|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
# Copyright 2022 The gRPC Authors
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
# A script to fetch total cpu seconds and memory data from prometheus.
|
|
|
|
# example usage: python3 prometheus.py
|
|
|
|
# --url=http://prometheus.prometheus.svc.cluster.local:9090
|
|
|
|
# --pod_type=driver --pod_type=clients --container_name=main
|
|
|
|
# --container_name=sidecar
|
|
|
|
"""Perform Prometheus range queries to obtain cpu and memory data.
|
|
|
|
|
|
|
|
This module performs range queries through Prometheus API to obtain
|
|
|
|
total cpu seconds and memory during a test run for given container
|
|
|
|
in given pods. The cpu data obtained is total cpu second used within
|
|
|
|
given period of time. The memory data was instant memory usage at
|
|
|
|
the query time.
|
|
|
|
"""
|
|
|
|
import argparse
|
|
|
|
import json
|
|
|
|
import logging
|
|
|
|
import statistics
|
|
|
|
import time
|
|
|
|
from typing import Any, Dict, List
|
|
|
|
|
|
|
|
from dateutil import parser
|
|
|
|
import requests
|
|
|
|
|
|
|
|
|
|
|
|
class Prometheus:
|
|
|
|
"""Objects which holds the start time, end time and query URL."""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
url: str,
|
|
|
|
start: str,
|
|
|
|
end: str,
|
|
|
|
):
|
|
|
|
self.url = url
|
|
|
|
self.start = start
|
|
|
|
self.end = end
|
|
|
|
|
|
|
|
def _fetch_by_query(self, query: str) -> Dict[str, Any]:
|
|
|
|
"""Fetches the given query with time range.
|
|
|
|
|
|
|
|
Fetch the given query within a time range. The pulling
|
|
|
|
interval is every 5s, the actual data from the query is
|
|
|
|
a time series.
|
|
|
|
"""
|
|
|
|
resp = requests.get(
|
|
|
|
self.url + '/api/v1/query_range',
|
|
|
|
{
|
|
|
|
'query': query,
|
|
|
|
'start': self.start,
|
|
|
|
'end': self.end,
|
|
|
|
'step': 5
|
|
|
|
},
|
|
|
|
)
|
|
|
|
resp.raise_for_status()
|
|
|
|
return resp.json()
|
|
|
|
|
|
|
|
def _fetch_cpu_for_pod(self, container_matcher: str,
|
|
|
|
pod_name: str) -> Dict[str, List[float]]:
|
|
|
|
"""Fetches the cpu data for each pod.
|
|
|
|
|
|
|
|
Fetch total cpu seconds during the time range specified in the Prometheus instance
|
|
|
|
for a pod. After obtain the cpu seconds, the data are trimmed from time series to
|
|
|
|
a data list and saved in the Dict that keyed by the container names.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
container_matcher: A string consist one or more container name separated by |.
|
|
|
|
"""
|
|
|
|
query = (
|
|
|
|
'container_cpu_usage_seconds_total{job="kubernetes-cadvisor",pod="'
|
|
|
|
+ pod_name + '",container=' + container_matcher + '}')
|
|
|
|
logging.debug('running prometheus query for cpu: %s', query)
|
|
|
|
cpu_data = self._fetch_by_query(query)
|
|
|
|
logging.debug('raw cpu data: %s', str(cpu_data))
|
|
|
|
cpu_container_name_to_data_list = get_data_list_from_timeseries(
|
|
|
|
cpu_data)
|
|
|
|
return cpu_container_name_to_data_list
|
|
|
|
|
|
|
|
def _fetch_memory_for_pod(self, container_matcher: str,
|
|
|
|
pod_name: str) -> Dict[str, List[float]]:
|
|
|
|
"""Fetches memory data for each pod.
|
|
|
|
|
|
|
|
Fetch total memory data during the time range specified in the Prometheus instance
|
|
|
|
for a pod. After obtain the memory data, the data are trimmed from time series to
|
|
|
|
a data list and saved in the Dict that keyed by the container names.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
container_matcher: A string consist one or more container name separated by |.
|
|
|
|
"""
|
|
|
|
query = (
|
|
|
|
'container_memory_usage_bytes{job="kubernetes-cadvisor",pod="' +
|
|
|
|
pod_name + '",container=' + container_matcher + "}")
|
|
|
|
|
|
|
|
logging.debug('running prometheus query for memory: %s', query)
|
|
|
|
memory_data = self._fetch_by_query(query)
|
|
|
|
|
|
|
|
logging.debug('raw memory data: %s', str(memory_data))
|
|
|
|
memory_container_name_to_data_list = get_data_list_from_timeseries(
|
|
|
|
memory_data)
|
|
|
|
|
|
|
|
return memory_container_name_to_data_list
|
|
|
|
|
|
|
|
def fetch_cpu_and_memory_data(
|
|
|
|
self, container_list: List[str],
|
|
|
|
pod_dict: Dict[str, List[str]]) -> Dict[str, Any]:
|
|
|
|
"""Fetch total cpu seconds and memory data for multiple pods.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
container_list: A list of container names to fetch the data for.
|
|
|
|
pod_dict: the pods to fetch data for, the pod_dict is keyed by
|
|
|
|
role of the pod: clients, driver and servers. The values
|
|
|
|
for the pod_dict are the list of pod names that consist
|
|
|
|
the same role specified in the key.
|
|
|
|
"""
|
|
|
|
container_matcher = construct_container_matcher(container_list)
|
|
|
|
processed_data = {}
|
|
|
|
for role, pod_names in pod_dict.items():
|
|
|
|
pod_data = {}
|
|
|
|
for pod in pod_names:
|
|
|
|
container_data = {}
|
|
|
|
for container, data in self._fetch_cpu_for_pod(
|
|
|
|
container_matcher, pod).items():
|
|
|
|
container_data[container] = {}
|
|
|
|
container_data[container][
|
|
|
|
'cpuSeconds'] = compute_total_cpu_seconds(data)
|
|
|
|
|
|
|
|
for container, data in self._fetch_memory_for_pod(
|
|
|
|
container_matcher, pod).items():
|
|
|
|
container_data[container][
|
|
|
|
'memoryMean'] = compute_average_memory_usage(data)
|
|
|
|
|
|
|
|
pod_data[pod] = container_data
|
|
|
|
processed_data[role] = pod_data
|
|
|
|
return processed_data
|
|
|
|
|
|
|
|
|
|
|
|
def construct_container_matcher(container_list: List[str]) -> str:
|
|
|
|
"""Constructs the container matching string used in the
|
|
|
|
prometheus query."""
|
|
|
|
if len(container_list) == 0:
|
|
|
|
raise Exception('no container name provided')
|
|
|
|
|
|
|
|
containers_to_fetch = '"'
|
|
|
|
if len(container_list) == 1:
|
|
|
|
containers_to_fetch = container_list[0]
|
|
|
|
else:
|
|
|
|
containers_to_fetch = '~"' + container_list[0]
|
|
|
|
for container in container_list[1:]:
|
|
|
|
containers_to_fetch = containers_to_fetch + '|' + container
|
|
|
|
containers_to_fetch = containers_to_fetch + '"'
|
|
|
|
return containers_to_fetch
|
|
|
|
|
|
|
|
|
|
|
|
def get_data_list_from_timeseries(data: Any) -> Dict[str, List[float]]:
|
|
|
|
"""Constructs a Dict as keys are the container names and
|
|
|
|
values are a list of data taken from given timeseries data."""
|
|
|
|
if data['status'] != 'success':
|
|
|
|
raise Exception('command failed: ' + data['status'] + str(data))
|
|
|
|
if data['data']['resultType'] != 'matrix':
|
|
|
|
raise Exception('resultType is not matrix: ' +
|
|
|
|
data['data']['resultType'])
|
|
|
|
|
|
|
|
container_name_to_data_list = {}
|
|
|
|
for res in data["data"]["result"]:
|
|
|
|
container_name = res["metric"]["container"]
|
|
|
|
container_data_timeseries = res["values"]
|
|
|
|
|
|
|
|
container_data = []
|
|
|
|
for d in container_data_timeseries:
|
|
|
|
container_data.append(float(d[1]))
|
|
|
|
container_name_to_data_list[container_name] = container_data
|
|
|
|
return container_name_to_data_list
|
|
|
|
|
|
|
|
|
|
|
|
def compute_total_cpu_seconds(cpu_data_list: List[float]) -> float:
|
|
|
|
"""Computes the total cpu seconds by CPUs[end]-CPUs[start]."""
|
|
|
|
return cpu_data_list[len(cpu_data_list) - 1] - cpu_data_list[0]
|
|
|
|
|
|
|
|
|
|
|
|
def compute_average_memory_usage(memory_data_list: List[float]) -> float:
|
|
|
|
"""Computes the mean and for a given list of data."""
|
|
|
|
return statistics.mean(memory_data_list)
|
|
|
|
|
|
|
|
|
|
|
|
def construct_pod_dict(node_info_file: str,
|
|
|
|
pod_types: List[str]) -> Dict[str, List[str]]:
|
|
|
|
"""Constructs a dict of pod names to be queried.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
node_info_file: The file path contains the pod names to query.
|
|
|
|
The pods' names are put into a Dict of list that keyed by the
|
|
|
|
role name: clients, servers and driver.
|
|
|
|
"""
|
|
|
|
with open(node_info_file, 'r') as f:
|
|
|
|
pod_names = json.load(f)
|
|
|
|
pod_type_to_name = {'clients': [], 'driver': [], 'servers': []}
|
|
|
|
|
|
|
|
for client in pod_names['Clients']:
|
|
|
|
pod_type_to_name['clients'].append(client['Name'])
|
|
|
|
for server in pod_names['Servers']:
|
|
|
|
pod_type_to_name['servers'].append(server['Name'])
|
|
|
|
|
|
|
|
pod_type_to_name["driver"].append(pod_names['Driver']['Name'])
|
|
|
|
|
|
|
|
pod_names_to_query = {}
|
|
|
|
for pod_type in pod_types:
|
|
|
|
pod_names_to_query[pod_type] = pod_type_to_name[pod_type]
|
|
|
|
return pod_names_to_query
|
|
|
|
|
|
|
|
|
|
|
|
def convert_UTC_to_epoch(utc_timestamp: str) -> str:
|
|
|
|
"""Converts a utc timestamp string to epoch time string."""
|
|
|
|
parsed_time = parser.parse(utc_timestamp)
|
|
|
|
epoch = parsed_time.strftime('%s')
|
|
|
|
return epoch
|
|
|
|
|
|
|
|
|
|
|
|
def main() -> None:
|
|
|
|
argp = argparse.ArgumentParser(
|
|
|
|
description='Fetch cpu and memory stats from prometheus')
|
|
|
|
argp.add_argument('--url', help='Prometheus base url', required=True)
|
|
|
|
argp.add_argument(
|
|
|
|
'--scenario_result_file',
|
|
|
|
default='scenario_result.json',
|
|
|
|
type=str,
|
|
|
|
help='File contains epoch seconds for start and end time',
|
|
|
|
)
|
|
|
|
argp.add_argument(
|
|
|
|
'--node_info_file',
|
|
|
|
default='/var/data/qps_workers/node_info.json',
|
|
|
|
help='File contains pod name to query the metrics for',
|
|
|
|
)
|
|
|
|
argp.add_argument(
|
|
|
|
'--pod_type',
|
|
|
|
action='append',
|
|
|
|
help=
|
|
|
|
'Pod type to query the metrics for, the options are driver, client and server',
|
|
|
|
choices=['driver', 'clients', 'servers'],
|
|
|
|
required=True,
|
|
|
|
)
|
|
|
|
argp.add_argument(
|
|
|
|
'--container_name',
|
|
|
|
action='append',
|
|
|
|
help='The container names to query the metrics for',
|
|
|
|
required=True,
|
|
|
|
)
|
|
|
|
argp.add_argument(
|
|
|
|
'--export_file_name',
|
|
|
|
default='prometheus_query_result.json',
|
|
|
|
type=str,
|
|
|
|
help='Name of exported JSON file.',
|
|
|
|
)
|
|
|
|
argp.add_argument(
|
|
|
|
'--quiet',
|
|
|
|
default=False,
|
|
|
|
help='Suppress informative output',
|
|
|
|
)
|
|
|
|
argp.add_argument(
|
|
|
|
'--delay_seconds',
|
|
|
|
default=0,
|
|
|
|
type=int,
|
|
|
|
help=
|
|
|
|
'Configure delay in seconds to perform Prometheus queries, default is 0',
|
|
|
|
)
|
|
|
|
args = argp.parse_args()
|
|
|
|
|
|
|
|
if not args.quiet:
|
|
|
|
logging.getLogger().setLevel(logging.DEBUG)
|
|
|
|
|
|
|
|
with open(args.scenario_result_file, 'r') as q:
|
|
|
|
scenario_result = json.load(q)
|
|
|
|
start_time = convert_UTC_to_epoch(
|
|
|
|
scenario_result['summary']['startTime'])
|
|
|
|
end_time = convert_UTC_to_epoch(scenario_result['summary']['endTime'])
|
|
|
|
p = Prometheus(
|
|
|
|
url=args.url,
|
|
|
|
start=start_time,
|
|
|
|
end=end_time,
|
|
|
|
)
|
|
|
|
|
|
|
|
time.sleep(args.delay_seconds)
|
|
|
|
|
|
|
|
pod_dict = construct_pod_dict(args.node_info_file, args.pod_type)
|
|
|
|
processed_data = p.fetch_cpu_and_memory_data(
|
|
|
|
container_list=args.container_name, pod_dict=pod_dict)
|
|
|
|
processed_data['testDurationSeconds'] = float(end_time) - float(start_time)
|
|
|
|
|
|
|
|
logging.debug(json.dumps(processed_data, sort_keys=True, indent=4))
|
|
|
|
|
|
|
|
with open(args.export_file_name, 'w', encoding='utf8') as export_file:
|
|
|
|
json.dump(processed_data, export_file, sort_keys=True, indent=4)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|