|
|
|
#!/usr/bin/env python3
|
|
|
|
# Copyright 2016 gRPC authors.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
# Uploads performance benchmark result file to bigquery.
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import calendar
|
|
|
|
import json
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import time
|
|
|
|
import uuid
|
|
|
|
|
|
|
|
gcp_utils_dir = os.path.abspath(
|
|
|
|
os.path.join(os.path.dirname(__file__), "../../gcp/utils")
|
|
|
|
)
|
|
|
|
sys.path.append(gcp_utils_dir)
|
|
|
|
import big_query_utils
|
|
|
|
|
|
|
|
_DEFAULT_PROJECT_ID = "grpc-testing"
|
|
|
|
|
|
|
|
|
|
|
|
def _upload_netperf_latency_csv_to_bigquery(
|
|
|
|
project_id, dataset_id, table_id, result_file
|
|
|
|
):
|
|
|
|
with open(result_file, "r") as f:
|
|
|
|
(col1, col2, col3) = f.read().split(",")
|
|
|
|
latency50 = float(col1.strip()) * 1000
|
|
|
|
latency90 = float(col2.strip()) * 1000
|
|
|
|
latency99 = float(col3.strip()) * 1000
|
|
|
|
|
|
|
|
scenario_result = {
|
|
|
|
"scenario": {"name": "netperf_tcp_rr"},
|
|
|
|
"summary": {
|
|
|
|
"latency50": latency50,
|
|
|
|
"latency90": latency90,
|
|
|
|
"latency99": latency99,
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
bq = big_query_utils.create_big_query()
|
|
|
|
_create_results_table(bq, project_id, dataset_id, table_id)
|
|
|
|
|
|
|
|
if not _insert_result(
|
|
|
|
bq, project_id, dataset_id, table_id, scenario_result, flatten=False
|
|
|
|
):
|
|
|
|
print("Error uploading result to bigquery.")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
def _upload_scenario_result_to_bigquery(
|
|
|
|
project_id,
|
|
|
|
dataset_id,
|
|
|
|
table_id,
|
|
|
|
result_file,
|
|
|
|
metadata_file,
|
|
|
|
node_info_file,
|
|
|
|
prometheus_query_results_file,
|
|
|
|
):
|
|
|
|
with open(result_file, "r") as f:
|
|
|
|
scenario_result = json.loads(f.read())
|
|
|
|
|
|
|
|
bq = big_query_utils.create_big_query()
|
|
|
|
_create_results_table(bq, project_id, dataset_id, table_id)
|
|
|
|
|
|
|
|
if not _insert_scenario_result(
|
|
|
|
bq,
|
|
|
|
project_id,
|
|
|
|
dataset_id,
|
|
|
|
table_id,
|
|
|
|
scenario_result,
|
|
|
|
metadata_file,
|
|
|
|
node_info_file,
|
|
|
|
prometheus_query_results_file,
|
|
|
|
):
|
|
|
|
print("Error uploading result to bigquery.")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
def _insert_result(
|
|
|
|
bq, project_id, dataset_id, table_id, scenario_result, flatten=True
|
|
|
|
):
|
|
|
|
if flatten:
|
|
|
|
_flatten_result_inplace(scenario_result)
|
|
|
|
_populate_metadata_inplace(scenario_result)
|
|
|
|
row = big_query_utils.make_row(str(uuid.uuid4()), scenario_result)
|
|
|
|
return big_query_utils.insert_rows(
|
|
|
|
bq, project_id, dataset_id, table_id, [row]
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _insert_scenario_result(
|
|
|
|
bq,
|
|
|
|
project_id,
|
|
|
|
dataset_id,
|
|
|
|
table_id,
|
|
|
|
scenario_result,
|
|
|
|
test_metadata_file,
|
|
|
|
node_info_file,
|
|
|
|
prometheus_query_results_file,
|
|
|
|
flatten=True,
|
|
|
|
):
|
|
|
|
if flatten:
|
|
|
|
_flatten_result_inplace(scenario_result)
|
|
|
|
_populate_metadata_from_file(scenario_result, test_metadata_file)
|
|
|
|
_populate_node_metadata_from_file(scenario_result, node_info_file)
|
|
|
|
_populate_prometheus_query_results_from_file(
|
|
|
|
scenario_result, prometheus_query_results_file
|
|
|
|
)
|
|
|
|
row = big_query_utils.make_row(str(uuid.uuid4()), scenario_result)
|
|
|
|
return big_query_utils.insert_rows(
|
|
|
|
bq, project_id, dataset_id, table_id, [row]
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _create_results_table(bq, project_id, dataset_id, table_id):
|
|
|
|
with open(
|
|
|
|
os.path.dirname(__file__) + "/scenario_result_schema.json", "r"
|
|
|
|
) as f:
|
|
|
|
table_schema = json.loads(f.read())
|
|
|
|
desc = "Results of performance benchmarks."
|
|
|
|
return big_query_utils.create_table2(
|
|
|
|
bq, project_id, dataset_id, table_id, table_schema, desc
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _flatten_result_inplace(scenario_result):
|
|
|
|
"""Bigquery is not really great for handling deeply nested data
|
|
|
|
and repeated fields. To maintain values of some fields while keeping
|
|
|
|
the schema relatively simple, we artificially leave some of the fields
|
|
|
|
as JSON strings.
|
|
|
|
"""
|
|
|
|
scenario_result["scenario"]["clientConfig"] = json.dumps(
|
|
|
|
scenario_result["scenario"]["clientConfig"]
|
|
|
|
)
|
|
|
|
scenario_result["scenario"]["serverConfig"] = json.dumps(
|
|
|
|
scenario_result["scenario"]["serverConfig"]
|
|
|
|
)
|
|
|
|
scenario_result["latencies"] = json.dumps(scenario_result["latencies"])
|
|
|
|
scenario_result["serverCpuStats"] = []
|
|
|
|
for stats in scenario_result["serverStats"]:
|
|
|
|
scenario_result["serverCpuStats"].append(dict())
|
|
|
|
scenario_result["serverCpuStats"][-1]["totalCpuTime"] = stats.pop(
|
|
|
|
"totalCpuTime", None
|
|
|
|
)
|
|
|
|
scenario_result["serverCpuStats"][-1]["idleCpuTime"] = stats.pop(
|
|
|
|
"idleCpuTime", None
|
|
|
|
)
|
|
|
|
for stats in scenario_result["clientStats"]:
|
|
|
|
stats["latencies"] = json.dumps(stats["latencies"])
|
|
|
|
stats.pop("requestResults", None)
|
|
|
|
scenario_result["serverCores"] = json.dumps(scenario_result["serverCores"])
|
|
|
|
scenario_result["clientSuccess"] = json.dumps(
|
|
|
|
scenario_result["clientSuccess"]
|
|
|
|
)
|
|
|
|
scenario_result["serverSuccess"] = json.dumps(
|
|
|
|
scenario_result["serverSuccess"]
|
|
|
|
)
|
|
|
|
scenario_result["requestResults"] = json.dumps(
|
|
|
|
scenario_result.get("requestResults", [])
|
|
|
|
)
|
|
|
|
scenario_result["serverCpuUsage"] = scenario_result["summary"].pop(
|
|
|
|
"serverCpuUsage", None
|
|
|
|
)
|
|
|
|
scenario_result["summary"].pop("successfulRequestsPerSecond", None)
|
|
|
|
scenario_result["summary"].pop("failedRequestsPerSecond", None)
|
|
|
|
|
|
|
|
|
|
|
|
def _populate_metadata_inplace(scenario_result):
|
|
|
|
"""Populates metadata based on environment variables set by Jenkins."""
|
|
|
|
# NOTE: Grabbing the Kokoro environment variables will only work if the
|
|
|
|
# driver is running locally on the same machine where Kokoro has started
|
|
|
|
# the job. For our setup, this is currently the case, so just assume that.
|
|
|
|
build_number = os.getenv("KOKORO_BUILD_NUMBER")
|
|
|
|
build_url = (
|
|
|
|
"https://source.cloud.google.com/results/invocations/%s"
|
|
|
|
% os.getenv("KOKORO_BUILD_ID")
|
|
|
|
)
|
|
|
|
job_name = os.getenv("KOKORO_JOB_NAME")
|
|
|
|
git_commit = os.getenv("KOKORO_GIT_COMMIT")
|
|
|
|
# actual commit is the actual head of PR that is getting tested
|
|
|
|
# TODO(jtattermusch): unclear how to obtain on Kokoro
|
|
|
|
git_actual_commit = os.getenv("ghprbActualCommit")
|
|
|
|
|
|
|
|
utc_timestamp = str(calendar.timegm(time.gmtime()))
|
|
|
|
metadata = {"created": utc_timestamp}
|
|
|
|
|
|
|
|
if build_number:
|
|
|
|
metadata["buildNumber"] = build_number
|
|
|
|
if build_url:
|
|
|
|
metadata["buildUrl"] = build_url
|
|
|
|
if job_name:
|
|
|
|
metadata["jobName"] = job_name
|
|
|
|
if git_commit:
|
|
|
|
metadata["gitCommit"] = git_commit
|
|
|
|
if git_actual_commit:
|
|
|
|
metadata["gitActualCommit"] = git_actual_commit
|
|
|
|
|
|
|
|
scenario_result["metadata"] = metadata
|
|
|
|
|
|
|
|
|
|
|
|
def _populate_metadata_from_file(scenario_result, test_metadata_file):
|
|
|
|
utc_timestamp = str(calendar.timegm(time.gmtime()))
|
|
|
|
metadata = {"created": utc_timestamp}
|
|
|
|
|
|
|
|
_annotation_to_bq_metadata_key_map = {
|
|
|
|
"ci_" + key: key
|
|
|
|
for key in (
|
|
|
|
"buildNumber",
|
|
|
|
"buildUrl",
|
|
|
|
"jobName",
|
|
|
|
"gitCommit",
|
|
|
|
"gitActualCommit",
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
if os.access(test_metadata_file, os.R_OK):
|
|
|
|
with open(test_metadata_file, "r") as f:
|
|
|
|
test_metadata = json.loads(f.read())
|
|
|
|
|
|
|
|
# eliminate managedFields from metadata set
|
|
|
|
if "managedFields" in test_metadata:
|
|
|
|
del test_metadata["managedFields"]
|
|
|
|
|
|
|
|
annotations = test_metadata.get("annotations", {})
|
|
|
|
|
|
|
|
# if use kubectl apply ..., kubectl will append current configuration to
|
|
|
|
# annotation, the field is deleted since it includes a lot of irrelevant
|
|
|
|
# information
|
|
|
|
if "kubectl.kubernetes.io/last-applied-configuration" in annotations:
|
|
|
|
del annotations["kubectl.kubernetes.io/last-applied-configuration"]
|
|
|
|
|
|
|
|
# dump all metadata as JSON to testMetadata field
|
|
|
|
scenario_result["testMetadata"] = json.dumps(test_metadata)
|
|
|
|
for key, value in _annotation_to_bq_metadata_key_map.items():
|
|
|
|
if key in annotations:
|
|
|
|
metadata[value] = annotations[key]
|
|
|
|
|
|
|
|
scenario_result["metadata"] = metadata
|
|
|
|
|
|
|
|
|
|
|
|
def _populate_node_metadata_from_file(scenario_result, node_info_file):
|
|
|
|
node_metadata = {"driver": {}, "servers": [], "clients": []}
|
|
|
|
_node_info_to_bq_node_metadata_key_map = {
|
|
|
|
"Name": "name",
|
|
|
|
"PodIP": "podIP",
|
|
|
|
"NodeName": "nodeName",
|
|
|
|
}
|
|
|
|
|
|
|
|
if os.access(node_info_file, os.R_OK):
|
|
|
|
with open(node_info_file, "r") as f:
|
|
|
|
file_metadata = json.loads(f.read())
|
|
|
|
for key, value in _node_info_to_bq_node_metadata_key_map.items():
|
|
|
|
node_metadata["driver"][value] = file_metadata["Driver"][key]
|
|
|
|
for clientNodeInfo in file_metadata["Clients"]:
|
|
|
|
node_metadata["clients"].append(
|
|
|
|
{
|
|
|
|
value: clientNodeInfo[key]
|
|
|
|
for key, value in _node_info_to_bq_node_metadata_key_map.items()
|
|
|
|
}
|
|
|
|
)
|
|
|
|
for serverNodeInfo in file_metadata["Servers"]:
|
|
|
|
node_metadata["servers"].append(
|
|
|
|
{
|
|
|
|
value: serverNodeInfo[key]
|
|
|
|
for key, value in _node_info_to_bq_node_metadata_key_map.items()
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
scenario_result["nodeMetadata"] = node_metadata
|
|
|
|
|
|
|
|
|
|
|
|
def _populate_prometheus_query_results_from_file(
|
|
|
|
scenario_result, prometheus_query_result_file
|
|
|
|
):
|
|
|
|
"""Populate the results from Prometheus query to Bigquery table"""
|
|
|
|
if os.access(prometheus_query_result_file, os.R_OK):
|
|
|
|
with open(prometheus_query_result_file, "r", encoding="utf8") as f:
|
|
|
|
file_query_results = json.loads(f.read())
|
|
|
|
|
|
|
|
scenario_result["testDurationSeconds"] = file_query_results[
|
|
|
|
"testDurationSeconds"
|
|
|
|
]
|
|
|
|
clientsPrometheusData = []
|
|
|
|
if "clients" in file_query_results:
|
|
|
|
for client_name, client_data in file_query_results[
|
|
|
|
"clients"
|
|
|
|
].items():
|
|
|
|
clientPrometheusData = {"name": client_name}
|
|
|
|
containersPrometheusData = []
|
|
|
|
for container_name, container_data in client_data.items():
|
|
|
|
containerPrometheusData = {
|
|
|
|
"name": container_name,
|
|
|
|
"cpuSeconds": container_data["cpuSeconds"],
|
|
|
|
"memoryMean": container_data["memoryMean"],
|
|
|
|
}
|
|
|
|
containersPrometheusData.append(containerPrometheusData)
|
|
|
|
clientPrometheusData[
|
|
|
|
"containers"
|
|
|
|
] = containersPrometheusData
|
|
|
|
clientsPrometheusData.append(clientPrometheusData)
|
|
|
|
scenario_result["clientsPrometheusData"] = clientsPrometheusData
|
|
|
|
|
|
|
|
serversPrometheusData = []
|
|
|
|
if "servers" in file_query_results:
|
|
|
|
for server_name, server_data in file_query_results[
|
|
|
|
"servers"
|
|
|
|
].items():
|
|
|
|
serverPrometheusData = {"name": server_name}
|
|
|
|
containersPrometheusData = []
|
|
|
|
for container_name, container_data in server_data.items():
|
|
|
|
containerPrometheusData = {
|
|
|
|
"name": container_name,
|
|
|
|
"cpuSeconds": container_data["cpuSeconds"],
|
|
|
|
"memoryMean": container_data["memoryMean"],
|
|
|
|
}
|
|
|
|
containersPrometheusData.append(containerPrometheusData)
|
|
|
|
serverPrometheusData[
|
|
|
|
"containers"
|
|
|
|
] = containersPrometheusData
|
|
|
|
serversPrometheusData.append(serverPrometheusData)
|
|
|
|
scenario_result["serversPrometheusData"] = serversPrometheusData
|
|
|
|
|
|
|
|
|
|
|
|
argp = argparse.ArgumentParser(description="Upload result to big query.")
|
|
|
|
argp.add_argument(
|
|
|
|
"--bq_result_table",
|
|
|
|
required=True,
|
|
|
|
default=None,
|
|
|
|
type=str,
|
|
|
|
help='Bigquery "dataset.table" or "project.dataset.table" to upload results to. The default project is "grpc-testing".',
|
|
|
|
)
|
|
|
|
argp.add_argument(
|
|
|
|
"--file_to_upload",
|
|
|
|
default="scenario_result.json",
|
|
|
|
type=str,
|
|
|
|
help="Report file to upload.",
|
|
|
|
)
|
|
|
|
argp.add_argument(
|
|
|
|
"--metadata_file_to_upload",
|
|
|
|
default="metadata.json",
|
|
|
|
type=str,
|
|
|
|
help="Metadata file to upload.",
|
|
|
|
)
|
|
|
|
argp.add_argument(
|
|
|
|
"--node_info_file_to_upload",
|
|
|
|
default="node_info.json",
|
|
|
|
type=str,
|
|
|
|
help="Node information file to upload.",
|
|
|
|
)
|
|
|
|
argp.add_argument(
|
|
|
|
"--prometheus_query_results_to_upload",
|
|
|
|
default="prometheus_query_result.json",
|
|
|
|
type=str,
|
|
|
|
help="Prometheus query result file to upload.",
|
|
|
|
)
|
|
|
|
argp.add_argument(
|
|
|
|
"--file_format",
|
|
|
|
choices=["scenario_result", "netperf_latency_csv"],
|
|
|
|
default="scenario_result",
|
|
|
|
help="Format of the file to upload.",
|
|
|
|
)
|
|
|
|
|
|
|
|
args = argp.parse_args()
|
|
|
|
|
|
|
|
bq_words = args.bq_result_table.split(".", 2)
|
|
|
|
if len(bq_words) == 3:
|
|
|
|
project_id, dataset_id, table_id = bq_words
|
|
|
|
elif len(bq_words) == 2:
|
|
|
|
project_id = _DEFAULT_PROJECT_ID
|
|
|
|
dataset_id, table_id = bq_words
|
|
|
|
else:
|
|
|
|
print(
|
|
|
|
"BigQuery table must be in the format dataset.table or project.dataset.table."
|
|
|
|
)
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
if args.file_format == "netperf_latency_csv":
|
|
|
|
_upload_netperf_latency_csv_to_bigquery(
|
|
|
|
project_id, dataset_id, table_id, args.file_to_upload
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
_upload_scenario_result_to_bigquery(
|
|
|
|
project_id,
|
|
|
|
dataset_id,
|
|
|
|
table_id,
|
|
|
|
args.file_to_upload,
|
|
|
|
args.metadata_file_to_upload,
|
|
|
|
args.node_info_file_to_upload,
|
|
|
|
args.prometheus_query_results_to_upload,
|
|
|
|
)
|
|
|
|
print(
|
|
|
|
"Successfully uploaded %s, %s, %s and %s to BigQuery.\n"
|
|
|
|
% (
|
|
|
|
args.file_to_upload,
|
|
|
|
args.metadata_file_to_upload,
|
|
|
|
args.node_info_file_to_upload,
|
|
|
|
args.prometheus_query_results_to_upload,
|
|
|
|
)
|
|
|
|
)
|