The C based gRPC (C++, Python, Ruby, Objective-C, PHP, C#) https://grpc.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

177 lines
5.8 KiB

//
//
// Copyright 2015 gRPC authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
10 years ago
#ifndef GRPC_TEST_CORE_END2END_CQ_VERIFIER_H
#define GRPC_TEST_CORE_END2END_CQ_VERIFIER_H
10 years ago
#include <stdint.h>
#include <functional>
#include <string>
#include <vector>
[end2end] Explain failures a little better (#33621) I'd been adding the following stanza regularly to debug flakes/fuzz failures: ``` Expect(1, CoreEnd2endTest::MaybePerformAction{[&](bool success) { Crash(absl::StrCat( "Unexpected completion of client side call: success=", success ? "true" : "false", " status=", server_status.ToString(), " initial_md=", server_initial_metadata.ToString())); }}); ``` it was helpful because it indicated why a call batch finished successfully and helped quickly identify next steps. It occurred to me however that this would better be done inside of the framework, and for *all* ops that have outputs, so this PR does just that. Any time a batch with an op that outputs information finishes successfully but unexpectedly we now display those outputs in human readable form in the error message. Sample output: ``` [ RUN ] CorpusExamples/FuzzerCorpusTest.RunOneExample/0 RUN TEST: Http2SingleHopTest.SimpleDelayedRequestShort/Chttp2SimpleSslFullstack E0101 00:00:05.000000000 396633 simple_delayed_request.cc:37] Create client side call E0101 00:00:05.000000000 396633 simple_delayed_request.cc:41] Start initial batch E0101 00:00:05.000000000 396633 simple_delayed_request.cc:47] Start server E0101 00:00:05.000000000 396633 cq_verifier.cc:364] Verify tag(101)-✅ for 600000ms test/core/end2end/cq_verifier.cc:316: Unexpected event: OP_COMPLETE: tag:0x1 OK with: incoming_metadata: {} status_on_client: status=4 msg=Deadline Exceeded trailing_metadata={} checked @ test/core/end2end/tests/simple_delayed_request.cc:51 expected: test/core/end2end/tests/simple_delayed_request.cc:50: tag(101) success=true ```
2 years ago
#include "absl/container/flat_hash_map.h"
#include "absl/functional/any_invocable.h"
#include "absl/types/variant.h"
[fuzz] Turn core end2end tests into fuzzers (#33013) Add a new binary that runs all core end2end tests in fuzzing mode. In this mode FuzzingEventEngine is substituted for the default event engine. This means that time is simulated, as is IO. The FEE gets control of callback delays also. In our tests the `Step()` function becomes, instead of a single call to `completion_queue_next`, a series of calls to that function and `FuzzingEventEngine::Tick`, driving forward the event loop until progress can be made. PR guide: --- **New binaries** `core_end2end_test_fuzzer` - the new fuzzer itself `seed_end2end_corpus` - a tool that produces an interesting seed corpus **Config changes for safe fuzzing** The implementation tries to use the config fuzzing work we've previously deployed in api_fuzzer to fuzz across experiments. Since some experiments are far too experimental to be safe in such fuzzing (and this will always be the case): - a new flag is added to experiments to opt-out of this fuzzing - a new hook is added to the config system to allow variables to re-write their inputs before setting them during the fuzz **Event manager/IO changes** Changes are made to the event engine shims so that tcp_server_posix can run with a non-FD carrying EventEngine. These are in my mind a bit clunky, but they work and they're in code that we expect to delete in the medium term, so I think overall the approach is good. **Changes to time** A small tweak is made to fix a bug initializing time for fuzzers in time.cc - we were previously failing to initialize `g_process_epoch_cycles` **Changes to `Crash`** A version that prints to stdio is added so that we can reliably print a crash from the fuzzer. **Changes to CqVerifier** Hooks are added to allow the top level loop to hook the verification functions with a function that steps time between CQ polls. **Changes to end2end fixtures** State machinery moves from the fixture to the test infra, to keep the customizations for fuzzing or not in one place. This means that fixtures are now just client/server factories, which is overall nice. It did necessitate moving some bespoke machinery into h2_ssl_cert_test.cc - this file is beginning to be problematic in borrowing parts but not all of the e2e test machinery. Some future PR needs to solve this. A cq arg is added to the Make functions since the cq is now owned by the test and not the fixture. **Changes to test registration** `TEST_P` is replaced by `CORE_END2END_TEST` and our own test registry is used as a first depot for test information. The gtest version of these tests: queries that registry to manually register tests with gtest. This ultimately changes the name of our tests again (I think for the last time) - the new names are shorter and more readable, so I don't count this as a regression. The fuzzer version of these tests: constructs a database of fuzzable tests that it can consult to look up a particular suite/test/config combination specified by the fuzzer to fuzz against. This gives us a single fuzzer that can test all 3k-ish fuzzing ready tests and cross polinate configuration between them. **Changes to test config** The zero size registry stuff was causing some problems with the event engine feature macros, so instead I've removed those and used GTEST_SKIP in the problematic tests. I think that's the approach we move towards in the future. **Which tests are included** Configs that are compatible - those that do not do fd manipulation directly (these are incompatible with FuzzingEventEngine), and those that do not join threads on their shutdown path (as these are incompatible with our cq wait methodology). Each we can talk about in the future - fd manipulation would be a significant expansion of FuzzingEventEngine, and is probably not worth it, however many uses of background threads now should probably evolve to be EventEngine::Run calls in the future, and then would be trivially enabled in the fuzzers. Some tests currently fail in the fuzzing environment, a `SKIP_IF_FUZZING` macro is used for these few to disable them if in the fuzzing environment. We'll burn these down in the future. **Changes to fuzzing_event_engine** Changes are made to time: an exponential sweep forward is used now - this catches small time precision things early, but makes decade long timers (we have them) able to be used right now. In the future we'll just skip time forward to the next scheduled timer, but that approach doesn't yet work due to legacy timer system interactions. Changes to port assignment: we ensure that ports are legal numbers before assigning them via `grpc_pick_port_or_die`. A race condition between time checking and io is fixed. --------- Co-authored-by: ctiller <ctiller@users.noreply.github.com>
2 years ago
#include <grpc/event_engine/event_engine.h>
10 years ago
#include <grpc/grpc.h>
#include <grpc/slice.h>
[fuzz] Turn core end2end tests into fuzzers (#33013) Add a new binary that runs all core end2end tests in fuzzing mode. In this mode FuzzingEventEngine is substituted for the default event engine. This means that time is simulated, as is IO. The FEE gets control of callback delays also. In our tests the `Step()` function becomes, instead of a single call to `completion_queue_next`, a series of calls to that function and `FuzzingEventEngine::Tick`, driving forward the event loop until progress can be made. PR guide: --- **New binaries** `core_end2end_test_fuzzer` - the new fuzzer itself `seed_end2end_corpus` - a tool that produces an interesting seed corpus **Config changes for safe fuzzing** The implementation tries to use the config fuzzing work we've previously deployed in api_fuzzer to fuzz across experiments. Since some experiments are far too experimental to be safe in such fuzzing (and this will always be the case): - a new flag is added to experiments to opt-out of this fuzzing - a new hook is added to the config system to allow variables to re-write their inputs before setting them during the fuzz **Event manager/IO changes** Changes are made to the event engine shims so that tcp_server_posix can run with a non-FD carrying EventEngine. These are in my mind a bit clunky, but they work and they're in code that we expect to delete in the medium term, so I think overall the approach is good. **Changes to time** A small tweak is made to fix a bug initializing time for fuzzers in time.cc - we were previously failing to initialize `g_process_epoch_cycles` **Changes to `Crash`** A version that prints to stdio is added so that we can reliably print a crash from the fuzzer. **Changes to CqVerifier** Hooks are added to allow the top level loop to hook the verification functions with a function that steps time between CQ polls. **Changes to end2end fixtures** State machinery moves from the fixture to the test infra, to keep the customizations for fuzzing or not in one place. This means that fixtures are now just client/server factories, which is overall nice. It did necessitate moving some bespoke machinery into h2_ssl_cert_test.cc - this file is beginning to be problematic in borrowing parts but not all of the e2e test machinery. Some future PR needs to solve this. A cq arg is added to the Make functions since the cq is now owned by the test and not the fixture. **Changes to test registration** `TEST_P` is replaced by `CORE_END2END_TEST` and our own test registry is used as a first depot for test information. The gtest version of these tests: queries that registry to manually register tests with gtest. This ultimately changes the name of our tests again (I think for the last time) - the new names are shorter and more readable, so I don't count this as a regression. The fuzzer version of these tests: constructs a database of fuzzable tests that it can consult to look up a particular suite/test/config combination specified by the fuzzer to fuzz against. This gives us a single fuzzer that can test all 3k-ish fuzzing ready tests and cross polinate configuration between them. **Changes to test config** The zero size registry stuff was causing some problems with the event engine feature macros, so instead I've removed those and used GTEST_SKIP in the problematic tests. I think that's the approach we move towards in the future. **Which tests are included** Configs that are compatible - those that do not do fd manipulation directly (these are incompatible with FuzzingEventEngine), and those that do not join threads on their shutdown path (as these are incompatible with our cq wait methodology). Each we can talk about in the future - fd manipulation would be a significant expansion of FuzzingEventEngine, and is probably not worth it, however many uses of background threads now should probably evolve to be EventEngine::Run calls in the future, and then would be trivially enabled in the fuzzers. Some tests currently fail in the fuzzing environment, a `SKIP_IF_FUZZING` macro is used for these few to disable them if in the fuzzing environment. We'll burn these down in the future. **Changes to fuzzing_event_engine** Changes are made to time: an exponential sweep forward is used now - this catches small time precision things early, but makes decade long timers (we have them) able to be used right now. In the future we'll just skip time forward to the next scheduled timer, but that approach doesn't yet work due to legacy timer system interactions. Changes to port assignment: we ensure that ports are legal numbers before assigning them via `grpc_pick_port_or_die`. A race condition between time checking and io is fixed. --------- Co-authored-by: ctiller <ctiller@users.noreply.github.com>
2 years ago
#include <grpc/support/time.h>
#include "src/core/lib/gprpp/debug_location.h"
#include "src/core/lib/gprpp/time.h"
10 years ago
namespace grpc_core {
// A CqVerifier can verify that expected events arrive in a timely fashion
// on a single completion queue
class CqVerifier {
public:
// ExpectedResult - if the tag is received, set *seen to true (if seen is
// non-null).
struct Maybe {
bool* seen = nullptr;
};
// ExpectedResult - expect the tag, but its result may be true or false.
// Store the result in result (if result is non-null).
struct AnyStatus {
bool* result = nullptr;
};
// PerformAction - expect the tag, and run a function based on the result
struct PerformAction {
std::function<void(bool success)> action;
};
// MaybePerformAction - run a function if a tag is seen
struct MaybePerformAction {
std::function<void(bool success)> action;
};
using ExpectedResult =
absl::variant<bool, Maybe, AnyStatus, PerformAction, MaybePerformAction>;
[end2end] Explain failures a little better (#33621) I'd been adding the following stanza regularly to debug flakes/fuzz failures: ``` Expect(1, CoreEnd2endTest::MaybePerformAction{[&](bool success) { Crash(absl::StrCat( "Unexpected completion of client side call: success=", success ? "true" : "false", " status=", server_status.ToString(), " initial_md=", server_initial_metadata.ToString())); }}); ``` it was helpful because it indicated why a call batch finished successfully and helped quickly identify next steps. It occurred to me however that this would better be done inside of the framework, and for *all* ops that have outputs, so this PR does just that. Any time a batch with an op that outputs information finishes successfully but unexpectedly we now display those outputs in human readable form in the error message. Sample output: ``` [ RUN ] CorpusExamples/FuzzerCorpusTest.RunOneExample/0 RUN TEST: Http2SingleHopTest.SimpleDelayedRequestShort/Chttp2SimpleSslFullstack E0101 00:00:05.000000000 396633 simple_delayed_request.cc:37] Create client side call E0101 00:00:05.000000000 396633 simple_delayed_request.cc:41] Start initial batch E0101 00:00:05.000000000 396633 simple_delayed_request.cc:47] Start server E0101 00:00:05.000000000 396633 cq_verifier.cc:364] Verify tag(101)-✅ for 600000ms test/core/end2end/cq_verifier.cc:316: Unexpected event: OP_COMPLETE: tag:0x1 OK with: incoming_metadata: {} status_on_client: status=4 msg=Deadline Exceeded trailing_metadata={} checked @ test/core/end2end/tests/simple_delayed_request.cc:51 expected: test/core/end2end/tests/simple_delayed_request.cc:50: tag(101) success=true ```
2 years ago
// Captures information about one failure
struct Failure {
SourceLocation location;
std::string message;
std::vector<std::string> expected;
[end2end] Explain failures a little better (#33621) I'd been adding the following stanza regularly to debug flakes/fuzz failures: ``` Expect(1, CoreEnd2endTest::MaybePerformAction{[&](bool success) { Crash(absl::StrCat( "Unexpected completion of client side call: success=", success ? "true" : "false", " status=", server_status.ToString(), " initial_md=", server_initial_metadata.ToString())); }}); ``` it was helpful because it indicated why a call batch finished successfully and helped quickly identify next steps. It occurred to me however that this would better be done inside of the framework, and for *all* ops that have outputs, so this PR does just that. Any time a batch with an op that outputs information finishes successfully but unexpectedly we now display those outputs in human readable form in the error message. Sample output: ``` [ RUN ] CorpusExamples/FuzzerCorpusTest.RunOneExample/0 RUN TEST: Http2SingleHopTest.SimpleDelayedRequestShort/Chttp2SimpleSslFullstack E0101 00:00:05.000000000 396633 simple_delayed_request.cc:37] Create client side call E0101 00:00:05.000000000 396633 simple_delayed_request.cc:41] Start initial batch E0101 00:00:05.000000000 396633 simple_delayed_request.cc:47] Start server E0101 00:00:05.000000000 396633 cq_verifier.cc:364] Verify tag(101)-✅ for 600000ms test/core/end2end/cq_verifier.cc:316: Unexpected event: OP_COMPLETE: tag:0x1 OK with: incoming_metadata: {} status_on_client: status=4 msg=Deadline Exceeded trailing_metadata={} checked @ test/core/end2end/tests/simple_delayed_request.cc:51 expected: test/core/end2end/tests/simple_delayed_request.cc:50: tag(101) success=true ```
2 years ago
std::vector<std::string> message_details;
};
// Produces a string upon the successful (but unexpected) completion of an
// expectation.
class SuccessfulStateString {
public:
virtual std::string GetSuccessfulStateString() = 0;
protected:
~SuccessfulStateString() = default;
};
static void FailUsingGprCrash(const Failure& failure);
static void FailUsingGprCrashWithStdio(const Failure& failure);
static void FailUsingGtestFail(const Failure& failure);
// Allow customizing the failure handler
// For legacy tests we should use FailUsingGprCrash (the default)
// For gtest based tests we should start migrating to FailUsingGtestFail which
// will produce nicer failure messages.
explicit CqVerifier(
grpc_completion_queue* cq,
[fuzz] Turn core end2end tests into fuzzers (#33013) Add a new binary that runs all core end2end tests in fuzzing mode. In this mode FuzzingEventEngine is substituted for the default event engine. This means that time is simulated, as is IO. The FEE gets control of callback delays also. In our tests the `Step()` function becomes, instead of a single call to `completion_queue_next`, a series of calls to that function and `FuzzingEventEngine::Tick`, driving forward the event loop until progress can be made. PR guide: --- **New binaries** `core_end2end_test_fuzzer` - the new fuzzer itself `seed_end2end_corpus` - a tool that produces an interesting seed corpus **Config changes for safe fuzzing** The implementation tries to use the config fuzzing work we've previously deployed in api_fuzzer to fuzz across experiments. Since some experiments are far too experimental to be safe in such fuzzing (and this will always be the case): - a new flag is added to experiments to opt-out of this fuzzing - a new hook is added to the config system to allow variables to re-write their inputs before setting them during the fuzz **Event manager/IO changes** Changes are made to the event engine shims so that tcp_server_posix can run with a non-FD carrying EventEngine. These are in my mind a bit clunky, but they work and they're in code that we expect to delete in the medium term, so I think overall the approach is good. **Changes to time** A small tweak is made to fix a bug initializing time for fuzzers in time.cc - we were previously failing to initialize `g_process_epoch_cycles` **Changes to `Crash`** A version that prints to stdio is added so that we can reliably print a crash from the fuzzer. **Changes to CqVerifier** Hooks are added to allow the top level loop to hook the verification functions with a function that steps time between CQ polls. **Changes to end2end fixtures** State machinery moves from the fixture to the test infra, to keep the customizations for fuzzing or not in one place. This means that fixtures are now just client/server factories, which is overall nice. It did necessitate moving some bespoke machinery into h2_ssl_cert_test.cc - this file is beginning to be problematic in borrowing parts but not all of the e2e test machinery. Some future PR needs to solve this. A cq arg is added to the Make functions since the cq is now owned by the test and not the fixture. **Changes to test registration** `TEST_P` is replaced by `CORE_END2END_TEST` and our own test registry is used as a first depot for test information. The gtest version of these tests: queries that registry to manually register tests with gtest. This ultimately changes the name of our tests again (I think for the last time) - the new names are shorter and more readable, so I don't count this as a regression. The fuzzer version of these tests: constructs a database of fuzzable tests that it can consult to look up a particular suite/test/config combination specified by the fuzzer to fuzz against. This gives us a single fuzzer that can test all 3k-ish fuzzing ready tests and cross polinate configuration between them. **Changes to test config** The zero size registry stuff was causing some problems with the event engine feature macros, so instead I've removed those and used GTEST_SKIP in the problematic tests. I think that's the approach we move towards in the future. **Which tests are included** Configs that are compatible - those that do not do fd manipulation directly (these are incompatible with FuzzingEventEngine), and those that do not join threads on their shutdown path (as these are incompatible with our cq wait methodology). Each we can talk about in the future - fd manipulation would be a significant expansion of FuzzingEventEngine, and is probably not worth it, however many uses of background threads now should probably evolve to be EventEngine::Run calls in the future, and then would be trivially enabled in the fuzzers. Some tests currently fail in the fuzzing environment, a `SKIP_IF_FUZZING` macro is used for these few to disable them if in the fuzzing environment. We'll burn these down in the future. **Changes to fuzzing_event_engine** Changes are made to time: an exponential sweep forward is used now - this catches small time precision things early, but makes decade long timers (we have them) able to be used right now. In the future we'll just skip time forward to the next scheduled timer, but that approach doesn't yet work due to legacy timer system interactions. Changes to port assignment: we ensure that ports are legal numbers before assigning them via `grpc_pick_port_or_die`. A race condition between time checking and io is fixed. --------- Co-authored-by: ctiller <ctiller@users.noreply.github.com>
2 years ago
absl::AnyInvocable<void(Failure) const> fail = FailUsingGprCrash,
absl::AnyInvocable<
void(grpc_event_engine::experimental::EventEngine::Duration) const>
step_fn = nullptr);
~CqVerifier();
CqVerifier(const CqVerifier&) = delete;
CqVerifier& operator=(const CqVerifier&) = delete;
// Ensure all expected events (and only those events) are present on the
// bound completion queue within \a timeout.
void Verify(Duration timeout = Duration::Seconds(10),
SourceLocation location = SourceLocation());
// Ensure that the completion queue is empty, waiting up to \a timeout.
void VerifyEmpty(Duration timeout = Duration::Seconds(1),
SourceLocation location = SourceLocation());
[end2end] Explain failures a little better (#33621) I'd been adding the following stanza regularly to debug flakes/fuzz failures: ``` Expect(1, CoreEnd2endTest::MaybePerformAction{[&](bool success) { Crash(absl::StrCat( "Unexpected completion of client side call: success=", success ? "true" : "false", " status=", server_status.ToString(), " initial_md=", server_initial_metadata.ToString())); }}); ``` it was helpful because it indicated why a call batch finished successfully and helped quickly identify next steps. It occurred to me however that this would better be done inside of the framework, and for *all* ops that have outputs, so this PR does just that. Any time a batch with an op that outputs information finishes successfully but unexpectedly we now display those outputs in human readable form in the error message. Sample output: ``` [ RUN ] CorpusExamples/FuzzerCorpusTest.RunOneExample/0 RUN TEST: Http2SingleHopTest.SimpleDelayedRequestShort/Chttp2SimpleSslFullstack E0101 00:00:05.000000000 396633 simple_delayed_request.cc:37] Create client side call E0101 00:00:05.000000000 396633 simple_delayed_request.cc:41] Start initial batch E0101 00:00:05.000000000 396633 simple_delayed_request.cc:47] Start server E0101 00:00:05.000000000 396633 cq_verifier.cc:364] Verify tag(101)-✅ for 600000ms test/core/end2end/cq_verifier.cc:316: Unexpected event: OP_COMPLETE: tag:0x1 OK with: incoming_metadata: {} status_on_client: status=4 msg=Deadline Exceeded trailing_metadata={} checked @ test/core/end2end/tests/simple_delayed_request.cc:51 expected: test/core/end2end/tests/simple_delayed_request.cc:50: tag(101) success=true ```
2 years ago
void ClearSuccessfulStateStrings(void* tag);
void AddSuccessfulStateString(void* tag,
SuccessfulStateString* successful_state_string);
// Match an expectation about a status.
// location must be DEBUG_LOCATION.
// result can be any of the types in ExpectedResult - a plain bool means
// 'expect success to be true/false'.
void Expect(void* tag, ExpectedResult result,
SourceLocation location = SourceLocation());
std::string ToString() const;
std::vector<std::string> ToStrings() const;
std::string ToShortString() const;
std::vector<std::string> ToShortStrings() const;
// Logging verifications helps debug CI problems a lot.
// Only disable if the logging prevents a stress test like scenario from
// passing.
void SetLogVerifications(bool log_verifications) {
log_verifications_ = log_verifications;
}
static void* tag(intptr_t t) { return reinterpret_cast<void*>(t); }
private:
struct Expectation {
SourceLocation location;
void* tag;
ExpectedResult result;
std::string ToString() const;
std::string ToShortString() const;
};
void FailNoEventReceived(const SourceLocation& location) const;
void FailUnexpectedEvent(grpc_event* ev,
const SourceLocation& location) const;
bool AllMaybes() const;
[fuzz] Turn core end2end tests into fuzzers (#33013) Add a new binary that runs all core end2end tests in fuzzing mode. In this mode FuzzingEventEngine is substituted for the default event engine. This means that time is simulated, as is IO. The FEE gets control of callback delays also. In our tests the `Step()` function becomes, instead of a single call to `completion_queue_next`, a series of calls to that function and `FuzzingEventEngine::Tick`, driving forward the event loop until progress can be made. PR guide: --- **New binaries** `core_end2end_test_fuzzer` - the new fuzzer itself `seed_end2end_corpus` - a tool that produces an interesting seed corpus **Config changes for safe fuzzing** The implementation tries to use the config fuzzing work we've previously deployed in api_fuzzer to fuzz across experiments. Since some experiments are far too experimental to be safe in such fuzzing (and this will always be the case): - a new flag is added to experiments to opt-out of this fuzzing - a new hook is added to the config system to allow variables to re-write their inputs before setting them during the fuzz **Event manager/IO changes** Changes are made to the event engine shims so that tcp_server_posix can run with a non-FD carrying EventEngine. These are in my mind a bit clunky, but they work and they're in code that we expect to delete in the medium term, so I think overall the approach is good. **Changes to time** A small tweak is made to fix a bug initializing time for fuzzers in time.cc - we were previously failing to initialize `g_process_epoch_cycles` **Changes to `Crash`** A version that prints to stdio is added so that we can reliably print a crash from the fuzzer. **Changes to CqVerifier** Hooks are added to allow the top level loop to hook the verification functions with a function that steps time between CQ polls. **Changes to end2end fixtures** State machinery moves from the fixture to the test infra, to keep the customizations for fuzzing or not in one place. This means that fixtures are now just client/server factories, which is overall nice. It did necessitate moving some bespoke machinery into h2_ssl_cert_test.cc - this file is beginning to be problematic in borrowing parts but not all of the e2e test machinery. Some future PR needs to solve this. A cq arg is added to the Make functions since the cq is now owned by the test and not the fixture. **Changes to test registration** `TEST_P` is replaced by `CORE_END2END_TEST` and our own test registry is used as a first depot for test information. The gtest version of these tests: queries that registry to manually register tests with gtest. This ultimately changes the name of our tests again (I think for the last time) - the new names are shorter and more readable, so I don't count this as a regression. The fuzzer version of these tests: constructs a database of fuzzable tests that it can consult to look up a particular suite/test/config combination specified by the fuzzer to fuzz against. This gives us a single fuzzer that can test all 3k-ish fuzzing ready tests and cross polinate configuration between them. **Changes to test config** The zero size registry stuff was causing some problems with the event engine feature macros, so instead I've removed those and used GTEST_SKIP in the problematic tests. I think that's the approach we move towards in the future. **Which tests are included** Configs that are compatible - those that do not do fd manipulation directly (these are incompatible with FuzzingEventEngine), and those that do not join threads on their shutdown path (as these are incompatible with our cq wait methodology). Each we can talk about in the future - fd manipulation would be a significant expansion of FuzzingEventEngine, and is probably not worth it, however many uses of background threads now should probably evolve to be EventEngine::Run calls in the future, and then would be trivially enabled in the fuzzers. Some tests currently fail in the fuzzing environment, a `SKIP_IF_FUZZING` macro is used for these few to disable them if in the fuzzing environment. We'll burn these down in the future. **Changes to fuzzing_event_engine** Changes are made to time: an exponential sweep forward is used now - this catches small time precision things early, but makes decade long timers (we have them) able to be used right now. In the future we'll just skip time forward to the next scheduled timer, but that approach doesn't yet work due to legacy timer system interactions. Changes to port assignment: we ensure that ports are legal numbers before assigning them via `grpc_pick_port_or_die`. A race condition between time checking and io is fixed. --------- Co-authored-by: ctiller <ctiller@users.noreply.github.com>
2 years ago
grpc_event Step(gpr_timespec deadline);
grpc_completion_queue* const cq_;
std::vector<Expectation> expectations_;
[fuzz] Turn core end2end tests into fuzzers (#33013) Add a new binary that runs all core end2end tests in fuzzing mode. In this mode FuzzingEventEngine is substituted for the default event engine. This means that time is simulated, as is IO. The FEE gets control of callback delays also. In our tests the `Step()` function becomes, instead of a single call to `completion_queue_next`, a series of calls to that function and `FuzzingEventEngine::Tick`, driving forward the event loop until progress can be made. PR guide: --- **New binaries** `core_end2end_test_fuzzer` - the new fuzzer itself `seed_end2end_corpus` - a tool that produces an interesting seed corpus **Config changes for safe fuzzing** The implementation tries to use the config fuzzing work we've previously deployed in api_fuzzer to fuzz across experiments. Since some experiments are far too experimental to be safe in such fuzzing (and this will always be the case): - a new flag is added to experiments to opt-out of this fuzzing - a new hook is added to the config system to allow variables to re-write their inputs before setting them during the fuzz **Event manager/IO changes** Changes are made to the event engine shims so that tcp_server_posix can run with a non-FD carrying EventEngine. These are in my mind a bit clunky, but they work and they're in code that we expect to delete in the medium term, so I think overall the approach is good. **Changes to time** A small tweak is made to fix a bug initializing time for fuzzers in time.cc - we were previously failing to initialize `g_process_epoch_cycles` **Changes to `Crash`** A version that prints to stdio is added so that we can reliably print a crash from the fuzzer. **Changes to CqVerifier** Hooks are added to allow the top level loop to hook the verification functions with a function that steps time between CQ polls. **Changes to end2end fixtures** State machinery moves from the fixture to the test infra, to keep the customizations for fuzzing or not in one place. This means that fixtures are now just client/server factories, which is overall nice. It did necessitate moving some bespoke machinery into h2_ssl_cert_test.cc - this file is beginning to be problematic in borrowing parts but not all of the e2e test machinery. Some future PR needs to solve this. A cq arg is added to the Make functions since the cq is now owned by the test and not the fixture. **Changes to test registration** `TEST_P` is replaced by `CORE_END2END_TEST` and our own test registry is used as a first depot for test information. The gtest version of these tests: queries that registry to manually register tests with gtest. This ultimately changes the name of our tests again (I think for the last time) - the new names are shorter and more readable, so I don't count this as a regression. The fuzzer version of these tests: constructs a database of fuzzable tests that it can consult to look up a particular suite/test/config combination specified by the fuzzer to fuzz against. This gives us a single fuzzer that can test all 3k-ish fuzzing ready tests and cross polinate configuration between them. **Changes to test config** The zero size registry stuff was causing some problems with the event engine feature macros, so instead I've removed those and used GTEST_SKIP in the problematic tests. I think that's the approach we move towards in the future. **Which tests are included** Configs that are compatible - those that do not do fd manipulation directly (these are incompatible with FuzzingEventEngine), and those that do not join threads on their shutdown path (as these are incompatible with our cq wait methodology). Each we can talk about in the future - fd manipulation would be a significant expansion of FuzzingEventEngine, and is probably not worth it, however many uses of background threads now should probably evolve to be EventEngine::Run calls in the future, and then would be trivially enabled in the fuzzers. Some tests currently fail in the fuzzing environment, a `SKIP_IF_FUZZING` macro is used for these few to disable them if in the fuzzing environment. We'll burn these down in the future. **Changes to fuzzing_event_engine** Changes are made to time: an exponential sweep forward is used now - this catches small time precision things early, but makes decade long timers (we have them) able to be used right now. In the future we'll just skip time forward to the next scheduled timer, but that approach doesn't yet work due to legacy timer system interactions. Changes to port assignment: we ensure that ports are legal numbers before assigning them via `grpc_pick_port_or_die`. A race condition between time checking and io is fixed. --------- Co-authored-by: ctiller <ctiller@users.noreply.github.com>
2 years ago
absl::AnyInvocable<void(Failure) const> fail_;
absl::AnyInvocable<void(
grpc_event_engine::experimental::EventEngine::Duration) const>
step_fn_;
[end2end] Explain failures a little better (#33621) I'd been adding the following stanza regularly to debug flakes/fuzz failures: ``` Expect(1, CoreEnd2endTest::MaybePerformAction{[&](bool success) { Crash(absl::StrCat( "Unexpected completion of client side call: success=", success ? "true" : "false", " status=", server_status.ToString(), " initial_md=", server_initial_metadata.ToString())); }}); ``` it was helpful because it indicated why a call batch finished successfully and helped quickly identify next steps. It occurred to me however that this would better be done inside of the framework, and for *all* ops that have outputs, so this PR does just that. Any time a batch with an op that outputs information finishes successfully but unexpectedly we now display those outputs in human readable form in the error message. Sample output: ``` [ RUN ] CorpusExamples/FuzzerCorpusTest.RunOneExample/0 RUN TEST: Http2SingleHopTest.SimpleDelayedRequestShort/Chttp2SimpleSslFullstack E0101 00:00:05.000000000 396633 simple_delayed_request.cc:37] Create client side call E0101 00:00:05.000000000 396633 simple_delayed_request.cc:41] Start initial batch E0101 00:00:05.000000000 396633 simple_delayed_request.cc:47] Start server E0101 00:00:05.000000000 396633 cq_verifier.cc:364] Verify tag(101)-✅ for 600000ms test/core/end2end/cq_verifier.cc:316: Unexpected event: OP_COMPLETE: tag:0x1 OK with: incoming_metadata: {} status_on_client: status=4 msg=Deadline Exceeded trailing_metadata={} checked @ test/core/end2end/tests/simple_delayed_request.cc:51 expected: test/core/end2end/tests/simple_delayed_request.cc:50: tag(101) success=true ```
2 years ago
absl::flat_hash_map<void*, std::vector<SuccessfulStateString*>>
successful_state_strings_;
bool log_verifications_ = true;
bool added_expectations_ = false;
};
} // namespace grpc_core
10 years ago
int byte_buffer_eq_slice(grpc_byte_buffer* bb, grpc_slice b);
int byte_buffer_eq_string(grpc_byte_buffer* bb, const char* str);
int contains_metadata(grpc_metadata_array* array, const char* key,
const char* value);
int contains_metadata_slices(grpc_metadata_array* array, grpc_slice key,
grpc_slice value);
#endif // GRPC_TEST_CORE_END2END_CQ_VERIFIER_H