|
|
|
#!/usr/bin/env python3
|
|
|
|
# Copyright 2016 gRPC authors.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
# Uploads performance benchmark result file to bigquery.
|
|
|
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import calendar
|
|
|
|
import json
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import time
|
|
|
|
import uuid
|
|
|
|
|
|
|
|
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
|
|
|
import massage_qps_stats
|
|
|
|
|
|
|
|
gcp_utils_dir = os.path.abspath(
|
|
|
|
os.path.join(os.path.dirname(__file__), '../../gcp/utils'))
|
|
|
|
sys.path.append(gcp_utils_dir)
|
|
|
|
import big_query_utils
|
|
|
|
|
|
|
|
_PROJECT_ID = 'grpc-testing'
|
|
|
|
|
|
|
|
|
|
|
|
def _upload_netperf_latency_csv_to_bigquery(dataset_id, table_id, result_file):
|
|
|
|
with open(result_file, 'r') as f:
|
|
|
|
(col1, col2, col3) = f.read().split(',')
|
|
|
|
latency50 = float(col1.strip()) * 1000
|
|
|
|
latency90 = float(col2.strip()) * 1000
|
|
|
|
latency99 = float(col3.strip()) * 1000
|
|
|
|
|
|
|
|
scenario_result = {
|
|
|
|
'scenario': {
|
|
|
|
'name': 'netperf_tcp_rr'
|
|
|
|
},
|
|
|
|
'summary': {
|
|
|
|
'latency50': latency50,
|
|
|
|
'latency90': latency90,
|
|
|
|
'latency99': latency99
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bq = big_query_utils.create_big_query()
|
|
|
|
_create_results_table(bq, dataset_id, table_id)
|
|
|
|
|
|
|
|
if not _insert_result(
|
|
|
|
bq, dataset_id, table_id, scenario_result, flatten=False):
|
|
|
|
print('Error uploading result to bigquery.')
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
def _upload_scenario_result_to_bigquery(dataset_id, table_id, result_file,
|
|
|
|
metadata_file, node_info_file,
|
|
|
|
prometheus_query_results_file):
|
|
|
|
with open(result_file, 'r') as f:
|
|
|
|
scenario_result = json.loads(f.read())
|
|
|
|
|
|
|
|
bq = big_query_utils.create_big_query()
|
|
|
|
_create_results_table(bq, dataset_id, table_id)
|
|
|
|
|
|
|
|
if not _insert_scenario_result(bq, dataset_id, table_id, scenario_result,
|
|
|
|
metadata_file, node_info_file,
|
|
|
|
prometheus_query_results_file):
|
|
|
|
print('Error uploading result to bigquery.')
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
def _insert_result(bq, dataset_id, table_id, scenario_result, flatten=True):
|
|
|
|
if flatten:
|
|
|
|
_flatten_result_inplace(scenario_result)
|
|
|
|
_populate_metadata_inplace(scenario_result)
|
|
|
|
row = big_query_utils.make_row(str(uuid.uuid4()), scenario_result)
|
|
|
|
return big_query_utils.insert_rows(bq, _PROJECT_ID, dataset_id, table_id,
|
|
|
|
[row])
|
|
|
|
|
|
|
|
|
|
|
|
def _insert_scenario_result(bq,
|
|
|
|
dataset_id,
|
|
|
|
table_id,
|
|
|
|
scenario_result,
|
|
|
|
test_metadata_file,
|
|
|
|
node_info_file,
|
|
|
|
prometheus_query_results_file,
|
|
|
|
flatten=True):
|
|
|
|
if flatten:
|
|
|
|
_flatten_result_inplace(scenario_result)
|
|
|
|
_populate_metadata_from_file(scenario_result, test_metadata_file)
|
|
|
|
_populate_node_metadata_from_file(scenario_result, node_info_file)
|
|
|
|
_populate_prometheus_query_results_from_file(scenario_result,
|
|
|
|
prometheus_query_results_file)
|
|
|
|
row = big_query_utils.make_row(str(uuid.uuid4()), scenario_result)
|
|
|
|
return big_query_utils.insert_rows(bq, _PROJECT_ID, dataset_id, table_id,
|
|
|
|
[row])
|
|
|
|
|
|
|
|
|
|
|
|
def _create_results_table(bq, dataset_id, table_id):
|
|
|
|
with open(os.path.dirname(__file__) + '/scenario_result_schema.json',
|
|
|
|
'r') as f:
|
|
|
|
table_schema = json.loads(f.read())
|
|
|
|
desc = 'Results of performance benchmarks.'
|
|
|
|
return big_query_utils.create_table2(bq, _PROJECT_ID, dataset_id, table_id,
|
|
|
|
table_schema, desc)
|
|
|
|
|
|
|
|
|
|
|
|
def _flatten_result_inplace(scenario_result):
|
|
|
|
"""Bigquery is not really great for handling deeply nested data
|
|
|
|
and repeated fields. To maintain values of some fields while keeping
|
|
|
|
the schema relatively simple, we artificially leave some of the fields
|
|
|
|
as JSON strings.
|
|
|
|
"""
|
|
|
|
scenario_result['scenario']['clientConfig'] = json.dumps(
|
|
|
|
scenario_result['scenario']['clientConfig'])
|
|
|
|
scenario_result['scenario']['serverConfig'] = json.dumps(
|
|
|
|
scenario_result['scenario']['serverConfig'])
|
|
|
|
scenario_result['latencies'] = json.dumps(scenario_result['latencies'])
|
|
|
|
scenario_result['serverCpuStats'] = []
|
|
|
|
for stats in scenario_result['serverStats']:
|
|
|
|
scenario_result['serverCpuStats'].append(dict())
|
|
|
|
scenario_result['serverCpuStats'][-1]['totalCpuTime'] = stats.pop(
|
|
|
|
'totalCpuTime', None)
|
|
|
|
scenario_result['serverCpuStats'][-1]['idleCpuTime'] = stats.pop(
|
|
|
|
'idleCpuTime', None)
|
|
|
|
for stats in scenario_result['clientStats']:
|
|
|
|
stats['latencies'] = json.dumps(stats['latencies'])
|
|
|
|
stats.pop('requestResults', None)
|
|
|
|
scenario_result['serverCores'] = json.dumps(scenario_result['serverCores'])
|
|
|
|
scenario_result['clientSuccess'] = json.dumps(
|
|
|
|
scenario_result['clientSuccess'])
|
|
|
|
scenario_result['serverSuccess'] = json.dumps(
|
|
|
|
scenario_result['serverSuccess'])
|
|
|
|
scenario_result['requestResults'] = json.dumps(
|
|
|
|
scenario_result.get('requestResults', []))
|
|
|
|
scenario_result['serverCpuUsage'] = scenario_result['summary'].pop(
|
|
|
|
'serverCpuUsage', None)
|
|
|
|
scenario_result['summary'].pop('successfulRequestsPerSecond', None)
|
|
|
|
scenario_result['summary'].pop('failedRequestsPerSecond', None)
|
|
|
|
massage_qps_stats.massage_qps_stats(scenario_result)
|
|
|
|
|
|
|
|
|
|
|
|
def _populate_metadata_inplace(scenario_result):
|
|
|
|
"""Populates metadata based on environment variables set by Jenkins."""
|
|
|
|
# NOTE: Grabbing the Kokoro environment variables will only work if the
|
|
|
|
# driver is running locally on the same machine where Kokoro has started
|
|
|
|
# the job. For our setup, this is currently the case, so just assume that.
|
|
|
|
build_number = os.getenv('KOKORO_BUILD_NUMBER')
|
|
|
|
build_url = 'https://source.cloud.google.com/results/invocations/%s' % os.getenv(
|
|
|
|
'KOKORO_BUILD_ID')
|
|
|
|
job_name = os.getenv('KOKORO_JOB_NAME')
|
|
|
|
git_commit = os.getenv('KOKORO_GIT_COMMIT')
|
|
|
|
# actual commit is the actual head of PR that is getting tested
|
|
|
|
# TODO(jtattermusch): unclear how to obtain on Kokoro
|
|
|
|
git_actual_commit = os.getenv('ghprbActualCommit')
|
|
|
|
|
|
|
|
utc_timestamp = str(calendar.timegm(time.gmtime()))
|
|
|
|
metadata = {'created': utc_timestamp}
|
|
|
|
|
|
|
|
if build_number:
|
|
|
|
metadata['buildNumber'] = build_number
|
|
|
|
if build_url:
|
|
|
|
metadata['buildUrl'] = build_url
|
|
|
|
if job_name:
|
|
|
|
metadata['jobName'] = job_name
|
|
|
|
if git_commit:
|
|
|
|
metadata['gitCommit'] = git_commit
|
|
|
|
if git_actual_commit:
|
|
|
|
metadata['gitActualCommit'] = git_actual_commit
|
|
|
|
|
|
|
|
scenario_result['metadata'] = metadata
|
|
|
|
|
|
|
|
|
|
|
|
def _populate_metadata_from_file(scenario_result, test_metadata_file):
|
|
|
|
utc_timestamp = str(calendar.timegm(time.gmtime()))
|
|
|
|
metadata = {'created': utc_timestamp}
|
|
|
|
|
|
|
|
_annotation_to_bq_metadata_key_map = {
|
|
|
|
'ci_' + key: key for key in (
|
|
|
|
'buildNumber',
|
|
|
|
'buildUrl',
|
|
|
|
'jobName',
|
|
|
|
'gitCommit',
|
|
|
|
'gitActualCommit',
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
if os.access(test_metadata_file, os.R_OK):
|
|
|
|
with open(test_metadata_file, 'r') as f:
|
|
|
|
test_metadata = json.loads(f.read())
|
|
|
|
|
|
|
|
# eliminate managedFields from metadata set
|
|
|
|
if 'managedFields' in test_metadata:
|
|
|
|
del test_metadata['managedFields']
|
|
|
|
|
|
|
|
annotations = test_metadata.get('annotations', {})
|
|
|
|
|
|
|
|
# if use kubectl apply ..., kubectl will append current configuration to
|
|
|
|
# annotation, the field is deleted since it includes a lot of irrelevant
|
|
|
|
# information
|
|
|
|
if 'kubectl.kubernetes.io/last-applied-configuration' in annotations:
|
|
|
|
del annotations['kubectl.kubernetes.io/last-applied-configuration']
|
|
|
|
|
|
|
|
# dump all metadata as JSON to testMetadata field
|
|
|
|
scenario_result['testMetadata'] = json.dumps(test_metadata)
|
|
|
|
for key, value in _annotation_to_bq_metadata_key_map.items():
|
|
|
|
if key in annotations:
|
|
|
|
metadata[value] = annotations[key]
|
|
|
|
|
|
|
|
scenario_result['metadata'] = metadata
|
|
|
|
|
|
|
|
|
|
|
|
def _populate_node_metadata_from_file(scenario_result, node_info_file):
|
|
|
|
node_metadata = {'driver': {}, 'servers': [], 'clients': []}
|
|
|
|
_node_info_to_bq_node_metadata_key_map = {
|
|
|
|
'Name': 'name',
|
|
|
|
'PodIP': 'podIP',
|
|
|
|
'NodeName': 'nodeName',
|
|
|
|
}
|
|
|
|
|
|
|
|
if os.access(node_info_file, os.R_OK):
|
|
|
|
with open(node_info_file, 'r') as f:
|
|
|
|
file_metadata = json.loads(f.read())
|
|
|
|
for key, value in _node_info_to_bq_node_metadata_key_map.items():
|
|
|
|
node_metadata['driver'][value] = file_metadata['Driver'][key]
|
|
|
|
for clientNodeInfo in file_metadata['Clients']:
|
|
|
|
node_metadata['clients'].append({
|
|
|
|
value: clientNodeInfo[key] for key, value in
|
|
|
|
_node_info_to_bq_node_metadata_key_map.items()
|
|
|
|
})
|
|
|
|
for serverNodeInfo in file_metadata['Servers']:
|
|
|
|
node_metadata['servers'].append({
|
|
|
|
value: serverNodeInfo[key] for key, value in
|
|
|
|
_node_info_to_bq_node_metadata_key_map.items()
|
|
|
|
})
|
|
|
|
|
|
|
|
scenario_result['nodeMetadata'] = node_metadata
|
|
|
|
|
|
|
|
|
|
|
|
def _populate_prometheus_query_results_from_file(scenario_result,
|
|
|
|
prometheus_query_result_file):
|
|
|
|
"""Populate the results from Prometheus query to Bigquery table """
|
|
|
|
if os.access(prometheus_query_result_file, os.R_OK):
|
|
|
|
with open(prometheus_query_result_file, 'r', encoding='utf8') as f:
|
|
|
|
file_query_results = json.loads(f.read())
|
|
|
|
|
|
|
|
scenario_result['testDurationSeconds'] = file_query_results[
|
|
|
|
'testDurationSeconds']
|
|
|
|
clientsPrometheusData = []
|
|
|
|
if 'clients' in file_query_results:
|
|
|
|
for client_name, client_data in file_query_results[
|
|
|
|
'clients'].items():
|
|
|
|
clientPrometheusData = {'name': client_name}
|
|
|
|
containersPrometheusData = []
|
|
|
|
for container_name, container_data in client_data.items():
|
|
|
|
containerPrometheusData = {
|
|
|
|
'name': container_name,
|
|
|
|
'cpuSeconds': container_data['cpuSeconds'],
|
|
|
|
'memoryMean': container_data['memoryMean'],
|
|
|
|
}
|
|
|
|
containersPrometheusData.append(containerPrometheusData)
|
|
|
|
clientPrometheusData[
|
|
|
|
'containers'] = containersPrometheusData
|
|
|
|
clientsPrometheusData.append(clientPrometheusData)
|
|
|
|
scenario_result['clientsPrometheusData'] = clientsPrometheusData
|
|
|
|
|
|
|
|
serversPrometheusData = []
|
|
|
|
if 'servers' in file_query_results:
|
|
|
|
for server_name, server_data in file_query_results[
|
|
|
|
'servers'].items():
|
|
|
|
serverPrometheusData = {'name': server_name}
|
|
|
|
containersPrometheusData = []
|
|
|
|
for container_name, container_data in server_data.items():
|
|
|
|
containerPrometheusData = {
|
|
|
|
'name': container_name,
|
|
|
|
'cpuSeconds': container_data['cpuSeconds'],
|
|
|
|
'memoryMean': container_data['memoryMean'],
|
|
|
|
}
|
|
|
|
containersPrometheusData.append(containerPrometheusData)
|
|
|
|
serverPrometheusData[
|
|
|
|
'containers'] = containersPrometheusData
|
|
|
|
serversPrometheusData.append(serverPrometheusData)
|
|
|
|
scenario_result['serversPrometheusData'] = serversPrometheusData
|
|
|
|
|
|
|
|
|
|
|
|
argp = argparse.ArgumentParser(description='Upload result to big query.')
|
|
|
|
argp.add_argument('--bq_result_table',
|
|
|
|
required=True,
|
|
|
|
default=None,
|
|
|
|
type=str,
|
|
|
|
help='Bigquery "dataset.table" to upload results to.')
|
|
|
|
argp.add_argument('--file_to_upload',
|
|
|
|
default='scenario_result.json',
|
|
|
|
type=str,
|
|
|
|
help='Report file to upload.')
|
|
|
|
argp.add_argument('--metadata_file_to_upload',
|
|
|
|
default='metadata.json',
|
|
|
|
type=str,
|
|
|
|
help='Metadata file to upload.')
|
|
|
|
argp.add_argument('--node_info_file_to_upload',
|
|
|
|
default='node_info.json',
|
|
|
|
type=str,
|
|
|
|
help='Node information file to upload.')
|
|
|
|
argp.add_argument('--prometheus_query_results_to_upload',
|
|
|
|
default='prometheus_query_result.json',
|
|
|
|
type=str,
|
|
|
|
help='Prometheus query result file to upload.')
|
|
|
|
argp.add_argument('--file_format',
|
|
|
|
choices=['scenario_result', 'netperf_latency_csv'],
|
|
|
|
default='scenario_result',
|
|
|
|
help='Format of the file to upload.')
|
|
|
|
|
|
|
|
args = argp.parse_args()
|
|
|
|
|
|
|
|
dataset_id, table_id = args.bq_result_table.split('.', 2)
|
|
|
|
|
|
|
|
if args.file_format == 'netperf_latency_csv':
|
|
|
|
_upload_netperf_latency_csv_to_bigquery(dataset_id, table_id,
|
|
|
|
args.file_to_upload)
|
|
|
|
else:
|
|
|
|
_upload_scenario_result_to_bigquery(dataset_id, table_id,
|
|
|
|
args.file_to_upload,
|
|
|
|
args.metadata_file_to_upload,
|
|
|
|
args.node_info_file_to_upload,
|
|
|
|
args.prometheus_query_results_to_upload)
|
|
|
|
print('Successfully uploaded %s, %s, %s and %s to BigQuery.\n' %
|
|
|
|
(args.file_to_upload, args.metadata_file_to_upload,
|
|
|
|
args.node_info_file_to_upload, args.prometheus_query_results_to_upload))
|