The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

198 lines
7.6 KiB

#!/usr/bin/env python2.7
# Copyright 2017, Google Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import multiprocessing
import os
import subprocess
import sys
import argparse
import python_utils.jobset as jobset
import python_utils.start_port_server as start_port_server
flamegraph_dir = os.path.join(os.path.expanduser('~'), 'FlameGraph')
os.chdir(os.path.join(os.path.dirname(sys.argv[0]), '../..'))
if not os.path.exists('reports'):
os.makedirs('reports')
port_server_port = 32766
start_port_server.start_port_server(port_server_port)
def fnize(s):
out = ''
for c in s:
if c in '<>, /':
if len(out) and out[-1] == '_': continue
out += '_'
else:
out += c
return out
# index html
index_html = """
<html>
<head>
<title>Microbenchmark Results</title>
</head>
<body>
"""
def heading(name):
global index_html
index_html += "<h1>%s</h1>\n" % name
def link(txt, tgt):
global index_html
index_html += "<p><a href=\"%s\">%s</a></p>\n" % (tgt, txt)
def text(txt):
global index_html
8 years ago
index_html += "<p><pre>%s</pre></p>\n" % txt
def collect_latency(bm_name, args):
"""generate latency profiles"""
benchmarks = []
profile_analysis = []
cleanup = []
heading('Latency Profiles: %s' % bm_name)
subprocess.check_call(
['make', bm_name,
'CONFIG=basicprof', '-j', '%d' % multiprocessing.cpu_count()])
for line in subprocess.check_output(['bins/basicprof/%s' % bm_name,
'--benchmark_list_tests']).splitlines():
8 years ago
link(line, '%s.txt' % fnize(line))
benchmarks.append(
jobset.JobSpec(['bins/basicprof/%s' % bm_name, '--benchmark_filter=^%s$' % line],
environ={'LATENCY_TRACE': '%s.trace' % fnize(line)}))
profile_analysis.append(
jobset.JobSpec([sys.executable,
'tools/profiling/latency_profile/profile_analyzer.py',
'--source', '%s.trace' % fnize(line), '--fmt', 'simple',
'--out', 'reports/%s.txt' % fnize(line)], timeout_seconds=None))
8 years ago
cleanup.append(jobset.JobSpec(['rm', '%s.trace' % fnize(line)]))
# periodically flush out the list of jobs: profile_analysis jobs at least
# consume upwards of five gigabytes of ram in some cases, and so analysing
# hundreds of them at once is impractical -- but we want at least some
# concurrency or the work takes too long
if len(benchmarks) >= min(4, multiprocessing.cpu_count()):
# run up to half the cpu count: each benchmark can use up to two cores
# (one for the microbenchmark, one for the data flush)
8 years ago
jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count()/2),
add_env={'GRPC_TEST_PORT_SERVER': 'localhost:%d' % port_server_port})
jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count())
jobset.run(cleanup, maxjobs=multiprocessing.cpu_count())
benchmarks = []
profile_analysis = []
cleanup = []
# run the remaining benchmarks that weren't flushed
if len(benchmarks):
8 years ago
jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count()/2),
add_env={'GRPC_TEST_PORT_SERVER': 'localhost:%d' % port_server_port})
jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count())
jobset.run(cleanup, maxjobs=multiprocessing.cpu_count())
def collect_perf(bm_name, args):
"""generate flamegraphs"""
heading('Flamegraphs: %s' % bm_name)
subprocess.check_call(
['make', bm_name,
'CONFIG=mutrace', '-j', '%d' % multiprocessing.cpu_count()])
for line in subprocess.check_output(['bins/mutrace/%s' % bm_name,
'--benchmark_list_tests']).splitlines():
subprocess.check_call(['perf', 'record', '-o', '%s-perf.data' % fnize(line),
8 years ago
'-g', '-c', '1000',
'bins/mutrace/%s' % bm_name,
'--benchmark_filter=^%s$' % line,
'--benchmark_min_time=10'])
env = os.environ.copy()
env.update({
'PERF_BASE_NAME': fnize(line),
'OUTPUT_DIR': 'reports',
'OUTPUT_FILENAME': fnize(line),
})
subprocess.check_call(['tools/run_tests/performance/process_local_perf_flamegraphs.sh'],
env=env)
subprocess.check_call(['rm', '%s-perf.data' % fnize(line)])
subprocess.check_call(['rm', '%s-out.perf' % fnize(line)])
def collect_summary(bm_name, args):
heading('Summary: %s' % bm_name)
subprocess.check_call(
['make', bm_name,
'CONFIG=counters', '-j', '%d' % multiprocessing.cpu_count()])
cmd = ['bins/counters/%s' % bm_name,
'--benchmark_out=out.json',
'--benchmark_out_format=json']
if args.summary_time is not None:
cmd += ['--benchmark_min_time=%d' % args.summary_time]
text(subprocess.check_output(cmd))
if args.bigquery_upload:
8 years ago
with open('out.csv', 'w') as f:
8 years ago
f.write(subprocess.check_output(['tools/profiling/microbenchmarks/bm2bq.py', 'out.json']))
subprocess.check_call(['bq', 'load', 'microbenchmarks.microbenchmarks', 'out.csv'])
collectors = {
'latency': collect_latency,
'perf': collect_perf,
'summary': collect_summary,
}
argp = argparse.ArgumentParser(description='Collect data from microbenchmarks')
argp.add_argument('-c', '--collect',
choices=sorted(collectors.keys()),
nargs='+',
default=sorted(collectors.keys()),
help='Which collectors should be run against each benchmark')
argp.add_argument('-b', '--benchmarks',
default=['bm_fullstack'],
nargs='+',
type=str,
help='Which microbenchmarks should be run')
argp.add_argument('--bigquery_upload',
default=False,
action='store_const',
const=True,
help='Upload results from summary collection to bigquery')
argp.add_argument('--summary_time',
default=None,
type=int,
help='Minimum time to run benchmarks for the summary collection')
args = argp.parse_args()
for bm_name in args.benchmarks:
for collect in args.collect:
collectors[collect](bm_name, args)
index_html += "</body>\n</html>\n"
with open('reports/index.html', 'w') as f:
f.write(index_html)