|
|
|
/*
|
|
|
|
*
|
|
|
|
* Copyright 2015 gRPC authors.
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "test/core/util/histogram.h"
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#include <grpc/support/alloc.h>
|
|
|
|
#include <grpc/support/log.h>
|
|
|
|
#include <grpc/support/port_platform.h>
|
|
|
|
|
|
|
|
#include "src/core/lib/gpr/useful.h"
|
|
|
|
|
|
|
|
/* Histograms are stored with exponentially increasing bucket sizes.
|
|
|
|
The first bucket is [0, m) where m = 1 + resolution
|
|
|
|
Bucket n (n>=1) contains [m**n, m**(n+1))
|
|
|
|
There are sufficient buckets to reach max_bucket_start */
|
|
|
|
|
|
|
|
struct grpc_histogram {
|
|
|
|
/* Sum of all values seen so far */
|
|
|
|
double sum;
|
|
|
|
/* Sum of squares of all values seen so far */
|
|
|
|
double sum_of_squares;
|
|
|
|
/* number of values seen so far */
|
|
|
|
double count;
|
|
|
|
/* m in the description */
|
|
|
|
double multiplier;
|
|
|
|
double one_on_log_multiplier;
|
|
|
|
/* minimum value seen */
|
|
|
|
double min_seen;
|
|
|
|
/* maximum value seen */
|
|
|
|
double max_seen;
|
|
|
|
/* maximum representable value */
|
|
|
|
double max_possible;
|
|
|
|
/* number of buckets */
|
|
|
|
size_t num_buckets;
|
|
|
|
/* the buckets themselves */
|
|
|
|
uint32_t* buckets;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* determine a bucket index given a value - does no bounds checking */
|
|
|
|
static size_t bucket_for_unchecked(grpc_histogram* h, double x) {
|
|
|
|
return (size_t)(log(x) * h->one_on_log_multiplier);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* bounds checked version of the above */
|
|
|
|
static size_t bucket_for(grpc_histogram* h, double x) {
|
|
|
|
size_t bucket = bucket_for_unchecked(h, GPR_CLAMP(x, 1.0, h->max_possible));
|
|
|
|
GPR_ASSERT(bucket < h->num_buckets);
|
|
|
|
return bucket;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* at what value does a bucket start? */
|
|
|
|
static double bucket_start(grpc_histogram* h, double x) {
|
|
|
|
return pow(h->multiplier, x);
|
|
|
|
}
|
|
|
|
|
|
|
|
grpc_histogram* grpc_histogram_create(double resolution,
|
|
|
|
double max_bucket_start) {
|
|
|
|
grpc_histogram* h = (grpc_histogram*)gpr_malloc(sizeof(grpc_histogram));
|
|
|
|
GPR_ASSERT(resolution > 0.0);
|
|
|
|
GPR_ASSERT(max_bucket_start > resolution);
|
|
|
|
h->sum = 0.0;
|
|
|
|
h->sum_of_squares = 0.0;
|
|
|
|
h->multiplier = 1.0 + resolution;
|
|
|
|
h->one_on_log_multiplier = 1.0 / log(1.0 + resolution);
|
|
|
|
h->max_possible = max_bucket_start;
|
|
|
|
h->count = 0.0;
|
|
|
|
h->min_seen = max_bucket_start;
|
|
|
|
h->max_seen = 0.0;
|
|
|
|
h->num_buckets = bucket_for_unchecked(h, max_bucket_start) + 1;
|
|
|
|
GPR_ASSERT(h->num_buckets > 1);
|
|
|
|
GPR_ASSERT(h->num_buckets < 100000000);
|
|
|
|
h->buckets = (uint32_t*)gpr_zalloc(sizeof(uint32_t) * h->num_buckets);
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
|
|
|
void grpc_histogram_destroy(grpc_histogram* h) {
|
|
|
|
gpr_free(h->buckets);
|
|
|
|
gpr_free(h);
|
|
|
|
}
|
|
|
|
|
|
|
|
void grpc_histogram_add(grpc_histogram* h, double x) {
|
|
|
|
h->sum += x;
|
|
|
|
h->sum_of_squares += x * x;
|
|
|
|
h->count++;
|
|
|
|
if (x < h->min_seen) {
|
|
|
|
h->min_seen = x;
|
|
|
|
}
|
|
|
|
if (x > h->max_seen) {
|
|
|
|
h->max_seen = x;
|
|
|
|
}
|
|
|
|
h->buckets[bucket_for(h, x)]++;
|
|
|
|
}
|
|
|
|
|
|
|
|
int grpc_histogram_merge(grpc_histogram* dst, const grpc_histogram* src) {
|
|
|
|
if ((dst->num_buckets != src->num_buckets) ||
|
|
|
|
(dst->multiplier != src->multiplier)) {
|
|
|
|
/* Fail because these histograms don't match */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
grpc_histogram_merge_contents(dst, src->buckets, src->num_buckets,
|
|
|
|
src->min_seen, src->max_seen, src->sum,
|
|
|
|
src->sum_of_squares, src->count);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void grpc_histogram_merge_contents(grpc_histogram* dst, const uint32_t* data,
|
|
|
|
size_t data_count, double min_seen,
|
|
|
|
double max_seen, double sum,
|
|
|
|
double sum_of_squares, double count) {
|
|
|
|
size_t i;
|
|
|
|
GPR_ASSERT(dst->num_buckets == data_count);
|
|
|
|
dst->sum += sum;
|
|
|
|
dst->sum_of_squares += sum_of_squares;
|
|
|
|
dst->count += count;
|
|
|
|
if (min_seen < dst->min_seen) {
|
|
|
|
dst->min_seen = min_seen;
|
|
|
|
}
|
|
|
|
if (max_seen > dst->max_seen) {
|
|
|
|
dst->max_seen = max_seen;
|
|
|
|
}
|
|
|
|
for (i = 0; i < dst->num_buckets; i++) {
|
|
|
|
dst->buckets[i] += data[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static double threshold_for_count_below(grpc_histogram* h, double count_below) {
|
|
|
|
double count_so_far;
|
|
|
|
double lower_bound;
|
|
|
|
double upper_bound;
|
|
|
|
size_t lower_idx;
|
|
|
|
size_t upper_idx;
|
|
|
|
|
|
|
|
if (h->count == 0) {
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (count_below <= 0) {
|
|
|
|
return h->min_seen;
|
|
|
|
}
|
|
|
|
if (count_below >= h->count) {
|
|
|
|
return h->max_seen;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* find the lowest bucket that gets us above count_below */
|
|
|
|
count_so_far = 0.0;
|
|
|
|
for (lower_idx = 0; lower_idx < h->num_buckets; lower_idx++) {
|
|
|
|
count_so_far += h->buckets[lower_idx];
|
|
|
|
if (count_so_far >= count_below) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (count_so_far == count_below) {
|
|
|
|
/* this bucket hits the threshold exactly... we should be midway through
|
|
|
|
any run of zero values following the bucket */
|
|
|
|
for (upper_idx = lower_idx + 1; upper_idx < h->num_buckets; upper_idx++) {
|
|
|
|
if (h->buckets[upper_idx]) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return (bucket_start(h, (double)lower_idx) +
|
|
|
|
bucket_start(h, (double)upper_idx)) /
|
|
|
|
2.0;
|
|
|
|
} else {
|
|
|
|
/* treat values as uniform throughout the bucket, and find where this value
|
|
|
|
should lie */
|
|
|
|
lower_bound = bucket_start(h, (double)lower_idx);
|
|
|
|
upper_bound = bucket_start(h, (double)(lower_idx + 1));
|
|
|
|
return GPR_CLAMP(upper_bound - (upper_bound - lower_bound) *
|
|
|
|
(count_so_far - count_below) /
|
|
|
|
h->buckets[lower_idx],
|
|
|
|
h->min_seen, h->max_seen);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
double grpc_histogram_percentile(grpc_histogram* h, double percentile) {
|
|
|
|
return threshold_for_count_below(h, h->count * percentile / 100.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
double grpc_histogram_mean(grpc_histogram* h) {
|
|
|
|
GPR_ASSERT(h->count != 0);
|
|
|
|
return h->sum / h->count;
|
|
|
|
}
|
|
|
|
|
|
|
|
double grpc_histogram_stddev(grpc_histogram* h) {
|
|
|
|
return sqrt(grpc_histogram_variance(h));
|
|
|
|
}
|
|
|
|
|
|
|
|
double grpc_histogram_variance(grpc_histogram* h) {
|
|
|
|
if (h->count == 0) return 0.0;
|
|
|
|
return (h->sum_of_squares * h->count - h->sum * h->sum) /
|
|
|
|
(h->count * h->count);
|
|
|
|
}
|
|
|
|
|
|
|
|
double grpc_histogram_maximum(grpc_histogram* h) { return h->max_seen; }
|
|
|
|
|
|
|
|
double grpc_histogram_minimum(grpc_histogram* h) { return h->min_seen; }
|
|
|
|
|
|
|
|
double grpc_histogram_count(grpc_histogram* h) { return h->count; }
|
|
|
|
|
|
|
|
double grpc_histogram_sum(grpc_histogram* h) { return h->sum; }
|
|
|
|
|
|
|
|
double grpc_histogram_sum_of_squares(grpc_histogram* h) {
|
|
|
|
return h->sum_of_squares;
|
|
|
|
}
|
|
|
|
|
|
|
|
const uint32_t* grpc_histogram_get_contents(grpc_histogram* h, size_t* size) {
|
|
|
|
*size = h->num_buckets;
|
|
|
|
return h->buckets;
|
|
|
|
}
|