|
|
|
//
|
|
|
|
//
|
|
|
|
// Copyright 2015 gRPC authors.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
|
|
|
|
// Test of gpr synchronization support.
|
|
|
|
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
|
|
|
|
#include <grpc/support/alloc.h>
|
|
|
|
#include <grpc/support/sync.h>
|
|
|
|
#include <grpc/support/time.h>
|
|
|
|
|
|
|
|
#include "src/core/lib/gprpp/thd.h"
|
|
|
|
#include "test/core/util/test_config.h"
|
|
|
|
|
|
|
|
// ==================Example use of interface===================
|
|
|
|
|
|
|
|
// A producer-consumer queue of up to N integers,
|
|
|
|
// illustrating the use of the calls in this interface.
|
|
|
|
|
|
|
|
#define N 4
|
|
|
|
|
|
|
|
typedef struct queue {
|
|
|
|
gpr_cv non_empty; // Signalled when length becomes non-zero.
|
|
|
|
gpr_cv non_full; // Signalled when length becomes non-N.
|
|
|
|
gpr_mu mu; // Protects all fields below.
|
|
|
|
// (That is, except during initialization or
|
|
|
|
// destruction, the fields below should be accessed
|
|
|
|
// only by a thread that holds mu.)
|
|
|
|
int head; // Index of head of queue 0..N-1.
|
|
|
|
int length; // Number of valid elements in queue 0..N.
|
|
|
|
int elem[N]; // elem[head .. head+length-1] are queue elements.
|
|
|
|
} queue;
|
|
|
|
|
|
|
|
// Initialize *q.
|
|
|
|
void queue_init(queue* q) {
|
|
|
|
gpr_mu_init(&q->mu);
|
|
|
|
gpr_cv_init(&q->non_empty);
|
|
|
|
gpr_cv_init(&q->non_full);
|
|
|
|
q->head = 0;
|
|
|
|
q->length = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Free storage associated with *q.
|
|
|
|
void queue_destroy(queue* q) {
|
|
|
|
gpr_mu_destroy(&q->mu);
|
|
|
|
gpr_cv_destroy(&q->non_empty);
|
|
|
|
gpr_cv_destroy(&q->non_full);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wait until there is room in *q, then append x to *q.
|
|
|
|
void queue_append(queue* q, int x) {
|
|
|
|
gpr_mu_lock(&q->mu);
|
|
|
|
// To wait for a predicate without a deadline, loop on the negation of the
|
|
|
|
// predicate, and use gpr_cv_wait(..., gpr_inf_future(GPR_CLOCK_REALTIME))
|
|
|
|
// inside the loop
|
|
|
|
// to release the lock, wait, and reacquire on each iteration. Code that
|
|
|
|
// makes the condition true should use gpr_cv_broadcast() on the
|
|
|
|
// corresponding condition variable. The predicate must be on state
|
|
|
|
// protected by the lock.
|
|
|
|
while (q->length == N) {
|
|
|
|
gpr_cv_wait(&q->non_full, &q->mu, gpr_inf_future(GPR_CLOCK_MONOTONIC));
|
|
|
|
}
|
|
|
|
if (q->length == 0) { // Wake threads blocked in queue_remove().
|
|
|
|
// It's normal to use gpr_cv_broadcast() or gpr_signal() while
|
|
|
|
// holding the lock.
|
|
|
|
gpr_cv_broadcast(&q->non_empty);
|
|
|
|
}
|
|
|
|
q->elem[(q->head + q->length) % N] = x;
|
|
|
|
q->length++;
|
|
|
|
gpr_mu_unlock(&q->mu);
|
|
|
|
}
|
|
|
|
|
|
|
|
// If it can be done without blocking, append x to *q and return non-zero.
|
|
|
|
// Otherwise return 0.
|
|
|
|
int queue_try_append(queue* q, int x) {
|
|
|
|
int result = 0;
|
|
|
|
if (gpr_mu_trylock(&q->mu)) {
|
|
|
|
if (q->length != N) {
|
|
|
|
if (q->length == 0) { // Wake threads blocked in queue_remove().
|
|
|
|
gpr_cv_broadcast(&q->non_empty);
|
|
|
|
}
|
|
|
|
q->elem[(q->head + q->length) % N] = x;
|
|
|
|
q->length++;
|
|
|
|
result = 1;
|
|
|
|
}
|
|
|
|
gpr_mu_unlock(&q->mu);
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wait until the *q is non-empty or deadline abs_deadline passes. If the
|
|
|
|
// queue is non-empty, remove its head entry, place it in *head, and return
|
|
|
|
// non-zero. Otherwise return 0.
|
|
|
|
int queue_remove(queue* q, int* head, gpr_timespec abs_deadline) {
|
|
|
|
int result = 0;
|
|
|
|
gpr_mu_lock(&q->mu);
|
|
|
|
// To wait for a predicate with a deadline, loop on the negation of the
|
|
|
|
// predicate or until gpr_cv_wait() returns true. Code that makes
|
|
|
|
// the condition true should use gpr_cv_broadcast() on the corresponding
|
|
|
|
// condition variable. The predicate must be on state protected by the
|
|
|
|
// lock.
|
|
|
|
while (q->length == 0 && !gpr_cv_wait(&q->non_empty, &q->mu, abs_deadline)) {
|
|
|
|
}
|
|
|
|
if (q->length != 0) { // Queue is non-empty.
|
|
|
|
result = 1;
|
|
|
|
if (q->length == N) { // Wake threads blocked in queue_append().
|
|
|
|
gpr_cv_broadcast(&q->non_full);
|
|
|
|
}
|
|
|
|
*head = q->elem[q->head];
|
|
|
|
q->head = (q->head + 1) % N;
|
|
|
|
q->length--;
|
|
|
|
} // else deadline exceeded
|
|
|
|
gpr_mu_unlock(&q->mu);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
// -------------------------------------------------
|
|
|
|
// Tests for gpr_mu and gpr_cv, and the queue example.
|
|
|
|
struct test {
|
|
|
|
int nthreads; // number of threads
|
|
|
|
grpc_core::Thread* threads;
|
|
|
|
|
|
|
|
int64_t iterations; // number of iterations per thread
|
|
|
|
int64_t counter;
|
|
|
|
int thread_count; // used to allocate thread ids
|
|
|
|
int done; // threads not yet completed
|
|
|
|
int incr_step; // how much to increment/decrement refcount each time
|
|
|
|
|
|
|
|
gpr_mu mu; // protects iterations, counter, thread_count, done
|
|
|
|
|
|
|
|
gpr_cv cv; // signalling depends on test
|
|
|
|
|
|
|
|
gpr_cv done_cv; // signalled when done == 0
|
|
|
|
|
|
|
|
queue q;
|
|
|
|
|
|
|
|
gpr_stats_counter stats_counter;
|
|
|
|
|
|
|
|
gpr_refcount refcount;
|
|
|
|
gpr_refcount thread_refcount;
|
|
|
|
gpr_event event;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Return pointer to a new struct test.
|
|
|
|
static struct test* test_new(int nthreads, int64_t iterations, int incr_step) {
|
|
|
|
struct test* m = static_cast<struct test*>(gpr_malloc(sizeof(*m)));
|
|
|
|
m->nthreads = nthreads;
|
|
|
|
m->threads = static_cast<grpc_core::Thread*>(
|
|
|
|
gpr_malloc(sizeof(*m->threads) * nthreads));
|
|
|
|
m->iterations = iterations;
|
|
|
|
m->counter = 0;
|
|
|
|
m->thread_count = 0;
|
|
|
|
m->done = nthreads;
|
|
|
|
m->incr_step = incr_step;
|
|
|
|
gpr_mu_init(&m->mu);
|
|
|
|
gpr_cv_init(&m->cv);
|
|
|
|
gpr_cv_init(&m->done_cv);
|
|
|
|
queue_init(&m->q);
|
|
|
|
gpr_stats_init(&m->stats_counter, 0);
|
|
|
|
gpr_ref_init(&m->refcount, 0);
|
|
|
|
gpr_ref_init(&m->thread_refcount, nthreads);
|
|
|
|
gpr_event_init(&m->event);
|
|
|
|
return m;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return pointer to a new struct test.
|
|
|
|
static void test_destroy(struct test* m) {
|
|
|
|
gpr_mu_destroy(&m->mu);
|
|
|
|
gpr_cv_destroy(&m->cv);
|
|
|
|
gpr_cv_destroy(&m->done_cv);
|
|
|
|
queue_destroy(&m->q);
|
|
|
|
gpr_free(m->threads);
|
|
|
|
gpr_free(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create m->nthreads threads, each running (*body)(m)
|
|
|
|
static void test_create_threads(struct test* m, void (*body)(void* arg)) {
|
|
|
|
int i;
|
|
|
|
for (i = 0; i != m->nthreads; i++) {
|
|
|
|
m->threads[i] = grpc_core::Thread("grpc_create_threads", body, m);
|
|
|
|
m->threads[i].Start();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wait until all threads report done.
|
|
|
|
static void test_wait(struct test* m) {
|
|
|
|
gpr_mu_lock(&m->mu);
|
|
|
|
while (m->done != 0) {
|
|
|
|
gpr_cv_wait(&m->done_cv, &m->mu, gpr_inf_future(GPR_CLOCK_MONOTONIC));
|
|
|
|
}
|
|
|
|
gpr_mu_unlock(&m->mu);
|
|
|
|
for (int i = 0; i != m->nthreads; i++) {
|
|
|
|
m->threads[i].Join();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get an integer thread id in the raneg 0..nthreads-1
|
|
|
|
static int thread_id(struct test* m) {
|
|
|
|
int id;
|
|
|
|
gpr_mu_lock(&m->mu);
|
|
|
|
id = m->thread_count++;
|
|
|
|
gpr_mu_unlock(&m->mu);
|
|
|
|
return id;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Indicate that a thread is done, by decrementing m->done
|
|
|
|
// and signalling done_cv if m->done==0.
|
|
|
|
static void mark_thread_done(struct test* m) {
|
|
|
|
gpr_mu_lock(&m->mu);
|
|
|
|
ASSERT_NE(m->done, 0);
|
|
|
|
m->done--;
|
|
|
|
if (m->done == 0) {
|
|
|
|
gpr_cv_signal(&m->done_cv);
|
|
|
|
}
|
|
|
|
gpr_mu_unlock(&m->mu);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test several threads running (*body)(struct test *m) for increasing settings
|
|
|
|
// of m->iterations, until about timeout_s to 2*timeout_s seconds have elapsed.
|
|
|
|
// If extra!=NULL, run (*extra)(m) in an additional thread.
|
|
|
|
// incr_step controls by how much m->refcount should be incremented/decremented
|
|
|
|
// (if at all) each time in the tests.
|
|
|
|
//
|
|
|
|
static void test(const char* name, void (*body)(void* m),
|
|
|
|
void (*extra)(void* m), int timeout_s, int incr_step) {
|
|
|
|
int64_t iterations = 8;
|
|
|
|
struct test* m;
|
|
|
|
gpr_timespec start = gpr_now(GPR_CLOCK_REALTIME);
|
|
|
|
gpr_timespec time_taken;
|
|
|
|
gpr_timespec deadline = gpr_time_add(
|
|
|
|
start, gpr_time_from_micros(static_cast<int64_t>(timeout_s) * 1000000,
|
|
|
|
GPR_TIMESPAN));
|
|
|
|
fprintf(stderr, "%s:", name);
|
|
|
|
fflush(stderr);
|
|
|
|
while (gpr_time_cmp(gpr_now(GPR_CLOCK_REALTIME), deadline) < 0) {
|
|
|
|
fprintf(stderr, " %ld", static_cast<long>(iterations));
|
|
|
|
fflush(stderr);
|
|
|
|
m = test_new(10, iterations, incr_step);
|
|
|
|
grpc_core::Thread extra_thd;
|
|
|
|
if (extra != nullptr) {
|
|
|
|
extra_thd = grpc_core::Thread(name, extra, m);
|
|
|
|
extra_thd.Start();
|
|
|
|
m->done++; // one more thread to wait for
|
|
|
|
}
|
|
|
|
test_create_threads(m, body);
|
|
|
|
test_wait(m);
|
|
|
|
if (extra != nullptr) {
|
|
|
|
extra_thd.Join();
|
|
|
|
}
|
|
|
|
if (m->counter != m->nthreads * m->iterations * m->incr_step) {
|
|
|
|
fprintf(stderr, "counter %ld threads %d iterations %ld\n",
|
|
|
|
static_cast<long>(m->counter), m->nthreads,
|
|
|
|
static_cast<long>(m->iterations));
|
|
|
|
fflush(stderr);
|
|
|
|
ASSERT_TRUE(0);
|
|
|
|
}
|
|
|
|
test_destroy(m);
|
|
|
|
iterations <<= 1;
|
|
|
|
}
|
|
|
|
time_taken = gpr_time_sub(gpr_now(GPR_CLOCK_REALTIME), start);
|
|
|
|
fprintf(stderr, " done %lld.%09d s\n",
|
|
|
|
static_cast<long long>(time_taken.tv_sec),
|
|
|
|
static_cast<int>(time_taken.tv_nsec));
|
|
|
|
fflush(stderr);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Increment m->counter on each iteration; then mark thread as done.
|
|
|
|
static void inc(void* v /*=m*/) {
|
|
|
|
struct test* m = static_cast<struct test*>(v);
|
|
|
|
int64_t i;
|
|
|
|
for (i = 0; i != m->iterations; i++) {
|
|
|
|
gpr_mu_lock(&m->mu);
|
|
|
|
m->counter++;
|
|
|
|
gpr_mu_unlock(&m->mu);
|
|
|
|
}
|
|
|
|
mark_thread_done(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Increment m->counter under lock acquired with trylock, m->iterations times;
|
|
|
|
// then mark thread as done.
|
|
|
|
static void inctry(void* v /*=m*/) {
|
|
|
|
struct test* m = static_cast<struct test*>(v);
|
|
|
|
int64_t i;
|
|
|
|
for (i = 0; i != m->iterations;) {
|
|
|
|
if (gpr_mu_trylock(&m->mu)) {
|
|
|
|
m->counter++;
|
|
|
|
gpr_mu_unlock(&m->mu);
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mark_thread_done(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Increment counter only when (m->counter%m->nthreads)==m->thread_id; then mark
|
|
|
|
// thread as done.
|
|
|
|
static void inc_by_turns(void* v /*=m*/) {
|
|
|
|
struct test* m = static_cast<struct test*>(v);
|
|
|
|
int64_t i;
|
|
|
|
int id = thread_id(m);
|
|
|
|
for (i = 0; i != m->iterations; i++) {
|
|
|
|
gpr_mu_lock(&m->mu);
|
|
|
|
while ((m->counter % m->nthreads) != id) {
|
|
|
|
gpr_cv_wait(&m->cv, &m->mu, gpr_inf_future(GPR_CLOCK_MONOTONIC));
|
|
|
|
}
|
|
|
|
m->counter++;
|
|
|
|
gpr_cv_broadcast(&m->cv);
|
|
|
|
gpr_mu_unlock(&m->mu);
|
|
|
|
}
|
|
|
|
mark_thread_done(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wait a millisecond and increment counter on each iteration;
|
|
|
|
// then mark thread as done.
|
|
|
|
static void inc_with_1ms_delay(void* v /*=m*/) {
|
|
|
|
struct test* m = static_cast<struct test*>(v);
|
|
|
|
int64_t i;
|
|
|
|
for (i = 0; i != m->iterations; i++) {
|
|
|
|
gpr_timespec deadline;
|
|
|
|
gpr_mu_lock(&m->mu);
|
|
|
|
deadline = gpr_time_add(gpr_now(GPR_CLOCK_MONOTONIC),
|
|
|
|
gpr_time_from_micros(1000, GPR_TIMESPAN));
|
|
|
|
while (!gpr_cv_wait(&m->cv, &m->mu, deadline)) {
|
|
|
|
}
|
|
|
|
m->counter++;
|
|
|
|
gpr_mu_unlock(&m->mu);
|
|
|
|
}
|
|
|
|
mark_thread_done(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wait a millisecond and increment counter on each iteration, using an event
|
|
|
|
// for timing; then mark thread as done.
|
|
|
|
static void inc_with_1ms_delay_event(void* v /*=m*/) {
|
|
|
|
struct test* m = static_cast<struct test*>(v);
|
|
|
|
int64_t i;
|
|
|
|
for (i = 0; i != m->iterations; i++) {
|
|
|
|
gpr_timespec deadline;
|
|
|
|
deadline = gpr_time_add(gpr_now(GPR_CLOCK_REALTIME),
|
|
|
|
gpr_time_from_micros(1000, GPR_TIMESPAN));
|
|
|
|
ASSERT_EQ(gpr_event_wait(&m->event, deadline), nullptr);
|
|
|
|
gpr_mu_lock(&m->mu);
|
|
|
|
m->counter++;
|
|
|
|
gpr_mu_unlock(&m->mu);
|
|
|
|
}
|
|
|
|
mark_thread_done(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Produce m->iterations elements on queue m->q, then mark thread as done.
|
|
|
|
// Even threads use queue_append(), and odd threads use queue_try_append()
|
|
|
|
// until it succeeds.
|
|
|
|
static void many_producers(void* v /*=m*/) {
|
|
|
|
struct test* m = static_cast<struct test*>(v);
|
|
|
|
int64_t i;
|
|
|
|
int x = thread_id(m);
|
|
|
|
if ((x & 1) == 0) {
|
|
|
|
for (i = 0; i != m->iterations; i++) {
|
|
|
|
queue_append(&m->q, 1);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (i = 0; i != m->iterations; i++) {
|
|
|
|
while (!queue_try_append(&m->q, 1)) {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mark_thread_done(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Consume elements from m->q until m->nthreads*m->iterations are seen,
|
|
|
|
// wait an extra second to confirm that no more elements are arriving,
|
|
|
|
// then mark thread as done.
|
|
|
|
static void consumer(void* v /*=m*/) {
|
|
|
|
struct test* m = static_cast<struct test*>(v);
|
|
|
|
int64_t n = m->iterations * m->nthreads;
|
|
|
|
int64_t i;
|
|
|
|
int value;
|
|
|
|
for (i = 0; i != n; i++) {
|
|
|
|
queue_remove(&m->q, &value, gpr_inf_future(GPR_CLOCK_MONOTONIC));
|
|
|
|
}
|
|
|
|
gpr_mu_lock(&m->mu);
|
|
|
|
m->counter = n;
|
|
|
|
gpr_mu_unlock(&m->mu);
|
|
|
|
ASSERT_TRUE(
|
|
|
|
!queue_remove(&m->q, &value,
|
|
|
|
gpr_time_add(gpr_now(GPR_CLOCK_MONOTONIC),
|
|
|
|
gpr_time_from_micros(1000000, GPR_TIMESPAN))));
|
|
|
|
mark_thread_done(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Increment m->stats_counter m->iterations times, transfer counter value to
|
|
|
|
// m->counter, then mark thread as done.
|
|
|
|
static void statsinc(void* v /*=m*/) {
|
|
|
|
struct test* m = static_cast<struct test*>(v);
|
|
|
|
int64_t i;
|
|
|
|
for (i = 0; i != m->iterations; i++) {
|
|
|
|
gpr_stats_inc(&m->stats_counter, 1);
|
|
|
|
}
|
|
|
|
gpr_mu_lock(&m->mu);
|
|
|
|
m->counter = gpr_stats_read(&m->stats_counter);
|
|
|
|
gpr_mu_unlock(&m->mu);
|
|
|
|
mark_thread_done(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Increment m->refcount by m->incr_step for m->iterations times. Decrement
|
|
|
|
// m->thread_refcount once, and if it reaches zero, set m->event to (void*)1;
|
|
|
|
// then mark thread as done.
|
|
|
|
static void refinc(void* v /*=m*/) {
|
|
|
|
struct test* m = static_cast<struct test*>(v);
|
|
|
|
int64_t i;
|
|
|
|
for (i = 0; i != m->iterations; i++) {
|
|
|
|
if (m->incr_step == 1) {
|
|
|
|
gpr_ref(&m->refcount);
|
|
|
|
} else {
|
|
|
|
gpr_refn(&m->refcount, m->incr_step);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (gpr_unref(&m->thread_refcount)) {
|
|
|
|
gpr_event_set(&m->event, reinterpret_cast<void*>(1));
|
|
|
|
}
|
|
|
|
mark_thread_done(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wait until m->event is set to (void *)1, then decrement m->refcount by 1
|
|
|
|
// (m->nthreads * m->iterations * m->incr_step) times, and ensure that the last
|
|
|
|
// decrement caused the counter to reach zero, then mark thread as done.
|
|
|
|
static void refcheck(void* v /*=m*/) {
|
|
|
|
struct test* m = static_cast<struct test*>(v);
|
|
|
|
int64_t n = m->iterations * m->nthreads * m->incr_step;
|
|
|
|
int64_t i;
|
|
|
|
ASSERT_EQ(gpr_event_wait(&m->event, gpr_inf_future(GPR_CLOCK_REALTIME)),
|
|
|
|
(void*)1);
|
|
|
|
ASSERT_EQ(gpr_event_get(&m->event), (void*)1);
|
|
|
|
for (i = 1; i != n; i++) {
|
|
|
|
ASSERT_FALSE(gpr_unref(&m->refcount));
|
|
|
|
m->counter++;
|
|
|
|
}
|
|
|
|
ASSERT_TRUE(gpr_unref(&m->refcount));
|
|
|
|
m->counter++;
|
|
|
|
mark_thread_done(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
// -------------------------------------------------
|
|
|
|
|
|
|
|
TEST(SyncTest, MainTest) {
|
|
|
|
test("mutex", &inc, nullptr, 1, 1);
|
|
|
|
test("mutex try", &inctry, nullptr, 1, 1);
|
|
|
|
test("cv", &inc_by_turns, nullptr, 1, 1);
|
|
|
|
test("timedcv", &inc_with_1ms_delay, nullptr, 1, 1);
|
|
|
|
test("queue", &many_producers, &consumer, 10, 1);
|
|
|
|
test("stats_counter", &statsinc, nullptr, 1, 1);
|
|
|
|
test("refcount by 1", &refinc, &refcheck, 1, 1);
|
|
|
|
test("refcount by 3", &refinc, &refcheck, 1, 3); // incr_step of 3 is an
|
|
|
|
// arbitrary choice. Any
|
|
|
|
// number > 1 is okay here
|
|
|
|
test("timedevent", &inc_with_1ms_delay_event, nullptr, 1, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
int main(int argc, char** argv) {
|
|
|
|
grpc::testing::TestEnvironment env(&argc, argv);
|
|
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
|
|
return RUN_ALL_TESTS();
|
|
|
|
}
|