|
|
|
#!/usr/bin/env python
|
|
|
|
# Copyright 2015, Google Inc.
|
|
|
|
# All rights reserved.
|
|
|
|
#
|
|
|
|
# Redistribution and use in source and binary forms, with or without
|
|
|
|
# modification, are permitted provided that the following conditions are
|
|
|
|
# met:
|
|
|
|
#
|
|
|
|
# * Redistributions of source code must retain the above copyright
|
|
|
|
# notice, this list of conditions and the following disclaimer.
|
|
|
|
# * Redistributions in binary form must reproduce the above
|
|
|
|
# copyright notice, this list of conditions and the following disclaimer
|
|
|
|
# in the documentation and/or other materials provided with the
|
|
|
|
# distribution.
|
|
|
|
# * Neither the name of Google Inc. nor the names of its
|
|
|
|
# contributors may be used to endorse or promote products derived from
|
|
|
|
# this software without specific prior written permission.
|
|
|
|
#
|
|
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
"""
|
|
|
|
Read GRPC basic profiles, analyze the data.
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
bins/basicprof/qps_smoke_test > log
|
|
|
|
cat log | tools/profile_analyzer/profile_analyzer.py
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
import collections
|
|
|
|
import itertools
|
|
|
|
import math
|
|
|
|
import re
|
|
|
|
import sys
|
|
|
|
|
|
|
|
# Create a regex to parse output of the C core basic profiler,
|
|
|
|
# as defined in src/core/profiling/basic_timers.c.
|
|
|
|
_RE_LINE = re.compile(r'GRPC_LAT_PROF ' +
|
|
|
|
r'([0-9]+\.[0-9]+) 0x([0-9a-f]+) ([{}.!]) ([0-9]+) ' +
|
|
|
|
r'([^ ]+) ([^ ]+) ([0-9]+)')
|
|
|
|
|
|
|
|
Entry = collections.namedtuple(
|
|
|
|
'Entry',
|
|
|
|
['time', 'thread', 'type', 'tag', 'id', 'file', 'line'])
|
|
|
|
|
|
|
|
|
|
|
|
class ImportantMark(object):
|
|
|
|
def __init__(self, entry, stack):
|
|
|
|
self._entry = entry
|
|
|
|
self._pre_stack = stack
|
|
|
|
self._post_stack = list()
|
|
|
|
self._n = len(stack) # we'll also compute times to that many closing }s
|
|
|
|
|
|
|
|
@property
|
|
|
|
def entry(self):
|
|
|
|
return self._entry
|
|
|
|
|
|
|
|
def append_post_entry(self, entry):
|
|
|
|
if self._n > 0:
|
|
|
|
self._post_stack.append(entry)
|
|
|
|
self._n -= 1
|
|
|
|
|
|
|
|
def get_deltas(self):
|
|
|
|
pre_and_post_stacks = itertools.chain(self._pre_stack, self._post_stack)
|
|
|
|
return collections.OrderedDict((stack_entry,
|
|
|
|
abs(self._entry.time - stack_entry.time))
|
|
|
|
for stack_entry in pre_and_post_stacks)
|
|
|
|
|
|
|
|
|
|
|
|
def print_grouped_imark_statistics(group_key, imarks_group):
|
|
|
|
values = collections.OrderedDict()
|
|
|
|
for imark in imarks_group:
|
|
|
|
deltas = imark.get_deltas()
|
|
|
|
for relative_entry, time_delta_us in deltas.iteritems():
|
|
|
|
key = '{tag} {type} ({file}:{line})'.format(**relative_entry._asdict())
|
|
|
|
l = values.setdefault(key, list())
|
|
|
|
l.append(time_delta_us)
|
|
|
|
|
|
|
|
print group_key
|
|
|
|
print '{:>40s}: {:>15s} {:>15s} {:>15s} {:>15s}'.format(
|
|
|
|
'Relative mark', '50th p.', '90th p.', '95th p.', '99th p.')
|
|
|
|
for key, time_values in values.iteritems():
|
|
|
|
time_values = sorted(time_values)
|
|
|
|
print '{:>40s}: {:>15.3f} {:>15.3f} {:>15.3f} {:>15.3f}'.format(
|
|
|
|
key, percentile(time_values, 50), percentile(time_values, 90),
|
|
|
|
percentile(time_values, 95), percentile(time_values, 99))
|
|
|
|
print
|
|
|
|
|
|
|
|
|
|
|
|
def entries():
|
|
|
|
for line in sys.stdin:
|
|
|
|
m = _RE_LINE.match(line)
|
|
|
|
if not m: continue
|
|
|
|
yield Entry(time=float(m.group(1)),
|
|
|
|
thread=m.group(2),
|
|
|
|
type=m.group(3),
|
|
|
|
tag=int(m.group(4)),
|
|
|
|
id=m.group(5),
|
|
|
|
file=m.group(6),
|
|
|
|
line=m.group(7))
|
|
|
|
|
|
|
|
threads = collections.defaultdict(lambda: collections.defaultdict(list))
|
|
|
|
times = collections.defaultdict(list)
|
|
|
|
important_marks = collections.defaultdict(list)
|
|
|
|
|
|
|
|
for entry in entries():
|
|
|
|
thread = threads[entry.thread]
|
|
|
|
if entry.type == '{':
|
|
|
|
thread[entry.tag].append(entry)
|
|
|
|
if entry.type == '!':
|
|
|
|
# Save a snapshot of the current stack inside a new ImportantMark instance.
|
|
|
|
# Get all entries with type '{' from "thread".
|
|
|
|
stack = [e for entries_for_tag in thread.values()
|
|
|
|
for e in entries_for_tag if e.type == '{']
|
|
|
|
imark_group_key = '{tag}@{file}:{line}'.format(**entry._asdict())
|
|
|
|
important_marks[imark_group_key].append(ImportantMark(entry, stack))
|
|
|
|
elif entry.type == '}':
|
|
|
|
last = thread[entry.tag].pop()
|
|
|
|
times[entry.tag].append(entry.time - last.time)
|
|
|
|
# Update accounting for important marks.
|
|
|
|
for imarks_group in important_marks.itervalues():
|
|
|
|
for imark in imarks_group:
|
|
|
|
imark.append_post_entry(entry)
|
|
|
|
|
|
|
|
def percentile(vals, percent):
|
|
|
|
""" Calculates the interpolated percentile given a sorted sequence and a
|
|
|
|
percent (in the usual 0-100 range)."""
|
|
|
|
assert vals, "Empty input sequence."
|
|
|
|
percent /= 100.0
|
|
|
|
k = (len(vals)-1) * percent
|
|
|
|
f = math.floor(k)
|
|
|
|
c = math.ceil(k)
|
|
|
|
if f == c:
|
|
|
|
return vals[int(k)]
|
|
|
|
# else, interpolate
|
|
|
|
d0 = vals[int(f)] * (c-k)
|
|
|
|
d1 = vals[int(c)] * (k-f)
|
|
|
|
return d0 + d1
|
|
|
|
|
|
|
|
print 'tag 50%/90%/95%/99% us'
|
|
|
|
for tag in sorted(times.keys()):
|
|
|
|
vals = sorted(times[tag])
|
|
|
|
print '%d %.2f/%.2f/%.2f/%.2f' % (tag,
|
|
|
|
percentile(vals, 50),
|
|
|
|
percentile(vals, 90),
|
|
|
|
percentile(vals, 95),
|
|
|
|
percentile(vals, 99))
|
|
|
|
|
|
|
|
print
|
|
|
|
print 'Important marks:'
|
|
|
|
print '================'
|
|
|
|
for group_key, imarks_group in important_marks.iteritems():
|
|
|
|
print_grouped_imark_statistics(group_key, imarks_group)
|