The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

396 lines
14 KiB

/*
*
* Copyright 2016 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/* Benchmark gRPC end2end in various configurations */
#ifndef TEST_CPP_MICROBENCHMARKS_FULLSTACK_STREAMING_PING_PONG_H
#define TEST_CPP_MICROBENCHMARKS_FULLSTACK_STREAMING_PING_PONG_H
#include <benchmark/benchmark.h>
#include <sstream>
#include "src/core/lib/profiling/timers.h"
#include "src/proto/grpc/testing/echo.grpc.pb.h"
#include "test/cpp/microbenchmarks/fullstack_context_mutators.h"
#include "test/cpp/microbenchmarks/fullstack_fixtures.h"
namespace grpc {
namespace testing {
/*******************************************************************************
* BENCHMARKING KERNELS
*/
static void* tag(intptr_t x) { return reinterpret_cast<void*>(x); }
// Repeatedly makes Streaming Bidi calls (exchanging a configurable number of
// messages in each call) in a loop on a single channel
//
// First parmeter (i.e state.range(0)): Message size (in bytes) to use
// Second parameter (i.e state.range(1)): Number of ping pong messages.
// Note: One ping-pong means two messages (one from client to server and
// the other from server to client):
template <class Fixture, class ClientContextMutator, class ServerContextMutator>
static void BM_StreamingPingPong(benchmark::State& state) {
const int msg_size = state.range(0);
const int max_ping_pongs = state.range(1);
EchoTestService::AsyncService service;
std::unique_ptr<Fixture> fixture(new Fixture(&service));
{
EchoResponse send_response;
EchoResponse recv_response;
EchoRequest send_request;
EchoRequest recv_request;
if (msg_size > 0) {
send_request.set_message(std::string(msg_size, 'a'));
send_response.set_message(std::string(msg_size, 'b'));
}
std::unique_ptr<EchoTestService::Stub> stub(
EchoTestService::NewStub(fixture->channel()));
while (state.KeepRunning()) {
ServerContext svr_ctx;
ServerContextMutator svr_ctx_mut(&svr_ctx);
ServerAsyncReaderWriter<EchoResponse, EchoRequest> response_rw(&svr_ctx);
service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(),
fixture->cq(), tag(0));
ClientContext cli_ctx;
ClientContextMutator cli_ctx_mut(&cli_ctx);
auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1));
// Establish async stream between client side and server side
void* t;
bool ok;
int need_tags = (1 << 0) | (1 << 1);
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
GPR_ASSERT(ok);
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
// Send 'max_ping_pongs' number of ping pong messages
int ping_pong_cnt = 0;
while (ping_pong_cnt < max_ping_pongs) {
request_rw->Write(send_request, tag(0)); // Start client send
response_rw.Read(&recv_request, tag(1)); // Start server recv
request_rw->Read(&recv_response, tag(2)); // Start client recv
need_tags = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3);
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
GPR_ASSERT(ok);
int i = (int)(intptr_t)t;
// If server recv is complete, start the server send operation
if (i == 1) {
response_rw.Write(send_response, tag(3));
}
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
ping_pong_cnt++;
}
request_rw->WritesDone(tag(0));
response_rw.Finish(Status::OK, tag(1));
Status recv_status;
request_rw->Finish(&recv_status, tag(2));
need_tags = (1 << 0) | (1 << 1) | (1 << 2);
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
GPR_ASSERT(recv_status.ok());
}
}
fixture->Finish(state);
fixture.reset();
state.SetBytesProcessed(msg_size * state.iterations() * max_ping_pongs * 2);
}
// Repeatedly sends ping pong messages in a single streaming Bidi call in a loop
// First parmeter (i.e state.range(0)): Message size (in bytes) to use
template <class Fixture, class ClientContextMutator, class ServerContextMutator>
static void BM_StreamingPingPongMsgs(benchmark::State& state) {
const int msg_size = state.range(0);
EchoTestService::AsyncService service;
std::unique_ptr<Fixture> fixture(new Fixture(&service));
{
EchoResponse send_response;
EchoResponse recv_response;
EchoRequest send_request;
EchoRequest recv_request;
if (msg_size > 0) {
send_request.set_message(std::string(msg_size, 'a'));
send_response.set_message(std::string(msg_size, 'b'));
}
std::unique_ptr<EchoTestService::Stub> stub(
EchoTestService::NewStub(fixture->channel()));
ServerContext svr_ctx;
ServerContextMutator svr_ctx_mut(&svr_ctx);
ServerAsyncReaderWriter<EchoResponse, EchoRequest> response_rw(&svr_ctx);
service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(),
fixture->cq(), tag(0));
ClientContext cli_ctx;
ClientContextMutator cli_ctx_mut(&cli_ctx);
auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1));
// Establish async stream between client side and server side
void* t;
bool ok;
int need_tags = (1 << 0) | (1 << 1);
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
GPR_ASSERT(ok);
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
while (state.KeepRunning()) {
GPR_TIMER_SCOPE("BenchmarkCycle", 0);
request_rw->Write(send_request, tag(0)); // Start client send
response_rw.Read(&recv_request, tag(1)); // Start server recv
request_rw->Read(&recv_response, tag(2)); // Start client recv
need_tags = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3);
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
GPR_ASSERT(ok);
int i = (int)(intptr_t)t;
// If server recv is complete, start the server send operation
if (i == 1) {
response_rw.Write(send_response, tag(3));
}
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
}
request_rw->WritesDone(tag(0));
response_rw.Finish(Status::OK, tag(1));
Status recv_status;
request_rw->Finish(&recv_status, tag(2));
need_tags = (1 << 0) | (1 << 1) | (1 << 2);
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
GPR_ASSERT(recv_status.ok());
}
fixture->Finish(state);
fixture.reset();
state.SetBytesProcessed(msg_size * state.iterations() * 2);
}
// Repeatedly makes Streaming Bidi calls (exchanging a configurable number of
// messages in each call) in a loop on a single channel. Different from
// BM_StreamingPingPong we are using stream coalescing api, e.g. WriteLast,
// WriteAndFinish, set_initial_metadata_corked. These apis aim at saving
// sendmsg syscalls for streaming by coalescing 1. initial metadata with first
// message; 2. final streaming message with trailing metadata.
//
// First parmeter (i.e state.range(0)): Message size (in bytes) to use
// Second parameter (i.e state.range(1)): Number of ping pong messages.
// Note: One ping-pong means two messages (one from client to server and
// the other from server to client):
// Third parameter (i.e state.range(2)): Switch between using WriteAndFinish
// API and WriteLast API for server.
template <class Fixture, class ClientContextMutator, class ServerContextMutator>
static void BM_StreamingPingPongWithCoalescingApi(benchmark::State& state) {
const int msg_size = state.range(0);
const int max_ping_pongs = state.range(1);
// This options is used to test out server API: WriteLast and WriteAndFinish
// respectively, since we can not use both of them on server side at the same
// time. Value 1 means we are testing out the WriteAndFinish API, and
// otherwise we are testing out the WriteLast API.
const int write_and_finish = state.range(2);
EchoTestService::AsyncService service;
std::unique_ptr<Fixture> fixture(new Fixture(&service));
{
EchoResponse send_response;
EchoResponse recv_response;
EchoRequest send_request;
EchoRequest recv_request;
if (msg_size > 0) {
send_request.set_message(std::string(msg_size, 'a'));
send_response.set_message(std::string(msg_size, 'b'));
}
std::unique_ptr<EchoTestService::Stub> stub(
EchoTestService::NewStub(fixture->channel()));
while (state.KeepRunning()) {
ServerContext svr_ctx;
ServerContextMutator svr_ctx_mut(&svr_ctx);
ServerAsyncReaderWriter<EchoResponse, EchoRequest> response_rw(&svr_ctx);
service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(),
fixture->cq(), tag(0));
ClientContext cli_ctx;
ClientContextMutator cli_ctx_mut(&cli_ctx);
cli_ctx.set_initial_metadata_corked(true);
// tag:1 here will never comes up, since we are not performing any op due
// to initial metadata coalescing.
auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1));
void* t;
bool ok;
int need_tags;
// Send 'max_ping_pongs' number of ping pong messages
int ping_pong_cnt = 0;
while (ping_pong_cnt < max_ping_pongs) {
if (ping_pong_cnt == max_ping_pongs - 1) {
request_rw->WriteLast(send_request, WriteOptions(), tag(2));
} else {
request_rw->Write(send_request, tag(2)); // Start client send
}
need_tags = (1 << 2) | (1 << 3) | (1 << 4) | (1 << 5);
if (ping_pong_cnt == 0) {
// wait for the server call structure (call_hook, etc.) to be
// initialized (async stream between client side and server side
// established). It is necessary when client init metadata is
// coalesced
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
while ((int)(intptr_t)t != 0) {
// In some cases tag:2 comes before tag:0 (write tag comes out
// first), this while loop is to make sure get tag:0.
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
}
}
response_rw.Read(&recv_request, tag(3)); // Start server recv
request_rw->Read(&recv_response, tag(4)); // Start client recv
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
GPR_ASSERT(ok);
int i = (int)(intptr_t)t;
// If server recv is complete, start the server send operation
if (i == 3) {
if (ping_pong_cnt == max_ping_pongs - 1) {
if (write_and_finish == 1) {
response_rw.WriteAndFinish(send_response, WriteOptions(),
Status::OK, tag(5));
} else {
response_rw.WriteLast(send_response, WriteOptions(), tag(5));
// WriteLast buffers the write, so neither server write op nor
// client read op will finish inside the while loop.
need_tags &= ~(1 << 4);
need_tags &= ~(1 << 5);
}
} else {
response_rw.Write(send_response, tag(5));
}
}
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
ping_pong_cnt++;
}
if (max_ping_pongs == 0) {
need_tags = (1 << 6) | (1 << 7) | (1 << 8);
} else {
if (write_and_finish == 1) {
need_tags = (1 << 8);
} else {
// server's buffered write and the client's read of the buffered write
// tags should come up.
need_tags = (1 << 4) | (1 << 5) | (1 << 7) | (1 << 8);
}
}
// No message write or initial metadata write happened yet.
if (max_ping_pongs == 0) {
request_rw->WritesDone(tag(6));
// wait for server call data structure(call_hook, etc.) to be
// initialized, since initial metadata is corked.
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
while ((int)(intptr_t)t != 0) {
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
}
response_rw.Finish(Status::OK, tag(7));
} else {
if (write_and_finish != 1) {
response_rw.Finish(Status::OK, tag(7));
}
}
Status recv_status;
request_rw->Finish(&recv_status, tag(8));
while (need_tags) {
GPR_ASSERT(fixture->cq()->Next(&t, &ok));
int i = (int)(intptr_t)t;
GPR_ASSERT(need_tags & (1 << i));
need_tags &= ~(1 << i);
}
GPR_ASSERT(recv_status.ok());
}
}
fixture->Finish(state);
fixture.reset();
state.SetBytesProcessed(msg_size * state.iterations() * max_ping_pongs * 2);
}
} // namespace testing
} // namespace grpc
#endif // TEST_CPP_MICROBENCHMARKS_FULLSTACK_STREAMING_PING_PONG_H