS_print_response)) {
auto metadata_hostname =
call->context.GetServerInitialMetadata().find("hostname");
std::string hostname =
metadata_hostname !=
call->context.GetServerInitialMetadata().end()
? std::string(metadata_hostname->second.data(),
metadata_hostname->second.length())
: call->simple_response.hostname();
std::cout << "Greeting: Hello world, this is " << hostname
<< ", from " << call->context.peer() << std::endl;
}
one_rpc_succeeded = true;
}
delete call;
}
}
private:
struct AsyncClientCall {
Empty empty_response;
SimpleResponse simple_response;
ClientContext context;
Status status;
int saved_request_id;
ClientConfigureRequest::RpcType rpc_type;
std::unique_ptr<ClientAsyncResponseReader<Empty>> empty_response_reader;
std::unique_ptr<ClientAsyncResponseReader<SimpleResponse>>
simple_response_reader;
};
static bool RpcStatusCheckSuccess(AsyncClientCall* call) {
// Determine RPC success based on expected status.
grpc_status_code code;
GPR_ASSERT(grpc_status_code_from_string(
absl::GetFlag(FLAGS_expect_status).c_str(), &code));
return code == static_cast<grpc_status_code>(call->status.error_code());
}
std::unique_ptr<TestService::Stub> stub_;
StatsWatchers* stats_watchers_;
CompletionQueue cq_;
};
class LoadBalancerStatsServiceImpl : public LoadBalancerStatsService::Service {
public:
explicit LoadBalancerStatsServiceImpl(StatsWatchers* stats_watchers)
: stats_watchers_(stats_watchers) {}
Status GetClientStats(ServerContext* context,
const LoadBalancerStatsRequest* request,
LoadBalancerStatsResponse* response) override {
int start_id;
int end_id;
XdsStatsWatcher* watcher;
{
std::lock_guard<std::mutex> lock(stats_watchers_->mu);
start_id = stats_watchers_->global_request_id + 1;
end_id = start_id + request->num_rpcs();
watcher = new XdsStatsWatcher(start_id, end_id);
stats_watchers_->watchers.insert(watcher);
}
watcher->WaitForRpcStatsResponse(response, request->timeout_sec());
{
std::lock_guard<std::mutex> lock(stats_watchers_->mu);
stats_watchers_->watchers.erase(watcher);
}
delete watcher;
return Status::OK;
}
Status GetClientAccumulatedStats(
ServerContext* context,
const LoadBalancerAccumulatedStatsRequest* request,
LoadBalancerAccumulatedStatsResponse* response) override {
std::lock_guard<std::mutex> lock(stats_watchers_->mu);
stats_watchers_->global_watcher->GetCurrentRpcStats(response,
stats_watchers_);
return Status::OK;
}
private:
StatsWatchers* stats_watchers_;
};
class XdsUpdateClientConfigureServiceImpl
: public XdsUpdateClientConfigureService::Service {
public:
explicit XdsUpdateClientConfigureServiceImpl(
RpcConfigurationsQueue* rpc_configs_queue)
: rpc_configs_queue_(rpc_configs_queue) {}
Status Configure(ServerContext* context,
const ClientConfigureRequest* request,
ClientConfigureResponse* response) override {
std::map<int, std::vector<std::pair<std::string, std::string>>>
metadata_map;
for (const auto& data : request->metadata()) {
metadata_map[data.type()].push_back({data.key(), data.value()});
}
std::vector<RpcConfig> configs;
for (const auto& rpc : request->types()) {
RpcConfig config;
config.type = static_cast<ClientConfigureRequest::RpcType>(rpc);
auto metadata_iter = metadata_map.find(rpc);
if (metadata_iter != metadata_map.end()) {
config.metadata = metadata_iter->second;
}
configs.push_back(std::move(config));
}
{
std::lock_guard<std::mutex> lock(
rpc_configs_queue_->mu_rpc_configs_queue);
rpc_configs_queue_->rpc_configs_queue.emplace_back(std::move(configs));
}
return Status::OK;
}
private:
RpcConfigurationsQueue* rpc_configs_queue_;
};
void RunTestLoop(std::chrono::duration<double> duration_per_query,
StatsWatchers* stats_watchers,
RpcConfigurationsQueue* rpc_configs_queue) {
TestClient client(grpc::CreateChannel(absl::GetFlag(FLAGS_server),
grpc::InsecureChannelCredentials()),
stats_watchers);
std::chrono::time_point<std::chrono::system_clock> start =
std::chrono::system_clock::now();
std::chrono::duration<double> elapsed;
std::thread thread = std::thread(&TestClient::AsyncCompleteRpc, &client);
std::vector<RpcConfig> configs;
while (true) {
{
std::lock_guard<std::mutex> lockk(
rpc_configs_queue->mu_rpc_configs_queue);
if (!rpc_configs_queue->rpc_configs_queue.empty()) {
configs = std::move(rpc_configs_queue->rpc_configs_queue.front());
rpc_configs_queue->rpc_configs_queue.pop_front();
}
}
elapsed = std::chrono::system_clock::now() - start;
if (elapsed > duration_per_query) {
start = std::chrono::system_clock::now();
for (const auto& config : configs) {
if (config.type == ClientConfigureRequest::EMPTY_CALL) {
client.AsyncEmptyCall(config.metadata);
} else if (config.type == ClientConfigureRequest::UNARY_CALL) {
client.AsyncUnaryCall(config.metadata);
} else {
GPR_ASSERT(0);
}
}
}
}
thread.join();
}
void RunServer(const int port, StatsWatchers* stats_watchers,
RpcConfigurationsQueue* rpc_configs_queue) {
GPR_ASSERT(port != 0);
std::ostringstream server_address;
server_address << "0.0.0.0:" << port;
LoadBalancerStatsServiceImpl stats_service(stats_watchers);
XdsUpdateClientConfigureServiceImpl client_config_service(rpc_configs_queue);
ServerBuilder builder;
builder.RegisterService(&stats_service);
builder.RegisterService(&client_config_service);
builder.AddListeningPort(server_address.str(),
grpc::InsecureServerCredentials());
std::unique_ptr<Server> server(builder.BuildAndStart());
gpr_log(GPR_DEBUG, "Server listening on %s", server_address.str().c_str());
server->Wait();
}
void BuildRpcConfigsFromFlags(RpcConfigurationsQueue* rpc_configs_queue) {
// Store Metadata like
// "EmptyCall:key1:value1,UnaryCall:key1:value1,UnaryCall:key2:value2" into a
// map where the key is the RPC method and value is a vector of key:value
// pairs. {EmptyCall, [{key1,value1}],
// UnaryCall, [{key1,value1}, {key2,value2}]}
std::vector<std::string> rpc_metadata =
absl::StrSplit(absl::GetFlag(FLAGS_metadata), ',', absl::SkipEmpty());
std::map<int, std::vector<std::pair<std::string, std::string>>> metadata_map;
for (auto& data : rpc_metadata) {
std::vector<std::string> metadata =
absl::StrSplit(data, ':', absl::SkipEmpty());
GPR_ASSERT(metadata.size() == 3);
if (metadata[0] == "EmptyCall") {
metadata_map[ClientConfigureRequest::EMPTY_CALL].push_back(
{metadata[1], metadata[2]});
} else if (metadata[0] == "UnaryCall") {
metadata_map[ClientConfigureRequest::UNARY_CALL].push_back(
{metadata[1], metadata[2]});
} else {
GPR_ASSERT(0);
}
}
std::vector<RpcConfig> configs;
std::vector<std::string> rpc_methods =
absl::StrSplit(absl::GetFlag(FLAGS_rpc), ',', absl::SkipEmpty());
for (const std::string& rpc_method : rpc_methods) {
RpcConfig config;
if (rpc_method == "EmptyCall") {
config.type = ClientConfigureRequest::EMPTY_CALL;
} else if (rpc_method == "UnaryCall") {
config.type = ClientConfigureRequest::UNARY_CALL;
} else {
GPR_ASSERT(0);
}
auto metadata_iter = metadata_map.find(config.type);
if (metadata_iter != metadata_map.end()) {
config.metadata = metadata_iter->second;
}
configs.push_back(std::move(config));
}
{
std::lock_guard<std::mutex> lock(rpc_configs_queue->mu_rpc_configs_queue);
rpc_configs_queue->rpc_configs_queue.emplace_back(std::move(configs));
}
}
int main(int argc, char** argv) {
grpc::testing::TestEnvironment env(argc, argv);
grpc::testing::InitTest(&argc, &argv, true);
// Validate the expect_status flag.
grpc_status_code code;
GPR_ASSERT(grpc_status_code_from_string(
absl::GetFlag(FLAGS_expect_status).c_str(), &code));
StatsWatchers stats_watchers;
RpcConfigurationsQueue rpc_config_queue;
{
std::lock_guard<std::mutex> lock(stats_watchers.mu);
stats_watchers.global_watcher = new XdsStatsWatcher(0, 0);
stats_watchers.watchers.insert(stats_watchers.global_watcher);
}
BuildRpcConfigsFromFlags(&rpc_config_queue);
std::chrono::duration<double> duration_per_query =
std::chrono::nanoseconds(std::chrono::seconds(1)) /
absl::GetFlag(FLAGS_qps);
std::vector<std::thread> test_threads;
test_threads.reserve(absl::GetFlag(FLAGS_num_channels));
for (int i = 0; i < absl::GetFlag(FLAGS_num_channels); i++) {
test_threads.emplace_back(std::thread(&RunTestLoop, duration_per_query,
&stats_watchers, &rpc_config_queue));
}
RunServer(absl::GetFlag(FLAGS_stats_port), &stats_watchers,
&rpc_config_queue);
for (auto it = test_threads.begin(); it != test_threads.end(); it++) {
it->join();
}
return 0;
}