GoogleTest - Google Testing and Mocking Framework (grpc protobuff依赖)
https://google.github.io/googletest/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2217 lines
72 KiB
2217 lines
72 KiB
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file tests the built-in actions. |
|
|
|
#include "gmock/gmock-actions.h" |
|
|
|
#include <algorithm> |
|
#include <functional> |
|
#include <iterator> |
|
#include <memory> |
|
#include <sstream> |
|
#include <string> |
|
#include <tuple> |
|
#include <type_traits> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#include "gmock/gmock.h" |
|
#include "gmock/internal/gmock-port.h" |
|
#include "gtest/gtest-spi.h" |
|
#include "gtest/gtest.h" |
|
#include "gtest/internal/gtest-port.h" |
|
|
|
// Silence C4100 (unreferenced formal parameter) and C4503 (decorated name |
|
// length exceeded) for MSVC. |
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100 4503) |
|
#if defined(_MSC_VER) && (_MSC_VER == 1900) |
|
// and silence C4800 (C4800: 'int *const ': forcing value |
|
// to bool 'true' or 'false') for MSVC 15 |
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4800) |
|
#endif |
|
|
|
namespace testing { |
|
namespace { |
|
|
|
using ::testing::internal::BuiltInDefaultValue; |
|
|
|
TEST(TypeTraits, Negation) { |
|
// Direct use with std types. |
|
static_assert(std::is_base_of<std::false_type, |
|
internal::negation<std::true_type>>::value, |
|
""); |
|
|
|
static_assert(std::is_base_of<std::true_type, |
|
internal::negation<std::false_type>>::value, |
|
""); |
|
|
|
// With other types that fit the requirement of a value member that is |
|
// convertible to bool. |
|
static_assert(std::is_base_of< |
|
std::true_type, |
|
internal::negation<std::integral_constant<int, 0>>>::value, |
|
""); |
|
|
|
static_assert(std::is_base_of< |
|
std::false_type, |
|
internal::negation<std::integral_constant<int, 1>>>::value, |
|
""); |
|
|
|
static_assert(std::is_base_of< |
|
std::false_type, |
|
internal::negation<std::integral_constant<int, -1>>>::value, |
|
""); |
|
} |
|
|
|
// Weird false/true types that aren't actually bool constants (but should still |
|
// be legal according to [meta.logical] because `bool(T::value)` is valid), are |
|
// distinct from std::false_type and std::true_type, and are distinct from other |
|
// instantiations of the same template. |
|
// |
|
// These let us check finicky details mandated by the standard like |
|
// "std::conjunction should evaluate to a type that inherits from the first |
|
// false-y input". |
|
template <int> |
|
struct MyFalse : std::integral_constant<int, 0> {}; |
|
|
|
template <int> |
|
struct MyTrue : std::integral_constant<int, -1> {}; |
|
|
|
TEST(TypeTraits, Conjunction) { |
|
// Base case: always true. |
|
static_assert(std::is_base_of<std::true_type, internal::conjunction<>>::value, |
|
""); |
|
|
|
// One predicate: inherits from that predicate, regardless of value. |
|
static_assert( |
|
std::is_base_of<MyFalse<0>, internal::conjunction<MyFalse<0>>>::value, |
|
""); |
|
|
|
static_assert( |
|
std::is_base_of<MyTrue<0>, internal::conjunction<MyTrue<0>>>::value, ""); |
|
|
|
// Multiple predicates, with at least one false: inherits from that one. |
|
static_assert( |
|
std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>, |
|
MyTrue<2>>>::value, |
|
""); |
|
|
|
static_assert( |
|
std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>, |
|
MyFalse<2>>>::value, |
|
""); |
|
|
|
// Short circuiting: in the case above, additional predicates need not even |
|
// define a value member. |
|
struct Empty {}; |
|
static_assert( |
|
std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>, |
|
Empty>>::value, |
|
""); |
|
|
|
// All predicates true: inherits from the last. |
|
static_assert( |
|
std::is_base_of<MyTrue<2>, internal::conjunction<MyTrue<0>, MyTrue<1>, |
|
MyTrue<2>>>::value, |
|
""); |
|
} |
|
|
|
TEST(TypeTraits, Disjunction) { |
|
// Base case: always false. |
|
static_assert( |
|
std::is_base_of<std::false_type, internal::disjunction<>>::value, ""); |
|
|
|
// One predicate: inherits from that predicate, regardless of value. |
|
static_assert( |
|
std::is_base_of<MyFalse<0>, internal::disjunction<MyFalse<0>>>::value, |
|
""); |
|
|
|
static_assert( |
|
std::is_base_of<MyTrue<0>, internal::disjunction<MyTrue<0>>>::value, ""); |
|
|
|
// Multiple predicates, with at least one true: inherits from that one. |
|
static_assert( |
|
std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>, |
|
MyFalse<2>>>::value, |
|
""); |
|
|
|
static_assert( |
|
std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>, |
|
MyTrue<2>>>::value, |
|
""); |
|
|
|
// Short circuiting: in the case above, additional predicates need not even |
|
// define a value member. |
|
struct Empty {}; |
|
static_assert( |
|
std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>, |
|
Empty>>::value, |
|
""); |
|
|
|
// All predicates false: inherits from the last. |
|
static_assert( |
|
std::is_base_of<MyFalse<2>, internal::disjunction<MyFalse<0>, MyFalse<1>, |
|
MyFalse<2>>>::value, |
|
""); |
|
} |
|
|
|
TEST(TypeTraits, IsInvocableRV) { |
|
struct C { |
|
int operator()() const { return 0; } |
|
void operator()(int) & {} |
|
std::string operator()(int) && { return ""; }; |
|
}; |
|
|
|
// The first overload is callable for const and non-const rvalues and lvalues. |
|
// It can be used to obtain an int, cv void, or anything int is convertible |
|
// to. |
|
static_assert(internal::is_callable_r<int, C>::value, ""); |
|
static_assert(internal::is_callable_r<int, C&>::value, ""); |
|
static_assert(internal::is_callable_r<int, const C>::value, ""); |
|
static_assert(internal::is_callable_r<int, const C&>::value, ""); |
|
|
|
static_assert(internal::is_callable_r<void, C>::value, ""); |
|
static_assert(internal::is_callable_r<const volatile void, C>::value, ""); |
|
static_assert(internal::is_callable_r<char, C>::value, ""); |
|
|
|
// It's possible to provide an int. If it's given to an lvalue, the result is |
|
// void. Otherwise it is std::string (which is also treated as allowed for a |
|
// void result type). |
|
static_assert(internal::is_callable_r<void, C&, int>::value, ""); |
|
static_assert(!internal::is_callable_r<int, C&, int>::value, ""); |
|
static_assert(!internal::is_callable_r<std::string, C&, int>::value, ""); |
|
static_assert(!internal::is_callable_r<void, const C&, int>::value, ""); |
|
|
|
static_assert(internal::is_callable_r<std::string, C, int>::value, ""); |
|
static_assert(internal::is_callable_r<void, C, int>::value, ""); |
|
static_assert(!internal::is_callable_r<int, C, int>::value, ""); |
|
|
|
// It's not possible to provide other arguments. |
|
static_assert(!internal::is_callable_r<void, C, std::string>::value, ""); |
|
static_assert(!internal::is_callable_r<void, C, int, int>::value, ""); |
|
|
|
// In C++17 and above, where it's guaranteed that functions can return |
|
// non-moveable objects, everything should work fine for non-moveable rsult |
|
// types too. |
|
#if defined(GTEST_INTERNAL_CPLUSPLUS_LANG) && \ |
|
GTEST_INTERNAL_CPLUSPLUS_LANG >= 201703L |
|
{ |
|
struct NonMoveable { |
|
NonMoveable() = default; |
|
NonMoveable(NonMoveable&&) = delete; |
|
}; |
|
|
|
static_assert(!std::is_move_constructible_v<NonMoveable>); |
|
|
|
struct Callable { |
|
NonMoveable operator()() { return NonMoveable(); } |
|
}; |
|
|
|
static_assert(internal::is_callable_r<NonMoveable, Callable>::value); |
|
static_assert(internal::is_callable_r<void, Callable>::value); |
|
static_assert( |
|
internal::is_callable_r<const volatile void, Callable>::value); |
|
|
|
static_assert(!internal::is_callable_r<int, Callable>::value); |
|
static_assert(!internal::is_callable_r<NonMoveable, Callable, int>::value); |
|
} |
|
#endif // C++17 and above |
|
|
|
// Nothing should choke when we try to call other arguments besides directly |
|
// callable objects, but they should not show up as callable. |
|
static_assert(!internal::is_callable_r<void, int>::value, ""); |
|
static_assert(!internal::is_callable_r<void, void (C::*)()>::value, ""); |
|
static_assert(!internal::is_callable_r<void, void (C::*)(), C*>::value, ""); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<T*>::Get() returns NULL. |
|
TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) { |
|
EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == nullptr); |
|
EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == nullptr); |
|
EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == nullptr); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<T*>::Exists() return true. |
|
TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) { |
|
EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists()); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a |
|
// built-in numeric type. |
|
TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) { |
|
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<char>::Get()); |
|
#if GMOCK_WCHAR_T_IS_NATIVE_ |
|
#if !defined(__WCHAR_UNSIGNED__) |
|
EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get()); |
|
#else |
|
EXPECT_EQ(0U, BuiltInDefaultValue<wchar_t>::Get()); |
|
#endif |
|
#endif |
|
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT |
|
EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT |
|
EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT |
|
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<int>::Get()); |
|
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get()); // NOLINT |
|
EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get()); // NOLINT |
|
EXPECT_EQ(0, BuiltInDefaultValue<long>::Get()); // NOLINT |
|
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long long>::Get()); // NOLINT |
|
EXPECT_EQ(0, BuiltInDefaultValue<signed long long>::Get()); // NOLINT |
|
EXPECT_EQ(0, BuiltInDefaultValue<long long>::Get()); // NOLINT |
|
EXPECT_EQ(0, BuiltInDefaultValue<float>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<double>::Get()); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a |
|
// built-in numeric type. |
|
TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) { |
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<char>::Exists()); |
|
#if GMOCK_WCHAR_T_IS_NATIVE_ |
|
EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists()); |
|
#endif |
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<int>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<long>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned long long>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<signed long long>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<long long>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<float>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<double>::Exists()); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<bool>::Get() returns false. |
|
TEST(BuiltInDefaultValueTest, IsFalseForBool) { |
|
EXPECT_FALSE(BuiltInDefaultValue<bool>::Get()); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<bool>::Exists() returns true. |
|
TEST(BuiltInDefaultValueTest, BoolExists) { |
|
EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists()); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a |
|
// string type. |
|
TEST(BuiltInDefaultValueTest, IsEmptyStringForString) { |
|
EXPECT_EQ("", BuiltInDefaultValue<::std::string>::Get()); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a |
|
// string type. |
|
TEST(BuiltInDefaultValueTest, ExistsForString) { |
|
EXPECT_TRUE(BuiltInDefaultValue<::std::string>::Exists()); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<const T>::Get() returns the same |
|
// value as BuiltInDefaultValue<T>::Get() does. |
|
TEST(BuiltInDefaultValueTest, WorksForConstTypes) { |
|
EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get()); |
|
EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == nullptr); |
|
EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get()); |
|
} |
|
|
|
// A type that's default constructible. |
|
class MyDefaultConstructible { |
|
public: |
|
MyDefaultConstructible() : value_(42) {} |
|
|
|
int value() const { return value_; } |
|
|
|
private: |
|
int value_; |
|
}; |
|
|
|
// A type that's not default constructible. |
|
class MyNonDefaultConstructible { |
|
public: |
|
// Does not have a default ctor. |
|
explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {} |
|
|
|
int value() const { return value_; } |
|
|
|
private: |
|
int value_; |
|
}; |
|
|
|
TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) { |
|
EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists()); |
|
} |
|
|
|
TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) { |
|
EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value()); |
|
} |
|
|
|
TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) { |
|
EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists()); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<T&>::Get() aborts the program. |
|
TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) { |
|
EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<int&>::Get(); }, ""); |
|
EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<const char&>::Get(); }, ""); |
|
} |
|
|
|
TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) { |
|
EXPECT_DEATH_IF_SUPPORTED( |
|
{ BuiltInDefaultValue<MyNonDefaultConstructible>::Get(); }, ""); |
|
} |
|
|
|
// Tests that DefaultValue<T>::IsSet() is false initially. |
|
TEST(DefaultValueTest, IsInitiallyUnset) { |
|
EXPECT_FALSE(DefaultValue<int>::IsSet()); |
|
EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet()); |
|
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet()); |
|
} |
|
|
|
// Tests that DefaultValue<T> can be set and then unset. |
|
TEST(DefaultValueTest, CanBeSetAndUnset) { |
|
EXPECT_TRUE(DefaultValue<int>::Exists()); |
|
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists()); |
|
|
|
DefaultValue<int>::Set(1); |
|
DefaultValue<const MyNonDefaultConstructible>::Set( |
|
MyNonDefaultConstructible(42)); |
|
|
|
EXPECT_EQ(1, DefaultValue<int>::Get()); |
|
EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value()); |
|
|
|
EXPECT_TRUE(DefaultValue<int>::Exists()); |
|
EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists()); |
|
|
|
DefaultValue<int>::Clear(); |
|
DefaultValue<const MyNonDefaultConstructible>::Clear(); |
|
|
|
EXPECT_FALSE(DefaultValue<int>::IsSet()); |
|
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet()); |
|
|
|
EXPECT_TRUE(DefaultValue<int>::Exists()); |
|
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists()); |
|
} |
|
|
|
// Tests that DefaultValue<T>::Get() returns the |
|
// BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is |
|
// false. |
|
TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) { |
|
EXPECT_FALSE(DefaultValue<int>::IsSet()); |
|
EXPECT_TRUE(DefaultValue<int>::Exists()); |
|
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet()); |
|
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists()); |
|
|
|
EXPECT_EQ(0, DefaultValue<int>::Get()); |
|
|
|
EXPECT_DEATH_IF_SUPPORTED( |
|
{ DefaultValue<MyNonDefaultConstructible>::Get(); }, ""); |
|
} |
|
|
|
TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) { |
|
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists()); |
|
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == nullptr); |
|
DefaultValue<std::unique_ptr<int>>::SetFactory( |
|
[] { return std::make_unique<int>(42); }); |
|
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists()); |
|
std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get(); |
|
EXPECT_EQ(42, *i); |
|
} |
|
|
|
// Tests that DefaultValue<void>::Get() returns void. |
|
TEST(DefaultValueTest, GetWorksForVoid) { return DefaultValue<void>::Get(); } |
|
|
|
// Tests using DefaultValue with a reference type. |
|
|
|
// Tests that DefaultValue<T&>::IsSet() is false initially. |
|
TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) { |
|
EXPECT_FALSE(DefaultValue<int&>::IsSet()); |
|
EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet()); |
|
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet()); |
|
} |
|
|
|
// Tests that DefaultValue<T&>::Exists is false initially. |
|
TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) { |
|
EXPECT_FALSE(DefaultValue<int&>::Exists()); |
|
EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists()); |
|
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists()); |
|
} |
|
|
|
// Tests that DefaultValue<T&> can be set and then unset. |
|
TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) { |
|
int n = 1; |
|
DefaultValue<const int&>::Set(n); |
|
MyNonDefaultConstructible x(42); |
|
DefaultValue<MyNonDefaultConstructible&>::Set(x); |
|
|
|
EXPECT_TRUE(DefaultValue<const int&>::Exists()); |
|
EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists()); |
|
|
|
EXPECT_EQ(&n, &(DefaultValue<const int&>::Get())); |
|
EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get())); |
|
|
|
DefaultValue<const int&>::Clear(); |
|
DefaultValue<MyNonDefaultConstructible&>::Clear(); |
|
|
|
EXPECT_FALSE(DefaultValue<const int&>::Exists()); |
|
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists()); |
|
|
|
EXPECT_FALSE(DefaultValue<const int&>::IsSet()); |
|
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet()); |
|
} |
|
|
|
// Tests that DefaultValue<T&>::Get() returns the |
|
// BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is |
|
// false. |
|
TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) { |
|
EXPECT_FALSE(DefaultValue<int&>::IsSet()); |
|
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet()); |
|
|
|
EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<int&>::Get(); }, ""); |
|
EXPECT_DEATH_IF_SUPPORTED( |
|
{ DefaultValue<MyNonDefaultConstructible>::Get(); }, ""); |
|
} |
|
|
|
// Tests that ActionInterface can be implemented by defining the |
|
// Perform method. |
|
|
|
typedef int MyGlobalFunction(bool, int); |
|
|
|
class MyActionImpl : public ActionInterface<MyGlobalFunction> { |
|
public: |
|
int Perform(const std::tuple<bool, int>& args) override { |
|
return std::get<0>(args) ? std::get<1>(args) : 0; |
|
} |
|
}; |
|
|
|
TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) { |
|
MyActionImpl my_action_impl; |
|
(void)my_action_impl; |
|
} |
|
|
|
TEST(ActionInterfaceTest, MakeAction) { |
|
Action<MyGlobalFunction> action = MakeAction(new MyActionImpl); |
|
|
|
// When exercising the Perform() method of Action<F>, we must pass |
|
// it a tuple whose size and type are compatible with F's argument |
|
// types. For example, if F is int(), then Perform() takes a |
|
// 0-tuple; if F is void(bool, int), then Perform() takes a |
|
// std::tuple<bool, int>, and so on. |
|
EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5))); |
|
} |
|
|
|
// Tests that Action<F> can be constructed from a pointer to |
|
// ActionInterface<F>. |
|
TEST(ActionTest, CanBeConstructedFromActionInterface) { |
|
Action<MyGlobalFunction> action(new MyActionImpl); |
|
} |
|
|
|
// Tests that Action<F> delegates actual work to ActionInterface<F>. |
|
TEST(ActionTest, DelegatesWorkToActionInterface) { |
|
const Action<MyGlobalFunction> action(new MyActionImpl); |
|
|
|
EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5))); |
|
EXPECT_EQ(0, action.Perform(std::make_tuple(false, 1))); |
|
} |
|
|
|
// Tests that Action<F> can be copied. |
|
TEST(ActionTest, IsCopyable) { |
|
Action<MyGlobalFunction> a1(new MyActionImpl); |
|
Action<MyGlobalFunction> a2(a1); // Tests the copy constructor. |
|
|
|
// a1 should continue to work after being copied from. |
|
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5))); |
|
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1))); |
|
|
|
// a2 should work like the action it was copied from. |
|
EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5))); |
|
EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1))); |
|
|
|
a2 = a1; // Tests the assignment operator. |
|
|
|
// a1 should continue to work after being copied from. |
|
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5))); |
|
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1))); |
|
|
|
// a2 should work like the action it was copied from. |
|
EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5))); |
|
EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1))); |
|
} |
|
|
|
// Tests that an Action<From> object can be converted to a |
|
// compatible Action<To> object. |
|
|
|
class IsNotZero : public ActionInterface<bool(int)> { // NOLINT |
|
public: |
|
bool Perform(const std::tuple<int>& arg) override { |
|
return std::get<0>(arg) != 0; |
|
} |
|
}; |
|
|
|
TEST(ActionTest, CanBeConvertedToOtherActionType) { |
|
const Action<bool(int)> a1(new IsNotZero); // NOLINT |
|
const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT |
|
EXPECT_EQ(1, a2.Perform(std::make_tuple('a'))); |
|
EXPECT_EQ(0, a2.Perform(std::make_tuple('\0'))); |
|
} |
|
|
|
// The following two classes are for testing MakePolymorphicAction(). |
|
|
|
// Implements a polymorphic action that returns the second of the |
|
// arguments it receives. |
|
class ReturnSecondArgumentAction { |
|
public: |
|
// We want to verify that MakePolymorphicAction() can work with a |
|
// polymorphic action whose Perform() method template is either |
|
// const or not. This lets us verify the non-const case. |
|
template <typename Result, typename ArgumentTuple> |
|
Result Perform(const ArgumentTuple& args) { |
|
return std::get<1>(args); |
|
} |
|
}; |
|
|
|
// Implements a polymorphic action that can be used in a nullary |
|
// function to return 0. |
|
class ReturnZeroFromNullaryFunctionAction { |
|
public: |
|
// For testing that MakePolymorphicAction() works when the |
|
// implementation class' Perform() method template takes only one |
|
// template parameter. |
|
// |
|
// We want to verify that MakePolymorphicAction() can work with a |
|
// polymorphic action whose Perform() method template is either |
|
// const or not. This lets us verify the const case. |
|
template <typename Result> |
|
Result Perform(const std::tuple<>&) const { |
|
return 0; |
|
} |
|
}; |
|
|
|
// These functions verify that MakePolymorphicAction() returns a |
|
// PolymorphicAction<T> where T is the argument's type. |
|
|
|
PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() { |
|
return MakePolymorphicAction(ReturnSecondArgumentAction()); |
|
} |
|
|
|
PolymorphicAction<ReturnZeroFromNullaryFunctionAction> |
|
ReturnZeroFromNullaryFunction() { |
|
return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction()); |
|
} |
|
|
|
// Tests that MakePolymorphicAction() turns a polymorphic action |
|
// implementation class into a polymorphic action. |
|
TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) { |
|
Action<int(bool, int, double)> a1 = ReturnSecondArgument(); // NOLINT |
|
EXPECT_EQ(5, a1.Perform(std::make_tuple(false, 5, 2.0))); |
|
} |
|
|
|
// Tests that MakePolymorphicAction() works when the implementation |
|
// class' Perform() method template has only one template parameter. |
|
TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) { |
|
Action<int()> a1 = ReturnZeroFromNullaryFunction(); |
|
EXPECT_EQ(0, a1.Perform(std::make_tuple())); |
|
|
|
Action<void*()> a2 = ReturnZeroFromNullaryFunction(); |
|
EXPECT_TRUE(a2.Perform(std::make_tuple()) == nullptr); |
|
} |
|
|
|
// Tests that Return() works as an action for void-returning |
|
// functions. |
|
TEST(ReturnTest, WorksForVoid) { |
|
const Action<void(int)> ret = Return(); // NOLINT |
|
return ret.Perform(std::make_tuple(1)); |
|
} |
|
|
|
// Tests that Return(v) returns v. |
|
TEST(ReturnTest, ReturnsGivenValue) { |
|
Action<int()> ret = Return(1); // NOLINT |
|
EXPECT_EQ(1, ret.Perform(std::make_tuple())); |
|
|
|
ret = Return(-5); |
|
EXPECT_EQ(-5, ret.Perform(std::make_tuple())); |
|
} |
|
|
|
// Tests that Return("string literal") works. |
|
TEST(ReturnTest, AcceptsStringLiteral) { |
|
Action<const char*()> a1 = Return("Hello"); |
|
EXPECT_STREQ("Hello", a1.Perform(std::make_tuple())); |
|
|
|
Action<std::string()> a2 = Return("world"); |
|
EXPECT_EQ("world", a2.Perform(std::make_tuple())); |
|
} |
|
|
|
// Return(x) should work fine when the mock function's return type is a |
|
// reference-like wrapper for decltype(x), as when x is a std::string and the |
|
// mock function returns std::string_view. |
|
TEST(ReturnTest, SupportsReferenceLikeReturnType) { |
|
// A reference wrapper for std::vector<int>, implicitly convertible from it. |
|
struct Result { |
|
const std::vector<int>* v; |
|
Result(const std::vector<int>& vec) : v(&vec) {} // NOLINT |
|
}; |
|
|
|
// Set up an action for a mock function that returns the reference wrapper |
|
// type, initializing it with an actual vector. |
|
// |
|
// The returned wrapper should be initialized with a copy of that vector |
|
// that's embedded within the action itself (which should stay alive as long |
|
// as the mock object is alive), rather than e.g. a reference to the temporary |
|
// we feed to Return. This should work fine both for WillOnce and |
|
// WillRepeatedly. |
|
MockFunction<Result()> mock; |
|
EXPECT_CALL(mock, Call) |
|
.WillOnce(Return(std::vector<int>{17, 19, 23})) |
|
.WillRepeatedly(Return(std::vector<int>{29, 31, 37})); |
|
|
|
EXPECT_THAT(mock.AsStdFunction()(), |
|
Field(&Result::v, Pointee(ElementsAre(17, 19, 23)))); |
|
|
|
EXPECT_THAT(mock.AsStdFunction()(), |
|
Field(&Result::v, Pointee(ElementsAre(29, 31, 37)))); |
|
} |
|
|
|
TEST(ReturnTest, PrefersConversionOperator) { |
|
// Define types In and Out such that: |
|
// |
|
// * In is implicitly convertible to Out. |
|
// * Out also has an explicit constructor from In. |
|
// |
|
struct In; |
|
struct Out { |
|
int x; |
|
|
|
explicit Out(const int val) : x(val) {} |
|
explicit Out(const In&) : x(0) {} |
|
}; |
|
|
|
struct In { |
|
operator Out() const { return Out{19}; } // NOLINT |
|
}; |
|
|
|
// Assumption check: the C++ language rules are such that a function that |
|
// returns Out which uses In a return statement will use the implicit |
|
// conversion path rather than the explicit constructor. |
|
EXPECT_THAT([]() -> Out { return In(); }(), Field(&Out::x, 19)); |
|
|
|
// Return should work the same way: if the mock function's return type is Out |
|
// and we feed Return an In value, then the Out should be created through the |
|
// implicit conversion path rather than the explicit constructor. |
|
MockFunction<Out()> mock; |
|
EXPECT_CALL(mock, Call).WillOnce(Return(In())); |
|
EXPECT_THAT(mock.AsStdFunction()(), Field(&Out::x, 19)); |
|
} |
|
|
|
// It should be possible to use Return(R) with a mock function result type U |
|
// that is convertible from const R& but *not* R (such as |
|
// std::reference_wrapper). This should work for both WillOnce and |
|
// WillRepeatedly. |
|
TEST(ReturnTest, ConversionRequiresConstLvalueReference) { |
|
using R = int; |
|
using U = std::reference_wrapper<const int>; |
|
|
|
static_assert(std::is_convertible<const R&, U>::value, ""); |
|
static_assert(!std::is_convertible<R, U>::value, ""); |
|
|
|
MockFunction<U()> mock; |
|
EXPECT_CALL(mock, Call).WillOnce(Return(17)).WillRepeatedly(Return(19)); |
|
|
|
EXPECT_EQ(17, mock.AsStdFunction()()); |
|
EXPECT_EQ(19, mock.AsStdFunction()()); |
|
} |
|
|
|
// Return(x) should not be usable with a mock function result type that's |
|
// implicitly convertible from decltype(x) but requires a non-const lvalue |
|
// reference to the input. It doesn't make sense for the conversion operator to |
|
// modify the input. |
|
TEST(ReturnTest, ConversionRequiresMutableLvalueReference) { |
|
// Set up a type that is implicitly convertible from std::string&, but not |
|
// std::string&& or `const std::string&`. |
|
// |
|
// Avoid asserting about conversion from std::string on MSVC, which seems to |
|
// implement std::is_convertible incorrectly in this case. |
|
struct S { |
|
S(std::string&) {} // NOLINT |
|
}; |
|
|
|
static_assert(std::is_convertible<std::string&, S>::value, ""); |
|
#ifndef _MSC_VER |
|
static_assert(!std::is_convertible<std::string&&, S>::value, ""); |
|
#endif |
|
static_assert(!std::is_convertible<const std::string&, S>::value, ""); |
|
|
|
// It shouldn't be possible to use the result of Return(std::string) in a |
|
// context where an S is needed. |
|
// |
|
// Here too we disable the assertion for MSVC, since its incorrect |
|
// implementation of is_convertible causes our SFINAE to be wrong. |
|
using RA = decltype(Return(std::string())); |
|
|
|
static_assert(!std::is_convertible<RA, Action<S()>>::value, ""); |
|
#ifndef _MSC_VER |
|
static_assert(!std::is_convertible<RA, OnceAction<S()>>::value, ""); |
|
#endif |
|
} |
|
|
|
TEST(ReturnTest, MoveOnlyResultType) { |
|
// Return should support move-only result types when used with WillOnce. |
|
{ |
|
MockFunction<std::unique_ptr<int>()> mock; |
|
EXPECT_CALL(mock, Call) |
|
// NOLINTNEXTLINE |
|
.WillOnce(Return(std::unique_ptr<int>(new int(17)))); |
|
|
|
EXPECT_THAT(mock.AsStdFunction()(), Pointee(17)); |
|
} |
|
|
|
// The result of Return should not be convertible to Action (so it can't be |
|
// used with WillRepeatedly). |
|
static_assert(!std::is_convertible<decltype(Return(std::unique_ptr<int>())), |
|
Action<std::unique_ptr<int>()>>::value, |
|
""); |
|
} |
|
|
|
// Tests that Return(v) is covariant. |
|
|
|
struct Base { |
|
bool operator==(const Base&) { return true; } |
|
}; |
|
|
|
struct Derived : public Base { |
|
bool operator==(const Derived&) { return true; } |
|
}; |
|
|
|
TEST(ReturnTest, IsCovariant) { |
|
Base base; |
|
Derived derived; |
|
Action<Base*()> ret = Return(&base); |
|
EXPECT_EQ(&base, ret.Perform(std::make_tuple())); |
|
|
|
ret = Return(&derived); |
|
EXPECT_EQ(&derived, ret.Perform(std::make_tuple())); |
|
} |
|
|
|
// Tests that the type of the value passed into Return is converted into T |
|
// when the action is cast to Action<T(...)> rather than when the action is |
|
// performed. See comments on testing::internal::ReturnAction in |
|
// gmock-actions.h for more information. |
|
class FromType { |
|
public: |
|
explicit FromType(bool* is_converted) : converted_(is_converted) {} |
|
bool* converted() const { return converted_; } |
|
|
|
private: |
|
bool* const converted_; |
|
}; |
|
|
|
class ToType { |
|
public: |
|
// Must allow implicit conversion due to use in ImplicitCast_<T>. |
|
ToType(const FromType& x) { *x.converted() = true; } // NOLINT |
|
}; |
|
|
|
TEST(ReturnTest, ConvertsArgumentWhenConverted) { |
|
bool converted = false; |
|
FromType x(&converted); |
|
Action<ToType()> action(Return(x)); |
|
EXPECT_TRUE(converted) << "Return must convert its argument in its own " |
|
<< "conversion operator."; |
|
converted = false; |
|
action.Perform(std::tuple<>()); |
|
EXPECT_FALSE(converted) << "Action must NOT convert its argument " |
|
<< "when performed."; |
|
} |
|
|
|
// Tests that ReturnNull() returns NULL in a pointer-returning function. |
|
TEST(ReturnNullTest, WorksInPointerReturningFunction) { |
|
const Action<int*()> a1 = ReturnNull(); |
|
EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr); |
|
|
|
const Action<const char*(bool)> a2 = ReturnNull(); // NOLINT |
|
EXPECT_TRUE(a2.Perform(std::make_tuple(true)) == nullptr); |
|
} |
|
|
|
// Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning |
|
// functions. |
|
TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) { |
|
const Action<std::unique_ptr<const int>()> a1 = ReturnNull(); |
|
EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr); |
|
|
|
const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull(); |
|
EXPECT_TRUE(a2.Perform(std::make_tuple("foo")) == nullptr); |
|
} |
|
|
|
// Tests that ReturnRef(v) works for reference types. |
|
TEST(ReturnRefTest, WorksForReference) { |
|
const int n = 0; |
|
const Action<const int&(bool)> ret = ReturnRef(n); // NOLINT |
|
|
|
EXPECT_EQ(&n, &ret.Perform(std::make_tuple(true))); |
|
} |
|
|
|
// Tests that ReturnRef(v) is covariant. |
|
TEST(ReturnRefTest, IsCovariant) { |
|
Base base; |
|
Derived derived; |
|
Action<Base&()> a = ReturnRef(base); |
|
EXPECT_EQ(&base, &a.Perform(std::make_tuple())); |
|
|
|
a = ReturnRef(derived); |
|
EXPECT_EQ(&derived, &a.Perform(std::make_tuple())); |
|
} |
|
|
|
template <typename T, typename = decltype(ReturnRef(std::declval<T&&>()))> |
|
bool CanCallReturnRef(T&&) { |
|
return true; |
|
} |
|
bool CanCallReturnRef(Unused) { return false; } |
|
|
|
// Tests that ReturnRef(v) is working with non-temporaries (T&) |
|
TEST(ReturnRefTest, WorksForNonTemporary) { |
|
int scalar_value = 123; |
|
EXPECT_TRUE(CanCallReturnRef(scalar_value)); |
|
|
|
std::string non_scalar_value("ABC"); |
|
EXPECT_TRUE(CanCallReturnRef(non_scalar_value)); |
|
|
|
const int const_scalar_value{321}; |
|
EXPECT_TRUE(CanCallReturnRef(const_scalar_value)); |
|
|
|
const std::string const_non_scalar_value("CBA"); |
|
EXPECT_TRUE(CanCallReturnRef(const_non_scalar_value)); |
|
} |
|
|
|
// Tests that ReturnRef(v) is not working with temporaries (T&&) |
|
TEST(ReturnRefTest, DoesNotWorkForTemporary) { |
|
auto scalar_value = []() -> int { return 123; }; |
|
EXPECT_FALSE(CanCallReturnRef(scalar_value())); |
|
|
|
auto non_scalar_value = []() -> std::string { return "ABC"; }; |
|
EXPECT_FALSE(CanCallReturnRef(non_scalar_value())); |
|
|
|
// cannot use here callable returning "const scalar type", |
|
// because such const for scalar return type is ignored |
|
EXPECT_FALSE(CanCallReturnRef(static_cast<const int>(321))); |
|
|
|
auto const_non_scalar_value = []() -> const std::string { return "CBA"; }; |
|
EXPECT_FALSE(CanCallReturnRef(const_non_scalar_value())); |
|
} |
|
|
|
// Tests that ReturnRefOfCopy(v) works for reference types. |
|
TEST(ReturnRefOfCopyTest, WorksForReference) { |
|
int n = 42; |
|
const Action<const int&()> ret = ReturnRefOfCopy(n); |
|
|
|
EXPECT_NE(&n, &ret.Perform(std::make_tuple())); |
|
EXPECT_EQ(42, ret.Perform(std::make_tuple())); |
|
|
|
n = 43; |
|
EXPECT_NE(&n, &ret.Perform(std::make_tuple())); |
|
EXPECT_EQ(42, ret.Perform(std::make_tuple())); |
|
} |
|
|
|
// Tests that ReturnRefOfCopy(v) is covariant. |
|
TEST(ReturnRefOfCopyTest, IsCovariant) { |
|
Base base; |
|
Derived derived; |
|
Action<Base&()> a = ReturnRefOfCopy(base); |
|
EXPECT_NE(&base, &a.Perform(std::make_tuple())); |
|
|
|
a = ReturnRefOfCopy(derived); |
|
EXPECT_NE(&derived, &a.Perform(std::make_tuple())); |
|
} |
|
|
|
// Tests that ReturnRoundRobin(v) works with initializer lists |
|
TEST(ReturnRoundRobinTest, WorksForInitList) { |
|
Action<int()> ret = ReturnRoundRobin({1, 2, 3}); |
|
|
|
EXPECT_EQ(1, ret.Perform(std::make_tuple())); |
|
EXPECT_EQ(2, ret.Perform(std::make_tuple())); |
|
EXPECT_EQ(3, ret.Perform(std::make_tuple())); |
|
EXPECT_EQ(1, ret.Perform(std::make_tuple())); |
|
EXPECT_EQ(2, ret.Perform(std::make_tuple())); |
|
EXPECT_EQ(3, ret.Perform(std::make_tuple())); |
|
} |
|
|
|
// Tests that ReturnRoundRobin(v) works with vectors |
|
TEST(ReturnRoundRobinTest, WorksForVector) { |
|
std::vector<double> v = {4.4, 5.5, 6.6}; |
|
Action<double()> ret = ReturnRoundRobin(v); |
|
|
|
EXPECT_EQ(4.4, ret.Perform(std::make_tuple())); |
|
EXPECT_EQ(5.5, ret.Perform(std::make_tuple())); |
|
EXPECT_EQ(6.6, ret.Perform(std::make_tuple())); |
|
EXPECT_EQ(4.4, ret.Perform(std::make_tuple())); |
|
EXPECT_EQ(5.5, ret.Perform(std::make_tuple())); |
|
EXPECT_EQ(6.6, ret.Perform(std::make_tuple())); |
|
} |
|
|
|
// Tests that DoDefault() does the default action for the mock method. |
|
|
|
class MockClass { |
|
public: |
|
MockClass() = default; |
|
|
|
MOCK_METHOD1(IntFunc, int(bool flag)); // NOLINT |
|
MOCK_METHOD0(Foo, MyNonDefaultConstructible()); |
|
MOCK_METHOD0(MakeUnique, std::unique_ptr<int>()); |
|
MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>()); |
|
MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>()); |
|
MOCK_METHOD1(TakeUnique, int(std::unique_ptr<int>)); |
|
MOCK_METHOD2(TakeUnique, |
|
int(const std::unique_ptr<int>&, std::unique_ptr<int>)); |
|
|
|
private: |
|
MockClass(const MockClass&) = delete; |
|
MockClass& operator=(const MockClass&) = delete; |
|
}; |
|
|
|
// Tests that DoDefault() returns the built-in default value for the |
|
// return type by default. |
|
TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) { |
|
MockClass mock; |
|
EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault()); |
|
EXPECT_EQ(0, mock.IntFunc(true)); |
|
} |
|
|
|
// Tests that DoDefault() throws (when exceptions are enabled) or aborts |
|
// the process when there is no built-in default value for the return type. |
|
TEST(DoDefaultDeathTest, DiesForUnknowType) { |
|
MockClass mock; |
|
EXPECT_CALL(mock, Foo()).WillRepeatedly(DoDefault()); |
|
#if GTEST_HAS_EXCEPTIONS |
|
EXPECT_ANY_THROW(mock.Foo()); |
|
#else |
|
EXPECT_DEATH_IF_SUPPORTED({ mock.Foo(); }, ""); |
|
#endif |
|
} |
|
|
|
// Tests that using DoDefault() inside a composite action leads to a |
|
// run-time error. |
|
|
|
void VoidFunc(bool /* flag */) {} |
|
|
|
TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) { |
|
MockClass mock; |
|
EXPECT_CALL(mock, IntFunc(_)) |
|
.WillRepeatedly(DoAll(Invoke(VoidFunc), DoDefault())); |
|
|
|
// Ideally we should verify the error message as well. Sadly, |
|
// EXPECT_DEATH() can only capture stderr, while Google Mock's |
|
// errors are printed on stdout. Therefore we have to settle for |
|
// not verifying the message. |
|
EXPECT_DEATH_IF_SUPPORTED({ mock.IntFunc(true); }, ""); |
|
} |
|
|
|
// Tests that DoDefault() returns the default value set by |
|
// DefaultValue<T>::Set() when it's not overridden by an ON_CALL(). |
|
TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) { |
|
DefaultValue<int>::Set(1); |
|
MockClass mock; |
|
EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault()); |
|
EXPECT_EQ(1, mock.IntFunc(false)); |
|
DefaultValue<int>::Clear(); |
|
} |
|
|
|
// Tests that DoDefault() does the action specified by ON_CALL(). |
|
TEST(DoDefaultTest, DoesWhatOnCallSpecifies) { |
|
MockClass mock; |
|
ON_CALL(mock, IntFunc(_)).WillByDefault(Return(2)); |
|
EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault()); |
|
EXPECT_EQ(2, mock.IntFunc(false)); |
|
} |
|
|
|
// Tests that using DoDefault() in ON_CALL() leads to a run-time failure. |
|
TEST(DoDefaultTest, CannotBeUsedInOnCall) { |
|
MockClass mock; |
|
EXPECT_NONFATAL_FAILURE( |
|
{ // NOLINT |
|
ON_CALL(mock, IntFunc(_)).WillByDefault(DoDefault()); |
|
}, |
|
"DoDefault() cannot be used in ON_CALL()"); |
|
} |
|
|
|
// Tests that SetArgPointee<N>(v) sets the variable pointed to by |
|
// the N-th (0-based) argument to v. |
|
TEST(SetArgPointeeTest, SetsTheNthPointee) { |
|
typedef void MyFunction(bool, int*, char*); |
|
Action<MyFunction> a = SetArgPointee<1>(2); |
|
|
|
int n = 0; |
|
char ch = '\0'; |
|
a.Perform(std::make_tuple(true, &n, &ch)); |
|
EXPECT_EQ(2, n); |
|
EXPECT_EQ('\0', ch); |
|
|
|
a = SetArgPointee<2>('a'); |
|
n = 0; |
|
ch = '\0'; |
|
a.Perform(std::make_tuple(true, &n, &ch)); |
|
EXPECT_EQ(0, n); |
|
EXPECT_EQ('a', ch); |
|
} |
|
|
|
// Tests that SetArgPointee<N>() accepts a string literal. |
|
TEST(SetArgPointeeTest, AcceptsStringLiteral) { |
|
typedef void MyFunction(std::string*, const char**); |
|
Action<MyFunction> a = SetArgPointee<0>("hi"); |
|
std::string str; |
|
const char* ptr = nullptr; |
|
a.Perform(std::make_tuple(&str, &ptr)); |
|
EXPECT_EQ("hi", str); |
|
EXPECT_TRUE(ptr == nullptr); |
|
|
|
a = SetArgPointee<1>("world"); |
|
str = ""; |
|
a.Perform(std::make_tuple(&str, &ptr)); |
|
EXPECT_EQ("", str); |
|
EXPECT_STREQ("world", ptr); |
|
} |
|
|
|
TEST(SetArgPointeeTest, AcceptsWideStringLiteral) { |
|
typedef void MyFunction(const wchar_t**); |
|
Action<MyFunction> a = SetArgPointee<0>(L"world"); |
|
const wchar_t* ptr = nullptr; |
|
a.Perform(std::make_tuple(&ptr)); |
|
EXPECT_STREQ(L"world", ptr); |
|
|
|
#if GTEST_HAS_STD_WSTRING |
|
|
|
typedef void MyStringFunction(std::wstring*); |
|
Action<MyStringFunction> a2 = SetArgPointee<0>(L"world"); |
|
std::wstring str = L""; |
|
a2.Perform(std::make_tuple(&str)); |
|
EXPECT_EQ(L"world", str); |
|
|
|
#endif |
|
} |
|
|
|
// Tests that SetArgPointee<N>() accepts a char pointer. |
|
TEST(SetArgPointeeTest, AcceptsCharPointer) { |
|
typedef void MyFunction(bool, std::string*, const char**); |
|
const char* const hi = "hi"; |
|
Action<MyFunction> a = SetArgPointee<1>(hi); |
|
std::string str; |
|
const char* ptr = nullptr; |
|
a.Perform(std::make_tuple(true, &str, &ptr)); |
|
EXPECT_EQ("hi", str); |
|
EXPECT_TRUE(ptr == nullptr); |
|
|
|
char world_array[] = "world"; |
|
char* const world = world_array; |
|
a = SetArgPointee<2>(world); |
|
str = ""; |
|
a.Perform(std::make_tuple(true, &str, &ptr)); |
|
EXPECT_EQ("", str); |
|
EXPECT_EQ(world, ptr); |
|
} |
|
|
|
TEST(SetArgPointeeTest, AcceptsWideCharPointer) { |
|
typedef void MyFunction(bool, const wchar_t**); |
|
const wchar_t* const hi = L"hi"; |
|
Action<MyFunction> a = SetArgPointee<1>(hi); |
|
const wchar_t* ptr = nullptr; |
|
a.Perform(std::make_tuple(true, &ptr)); |
|
EXPECT_EQ(hi, ptr); |
|
|
|
#if GTEST_HAS_STD_WSTRING |
|
|
|
typedef void MyStringFunction(bool, std::wstring*); |
|
wchar_t world_array[] = L"world"; |
|
wchar_t* const world = world_array; |
|
Action<MyStringFunction> a2 = SetArgPointee<1>(world); |
|
std::wstring str; |
|
a2.Perform(std::make_tuple(true, &str)); |
|
EXPECT_EQ(world_array, str); |
|
#endif |
|
} |
|
|
|
// Tests that SetArgumentPointee<N>(v) sets the variable pointed to by |
|
// the N-th (0-based) argument to v. |
|
TEST(SetArgumentPointeeTest, SetsTheNthPointee) { |
|
typedef void MyFunction(bool, int*, char*); |
|
Action<MyFunction> a = SetArgumentPointee<1>(2); |
|
|
|
int n = 0; |
|
char ch = '\0'; |
|
a.Perform(std::make_tuple(true, &n, &ch)); |
|
EXPECT_EQ(2, n); |
|
EXPECT_EQ('\0', ch); |
|
|
|
a = SetArgumentPointee<2>('a'); |
|
n = 0; |
|
ch = '\0'; |
|
a.Perform(std::make_tuple(true, &n, &ch)); |
|
EXPECT_EQ(0, n); |
|
EXPECT_EQ('a', ch); |
|
} |
|
|
|
// Sample functions and functors for testing Invoke() and etc. |
|
int Nullary() { return 1; } |
|
|
|
class NullaryFunctor { |
|
public: |
|
int operator()() { return 2; } |
|
}; |
|
|
|
bool g_done = false; |
|
void VoidNullary() { g_done = true; } |
|
|
|
class VoidNullaryFunctor { |
|
public: |
|
void operator()() { g_done = true; } |
|
}; |
|
|
|
short Short(short n) { return n; } // NOLINT |
|
char Char(char ch) { return ch; } |
|
|
|
const char* CharPtr(const char* s) { return s; } |
|
|
|
bool Unary(int x) { return x < 0; } |
|
|
|
const char* Binary(const char* input, short n) { return input + n; } // NOLINT |
|
|
|
void VoidBinary(int, char) { g_done = true; } |
|
|
|
int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT |
|
|
|
int SumOf4(int a, int b, int c, int d) { return a + b + c + d; } |
|
|
|
class Foo { |
|
public: |
|
Foo() : value_(123) {} |
|
|
|
int Nullary() const { return value_; } |
|
|
|
private: |
|
int value_; |
|
}; |
|
|
|
// Tests InvokeWithoutArgs(function). |
|
TEST(InvokeWithoutArgsTest, Function) { |
|
// As an action that takes one argument. |
|
Action<int(int)> a = InvokeWithoutArgs(Nullary); // NOLINT |
|
EXPECT_EQ(1, a.Perform(std::make_tuple(2))); |
|
|
|
// As an action that takes two arguments. |
|
Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary); // NOLINT |
|
EXPECT_EQ(1, a2.Perform(std::make_tuple(2, 3.5))); |
|
|
|
// As an action that returns void. |
|
Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary); // NOLINT |
|
g_done = false; |
|
a3.Perform(std::make_tuple(1)); |
|
EXPECT_TRUE(g_done); |
|
} |
|
|
|
// Tests InvokeWithoutArgs(functor). |
|
TEST(InvokeWithoutArgsTest, Functor) { |
|
// As an action that takes no argument. |
|
Action<int()> a = InvokeWithoutArgs(NullaryFunctor()); // NOLINT |
|
EXPECT_EQ(2, a.Perform(std::make_tuple())); |
|
|
|
// As an action that takes three arguments. |
|
Action<int(int, double, char)> a2 = // NOLINT |
|
InvokeWithoutArgs(NullaryFunctor()); |
|
EXPECT_EQ(2, a2.Perform(std::make_tuple(3, 3.5, 'a'))); |
|
|
|
// As an action that returns void. |
|
Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor()); |
|
g_done = false; |
|
a3.Perform(std::make_tuple()); |
|
EXPECT_TRUE(g_done); |
|
} |
|
|
|
// Tests InvokeWithoutArgs(obj_ptr, method). |
|
TEST(InvokeWithoutArgsTest, Method) { |
|
Foo foo; |
|
Action<int(bool, char)> a = // NOLINT |
|
InvokeWithoutArgs(&foo, &Foo::Nullary); |
|
EXPECT_EQ(123, a.Perform(std::make_tuple(true, 'a'))); |
|
} |
|
|
|
// Tests using IgnoreResult() on a polymorphic action. |
|
TEST(IgnoreResultTest, PolymorphicAction) { |
|
Action<void(int)> a = IgnoreResult(Return(5)); // NOLINT |
|
a.Perform(std::make_tuple(1)); |
|
} |
|
|
|
// Tests using IgnoreResult() on a monomorphic action. |
|
|
|
int ReturnOne() { |
|
g_done = true; |
|
return 1; |
|
} |
|
|
|
TEST(IgnoreResultTest, MonomorphicAction) { |
|
g_done = false; |
|
Action<void()> a = IgnoreResult(Invoke(ReturnOne)); |
|
a.Perform(std::make_tuple()); |
|
EXPECT_TRUE(g_done); |
|
} |
|
|
|
// Tests using IgnoreResult() on an action that returns a class type. |
|
|
|
MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) { |
|
g_done = true; |
|
return MyNonDefaultConstructible(42); |
|
} |
|
|
|
TEST(IgnoreResultTest, ActionReturningClass) { |
|
g_done = false; |
|
Action<void(int)> a = |
|
IgnoreResult(Invoke(ReturnMyNonDefaultConstructible)); // NOLINT |
|
a.Perform(std::make_tuple(2)); |
|
EXPECT_TRUE(g_done); |
|
} |
|
|
|
TEST(AssignTest, Int) { |
|
int x = 0; |
|
Action<void(int)> a = Assign(&x, 5); |
|
a.Perform(std::make_tuple(0)); |
|
EXPECT_EQ(5, x); |
|
} |
|
|
|
TEST(AssignTest, String) { |
|
::std::string x; |
|
Action<void(void)> a = Assign(&x, "Hello, world"); |
|
a.Perform(std::make_tuple()); |
|
EXPECT_EQ("Hello, world", x); |
|
} |
|
|
|
TEST(AssignTest, CompatibleTypes) { |
|
double x = 0; |
|
Action<void(int)> a = Assign(&x, 5); |
|
a.Perform(std::make_tuple(0)); |
|
EXPECT_DOUBLE_EQ(5, x); |
|
} |
|
|
|
// DoAll should support &&-qualified actions when used with WillOnce. |
|
TEST(DoAll, SupportsRefQualifiedActions) { |
|
struct InitialAction { |
|
void operator()(const int arg) && { EXPECT_EQ(17, arg); } |
|
}; |
|
|
|
struct FinalAction { |
|
int operator()() && { return 19; } |
|
}; |
|
|
|
MockFunction<int(int)> mock; |
|
EXPECT_CALL(mock, Call).WillOnce(DoAll(InitialAction{}, FinalAction{})); |
|
EXPECT_EQ(19, mock.AsStdFunction()(17)); |
|
} |
|
|
|
// DoAll should never provide rvalue references to the initial actions. If the |
|
// mock action itself accepts an rvalue reference or a non-scalar object by |
|
// value then the final action should receive an rvalue reference, but initial |
|
// actions should receive only lvalue references. |
|
TEST(DoAll, ProvidesLvalueReferencesToInitialActions) { |
|
struct Obj {}; |
|
|
|
// Mock action accepts by value: the initial action should be fed a const |
|
// lvalue reference, and the final action an rvalue reference. |
|
{ |
|
struct InitialAction { |
|
void operator()(Obj&) const { FAIL() << "Unexpected call"; } |
|
void operator()(const Obj&) const {} |
|
void operator()(Obj&&) const { FAIL() << "Unexpected call"; } |
|
void operator()(const Obj&&) const { FAIL() << "Unexpected call"; } |
|
}; |
|
|
|
MockFunction<void(Obj)> mock; |
|
EXPECT_CALL(mock, Call) |
|
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})) |
|
.WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})); |
|
|
|
mock.AsStdFunction()(Obj{}); |
|
mock.AsStdFunction()(Obj{}); |
|
} |
|
|
|
// Mock action accepts by const lvalue reference: both actions should receive |
|
// a const lvalue reference. |
|
{ |
|
struct InitialAction { |
|
void operator()(Obj&) const { FAIL() << "Unexpected call"; } |
|
void operator()(const Obj&) const {} |
|
void operator()(Obj&&) const { FAIL() << "Unexpected call"; } |
|
void operator()(const Obj&&) const { FAIL() << "Unexpected call"; } |
|
}; |
|
|
|
MockFunction<void(const Obj&)> mock; |
|
EXPECT_CALL(mock, Call) |
|
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {})) |
|
.WillRepeatedly( |
|
DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {})); |
|
|
|
mock.AsStdFunction()(Obj{}); |
|
mock.AsStdFunction()(Obj{}); |
|
} |
|
|
|
// Mock action accepts by non-const lvalue reference: both actions should get |
|
// a non-const lvalue reference if they want them. |
|
{ |
|
struct InitialAction { |
|
void operator()(Obj&) const {} |
|
void operator()(Obj&&) const { FAIL() << "Unexpected call"; } |
|
}; |
|
|
|
MockFunction<void(Obj&)> mock; |
|
EXPECT_CALL(mock, Call) |
|
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {})) |
|
.WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {})); |
|
|
|
Obj obj; |
|
mock.AsStdFunction()(obj); |
|
mock.AsStdFunction()(obj); |
|
} |
|
|
|
// Mock action accepts by rvalue reference: the initial actions should receive |
|
// a non-const lvalue reference if it wants it, and the final action an rvalue |
|
// reference. |
|
{ |
|
struct InitialAction { |
|
void operator()(Obj&) const {} |
|
void operator()(Obj&&) const { FAIL() << "Unexpected call"; } |
|
}; |
|
|
|
MockFunction<void(Obj&&)> mock; |
|
EXPECT_CALL(mock, Call) |
|
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})) |
|
.WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})); |
|
|
|
mock.AsStdFunction()(Obj{}); |
|
mock.AsStdFunction()(Obj{}); |
|
} |
|
|
|
// &&-qualified initial actions should also be allowed with WillOnce. |
|
{ |
|
struct InitialAction { |
|
void operator()(Obj&) && {} |
|
}; |
|
|
|
MockFunction<void(Obj&)> mock; |
|
EXPECT_CALL(mock, Call) |
|
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {})); |
|
|
|
Obj obj; |
|
mock.AsStdFunction()(obj); |
|
} |
|
|
|
{ |
|
struct InitialAction { |
|
void operator()(Obj&) && {} |
|
}; |
|
|
|
MockFunction<void(Obj&&)> mock; |
|
EXPECT_CALL(mock, Call) |
|
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})); |
|
|
|
mock.AsStdFunction()(Obj{}); |
|
} |
|
} |
|
|
|
// DoAll should support being used with type-erased Action objects, both through |
|
// WillOnce and WillRepeatedly. |
|
TEST(DoAll, SupportsTypeErasedActions) { |
|
// With only type-erased actions. |
|
const Action<void()> initial_action = [] {}; |
|
const Action<int()> final_action = [] { return 17; }; |
|
|
|
MockFunction<int()> mock; |
|
EXPECT_CALL(mock, Call) |
|
.WillOnce(DoAll(initial_action, initial_action, final_action)) |
|
.WillRepeatedly(DoAll(initial_action, initial_action, final_action)); |
|
|
|
EXPECT_EQ(17, mock.AsStdFunction()()); |
|
|
|
// With &&-qualified and move-only final action. |
|
{ |
|
struct FinalAction { |
|
FinalAction() = default; |
|
FinalAction(FinalAction&&) = default; |
|
|
|
int operator()() && { return 17; } |
|
}; |
|
|
|
EXPECT_CALL(mock, Call) |
|
.WillOnce(DoAll(initial_action, initial_action, FinalAction{})); |
|
|
|
EXPECT_EQ(17, mock.AsStdFunction()()); |
|
} |
|
} |
|
|
|
// A DoAll action should be convertible to a OnceAction, even when its component |
|
// sub-actions are user-provided types that define only an Action conversion |
|
// operator. If they supposed being called more than once then they also support |
|
// being called at most once. |
|
TEST(DoAll, ConvertibleToOnceActionWithUserProvidedActionConversion) { |
|
// Simplest case: only one sub-action. |
|
struct CustomFinal final { |
|
operator Action<int()>() { // NOLINT |
|
return Return(17); |
|
} |
|
|
|
operator Action<int(int, char)>() { // NOLINT |
|
return Return(19); |
|
} |
|
}; |
|
|
|
{ |
|
OnceAction<int()> action = DoAll(CustomFinal{}); |
|
EXPECT_EQ(17, std::move(action).Call()); |
|
} |
|
|
|
{ |
|
OnceAction<int(int, char)> action = DoAll(CustomFinal{}); |
|
EXPECT_EQ(19, std::move(action).Call(0, 0)); |
|
} |
|
|
|
// It should also work with multiple sub-actions. |
|
struct CustomInitial final { |
|
operator Action<void()>() { // NOLINT |
|
return [] {}; |
|
} |
|
|
|
operator Action<void(int, char)>() { // NOLINT |
|
return [] {}; |
|
} |
|
}; |
|
|
|
{ |
|
OnceAction<int()> action = DoAll(CustomInitial{}, CustomFinal{}); |
|
EXPECT_EQ(17, std::move(action).Call()); |
|
} |
|
|
|
{ |
|
OnceAction<int(int, char)> action = DoAll(CustomInitial{}, CustomFinal{}); |
|
EXPECT_EQ(19, std::move(action).Call(0, 0)); |
|
} |
|
} |
|
|
|
// Tests using WithArgs and with an action that takes 1 argument. |
|
TEST(WithArgsTest, OneArg) { |
|
Action<bool(double x, int n)> a = WithArgs<1>(Invoke(Unary)); // NOLINT |
|
EXPECT_TRUE(a.Perform(std::make_tuple(1.5, -1))); |
|
EXPECT_FALSE(a.Perform(std::make_tuple(1.5, 1))); |
|
} |
|
|
|
// Tests using WithArgs with an action that takes 2 arguments. |
|
TEST(WithArgsTest, TwoArgs) { |
|
Action<const char*(const char* s, double x, short n)> a = // NOLINT |
|
WithArgs<0, 2>(Invoke(Binary)); |
|
const char s[] = "Hello"; |
|
EXPECT_EQ(s + 2, a.Perform(std::make_tuple(CharPtr(s), 0.5, Short(2)))); |
|
} |
|
|
|
struct ConcatAll { |
|
std::string operator()() const { return {}; } |
|
template <typename... I> |
|
std::string operator()(const char* a, I... i) const { |
|
return a + ConcatAll()(i...); |
|
} |
|
}; |
|
|
|
// Tests using WithArgs with an action that takes 10 arguments. |
|
TEST(WithArgsTest, TenArgs) { |
|
Action<std::string(const char*, const char*, const char*, const char*)> a = |
|
WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(ConcatAll{})); |
|
EXPECT_EQ("0123210123", |
|
a.Perform(std::make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"), |
|
CharPtr("3")))); |
|
} |
|
|
|
// Tests using WithArgs with an action that is not Invoke(). |
|
class SubtractAction : public ActionInterface<int(int, int)> { |
|
public: |
|
int Perform(const std::tuple<int, int>& args) override { |
|
return std::get<0>(args) - std::get<1>(args); |
|
} |
|
}; |
|
|
|
TEST(WithArgsTest, NonInvokeAction) { |
|
Action<int(const std::string&, int, int)> a = |
|
WithArgs<2, 1>(MakeAction(new SubtractAction)); |
|
std::tuple<std::string, int, int> dummy = |
|
std::make_tuple(std::string("hi"), 2, 10); |
|
EXPECT_EQ(8, a.Perform(dummy)); |
|
} |
|
|
|
// Tests using WithArgs to pass all original arguments in the original order. |
|
TEST(WithArgsTest, Identity) { |
|
Action<int(int x, char y, short z)> a = // NOLINT |
|
WithArgs<0, 1, 2>(Invoke(Ternary)); |
|
EXPECT_EQ(123, a.Perform(std::make_tuple(100, Char(20), Short(3)))); |
|
} |
|
|
|
// Tests using WithArgs with repeated arguments. |
|
TEST(WithArgsTest, RepeatedArguments) { |
|
Action<int(bool, int m, int n)> a = // NOLINT |
|
WithArgs<1, 1, 1, 1>(Invoke(SumOf4)); |
|
EXPECT_EQ(4, a.Perform(std::make_tuple(false, 1, 10))); |
|
} |
|
|
|
// Tests using WithArgs with reversed argument order. |
|
TEST(WithArgsTest, ReversedArgumentOrder) { |
|
Action<const char*(short n, const char* input)> a = // NOLINT |
|
WithArgs<1, 0>(Invoke(Binary)); |
|
const char s[] = "Hello"; |
|
EXPECT_EQ(s + 2, a.Perform(std::make_tuple(Short(2), CharPtr(s)))); |
|
} |
|
|
|
// Tests using WithArgs with compatible, but not identical, argument types. |
|
TEST(WithArgsTest, ArgsOfCompatibleTypes) { |
|
Action<long(short x, char y, double z, char c)> a = // NOLINT |
|
WithArgs<0, 1, 3>(Invoke(Ternary)); |
|
EXPECT_EQ(123, |
|
a.Perform(std::make_tuple(Short(100), Char(20), 5.6, Char(3)))); |
|
} |
|
|
|
// Tests using WithArgs with an action that returns void. |
|
TEST(WithArgsTest, VoidAction) { |
|
Action<void(double x, char c, int n)> a = WithArgs<2, 1>(Invoke(VoidBinary)); |
|
g_done = false; |
|
a.Perform(std::make_tuple(1.5, 'a', 3)); |
|
EXPECT_TRUE(g_done); |
|
} |
|
|
|
TEST(WithArgsTest, ReturnReference) { |
|
Action<int&(int&, void*)> aa = WithArgs<0>([](int& a) -> int& { return a; }); |
|
int i = 0; |
|
const int& res = aa.Perform(std::forward_as_tuple(i, nullptr)); |
|
EXPECT_EQ(&i, &res); |
|
} |
|
|
|
TEST(WithArgsTest, InnerActionWithConversion) { |
|
Action<Derived*()> inner = [] { return nullptr; }; |
|
|
|
MockFunction<Base*(double)> mock; |
|
EXPECT_CALL(mock, Call) |
|
.WillOnce(WithoutArgs(inner)) |
|
.WillRepeatedly(WithoutArgs(inner)); |
|
|
|
EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1)); |
|
EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1)); |
|
} |
|
|
|
// It should be possible to use an &&-qualified inner action as long as the |
|
// whole shebang is used as an rvalue with WillOnce. |
|
TEST(WithArgsTest, RefQualifiedInnerAction) { |
|
struct SomeAction { |
|
int operator()(const int arg) && { |
|
EXPECT_EQ(17, arg); |
|
return 19; |
|
} |
|
}; |
|
|
|
MockFunction<int(int, int)> mock; |
|
EXPECT_CALL(mock, Call).WillOnce(WithArg<1>(SomeAction{})); |
|
EXPECT_EQ(19, mock.AsStdFunction()(0, 17)); |
|
} |
|
|
|
#ifndef GTEST_OS_WINDOWS_MOBILE |
|
|
|
class SetErrnoAndReturnTest : public testing::Test { |
|
protected: |
|
void SetUp() override { errno = 0; } |
|
void TearDown() override { errno = 0; } |
|
}; |
|
|
|
TEST_F(SetErrnoAndReturnTest, Int) { |
|
Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5); |
|
EXPECT_EQ(-5, a.Perform(std::make_tuple())); |
|
EXPECT_EQ(ENOTTY, errno); |
|
} |
|
|
|
TEST_F(SetErrnoAndReturnTest, Ptr) { |
|
int x; |
|
Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x); |
|
EXPECT_EQ(&x, a.Perform(std::make_tuple())); |
|
EXPECT_EQ(ENOTTY, errno); |
|
} |
|
|
|
TEST_F(SetErrnoAndReturnTest, CompatibleTypes) { |
|
Action<double()> a = SetErrnoAndReturn(EINVAL, 5); |
|
EXPECT_DOUBLE_EQ(5.0, a.Perform(std::make_tuple())); |
|
EXPECT_EQ(EINVAL, errno); |
|
} |
|
|
|
#endif // !GTEST_OS_WINDOWS_MOBILE |
|
|
|
// Tests ByRef(). |
|
|
|
// Tests that the result of ByRef() is copyable. |
|
TEST(ByRefTest, IsCopyable) { |
|
const std::string s1 = "Hi"; |
|
const std::string s2 = "Hello"; |
|
|
|
auto ref_wrapper = ByRef(s1); |
|
const std::string& r1 = ref_wrapper; |
|
EXPECT_EQ(&s1, &r1); |
|
|
|
// Assigns a new value to ref_wrapper. |
|
ref_wrapper = ByRef(s2); |
|
const std::string& r2 = ref_wrapper; |
|
EXPECT_EQ(&s2, &r2); |
|
|
|
auto ref_wrapper1 = ByRef(s1); |
|
// Copies ref_wrapper1 to ref_wrapper. |
|
ref_wrapper = ref_wrapper1; |
|
const std::string& r3 = ref_wrapper; |
|
EXPECT_EQ(&s1, &r3); |
|
} |
|
|
|
// Tests using ByRef() on a const value. |
|
TEST(ByRefTest, ConstValue) { |
|
const int n = 0; |
|
// int& ref = ByRef(n); // This shouldn't compile - we have a |
|
// negative compilation test to catch it. |
|
const int& const_ref = ByRef(n); |
|
EXPECT_EQ(&n, &const_ref); |
|
} |
|
|
|
// Tests using ByRef() on a non-const value. |
|
TEST(ByRefTest, NonConstValue) { |
|
int n = 0; |
|
|
|
// ByRef(n) can be used as either an int&, |
|
int& ref = ByRef(n); |
|
EXPECT_EQ(&n, &ref); |
|
|
|
// or a const int&. |
|
const int& const_ref = ByRef(n); |
|
EXPECT_EQ(&n, &const_ref); |
|
} |
|
|
|
// Tests explicitly specifying the type when using ByRef(). |
|
TEST(ByRefTest, ExplicitType) { |
|
int n = 0; |
|
const int& r1 = ByRef<const int>(n); |
|
EXPECT_EQ(&n, &r1); |
|
|
|
// ByRef<char>(n); // This shouldn't compile - we have a negative |
|
// compilation test to catch it. |
|
|
|
Derived d; |
|
Derived& r2 = ByRef<Derived>(d); |
|
EXPECT_EQ(&d, &r2); |
|
|
|
const Derived& r3 = ByRef<const Derived>(d); |
|
EXPECT_EQ(&d, &r3); |
|
|
|
Base& r4 = ByRef<Base>(d); |
|
EXPECT_EQ(&d, &r4); |
|
|
|
const Base& r5 = ByRef<const Base>(d); |
|
EXPECT_EQ(&d, &r5); |
|
|
|
// The following shouldn't compile - we have a negative compilation |
|
// test for it. |
|
// |
|
// Base b; |
|
// ByRef<Derived>(b); |
|
} |
|
|
|
// Tests that Google Mock prints expression ByRef(x) as a reference to x. |
|
TEST(ByRefTest, PrintsCorrectly) { |
|
int n = 42; |
|
::std::stringstream expected, actual; |
|
testing::internal::UniversalPrinter<const int&>::Print(n, &expected); |
|
testing::internal::UniversalPrint(ByRef(n), &actual); |
|
EXPECT_EQ(expected.str(), actual.str()); |
|
} |
|
|
|
struct UnaryConstructorClass { |
|
explicit UnaryConstructorClass(int v) : value(v) {} |
|
int value; |
|
}; |
|
|
|
// Tests using ReturnNew() with a unary constructor. |
|
TEST(ReturnNewTest, Unary) { |
|
Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000); |
|
UnaryConstructorClass* c = a.Perform(std::make_tuple()); |
|
EXPECT_EQ(4000, c->value); |
|
delete c; |
|
} |
|
|
|
TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) { |
|
Action<UnaryConstructorClass*(bool, int)> a = |
|
ReturnNew<UnaryConstructorClass>(4000); |
|
UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5)); |
|
EXPECT_EQ(4000, c->value); |
|
delete c; |
|
} |
|
|
|
TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) { |
|
Action<const UnaryConstructorClass*()> a = |
|
ReturnNew<UnaryConstructorClass>(4000); |
|
const UnaryConstructorClass* c = a.Perform(std::make_tuple()); |
|
EXPECT_EQ(4000, c->value); |
|
delete c; |
|
} |
|
|
|
class TenArgConstructorClass { |
|
public: |
|
TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7, |
|
int a8, int a9, int a10) |
|
: value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {} |
|
int value_; |
|
}; |
|
|
|
// Tests using ReturnNew() with a 10-argument constructor. |
|
TEST(ReturnNewTest, ConstructorThatTakes10Arguments) { |
|
Action<TenArgConstructorClass*()> a = ReturnNew<TenArgConstructorClass>( |
|
1000000000, 200000000, 30000000, 4000000, 500000, 60000, 7000, 800, 90, |
|
0); |
|
TenArgConstructorClass* c = a.Perform(std::make_tuple()); |
|
EXPECT_EQ(1234567890, c->value_); |
|
delete c; |
|
} |
|
|
|
std::unique_ptr<int> UniquePtrSource() { return std::make_unique<int>(19); } |
|
|
|
std::vector<std::unique_ptr<int>> VectorUniquePtrSource() { |
|
std::vector<std::unique_ptr<int>> out; |
|
out.emplace_back(new int(7)); |
|
return out; |
|
} |
|
|
|
TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) { |
|
MockClass mock; |
|
std::unique_ptr<int> i(new int(19)); |
|
EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i)))); |
|
EXPECT_CALL(mock, MakeVectorUnique()) |
|
.WillOnce(Return(ByMove(VectorUniquePtrSource()))); |
|
Derived* d = new Derived; |
|
EXPECT_CALL(mock, MakeUniqueBase()) |
|
.WillOnce(Return(ByMove(std::unique_ptr<Derived>(d)))); |
|
|
|
std::unique_ptr<int> result1 = mock.MakeUnique(); |
|
EXPECT_EQ(19, *result1); |
|
|
|
std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique(); |
|
EXPECT_EQ(1u, vresult.size()); |
|
EXPECT_NE(nullptr, vresult[0]); |
|
EXPECT_EQ(7, *vresult[0]); |
|
|
|
std::unique_ptr<Base> result2 = mock.MakeUniqueBase(); |
|
EXPECT_EQ(d, result2.get()); |
|
} |
|
|
|
TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) { |
|
testing::MockFunction<void()> mock_function; |
|
MockClass mock; |
|
std::unique_ptr<int> i(new int(19)); |
|
EXPECT_CALL(mock_function, Call()); |
|
EXPECT_CALL(mock, MakeUnique()) |
|
.WillOnce(DoAll(InvokeWithoutArgs(&mock_function, |
|
&testing::MockFunction<void()>::Call), |
|
Return(ByMove(std::move(i))))); |
|
|
|
std::unique_ptr<int> result1 = mock.MakeUnique(); |
|
EXPECT_EQ(19, *result1); |
|
} |
|
|
|
TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) { |
|
MockClass mock; |
|
|
|
// Check default value |
|
DefaultValue<std::unique_ptr<int>>::SetFactory( |
|
[] { return std::make_unique<int>(42); }); |
|
EXPECT_EQ(42, *mock.MakeUnique()); |
|
|
|
EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource)); |
|
EXPECT_CALL(mock, MakeVectorUnique()) |
|
.WillRepeatedly(Invoke(VectorUniquePtrSource)); |
|
std::unique_ptr<int> result1 = mock.MakeUnique(); |
|
EXPECT_EQ(19, *result1); |
|
std::unique_ptr<int> result2 = mock.MakeUnique(); |
|
EXPECT_EQ(19, *result2); |
|
EXPECT_NE(result1, result2); |
|
|
|
std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique(); |
|
EXPECT_EQ(1u, vresult.size()); |
|
EXPECT_NE(nullptr, vresult[0]); |
|
EXPECT_EQ(7, *vresult[0]); |
|
} |
|
|
|
TEST(MockMethodTest, CanTakeMoveOnlyValue) { |
|
MockClass mock; |
|
auto make = [](int i) { return std::make_unique<int>(i); }; |
|
|
|
EXPECT_CALL(mock, TakeUnique(_)).WillRepeatedly([](std::unique_ptr<int> i) { |
|
return *i; |
|
}); |
|
// DoAll() does not compile, since it would move from its arguments twice. |
|
// EXPECT_CALL(mock, TakeUnique(_, _)) |
|
// .WillRepeatedly(DoAll(Invoke([](std::unique_ptr<int> j) {}), |
|
// Return(1))); |
|
EXPECT_CALL(mock, TakeUnique(testing::Pointee(7))) |
|
.WillOnce(Return(-7)) |
|
.RetiresOnSaturation(); |
|
EXPECT_CALL(mock, TakeUnique(testing::IsNull())) |
|
.WillOnce(Return(-1)) |
|
.RetiresOnSaturation(); |
|
|
|
EXPECT_EQ(5, mock.TakeUnique(make(5))); |
|
EXPECT_EQ(-7, mock.TakeUnique(make(7))); |
|
EXPECT_EQ(7, mock.TakeUnique(make(7))); |
|
EXPECT_EQ(7, mock.TakeUnique(make(7))); |
|
EXPECT_EQ(-1, mock.TakeUnique({})); |
|
|
|
// Some arguments are moved, some passed by reference. |
|
auto lvalue = make(6); |
|
EXPECT_CALL(mock, TakeUnique(_, _)) |
|
.WillOnce([](const std::unique_ptr<int>& i, std::unique_ptr<int> j) { |
|
return *i * *j; |
|
}); |
|
EXPECT_EQ(42, mock.TakeUnique(lvalue, make(7))); |
|
|
|
// The unique_ptr can be saved by the action. |
|
std::unique_ptr<int> saved; |
|
EXPECT_CALL(mock, TakeUnique(_)).WillOnce([&saved](std::unique_ptr<int> i) { |
|
saved = std::move(i); |
|
return 0; |
|
}); |
|
EXPECT_EQ(0, mock.TakeUnique(make(42))); |
|
EXPECT_EQ(42, *saved); |
|
} |
|
|
|
// It should be possible to use callables with an &&-qualified call operator |
|
// with WillOnce, since they will be called only once. This allows actions to |
|
// contain and manipulate move-only types. |
|
TEST(MockMethodTest, ActionHasRvalueRefQualifiedCallOperator) { |
|
struct Return17 { |
|
int operator()() && { return 17; } |
|
}; |
|
|
|
// Action is directly compatible with mocked function type. |
|
{ |
|
MockFunction<int()> mock; |
|
EXPECT_CALL(mock, Call).WillOnce(Return17()); |
|
|
|
EXPECT_EQ(17, mock.AsStdFunction()()); |
|
} |
|
|
|
// Action doesn't want mocked function arguments. |
|
{ |
|
MockFunction<int(int)> mock; |
|
EXPECT_CALL(mock, Call).WillOnce(Return17()); |
|
|
|
EXPECT_EQ(17, mock.AsStdFunction()(0)); |
|
} |
|
} |
|
|
|
// Edge case: if an action has both a const-qualified and an &&-qualified call |
|
// operator, there should be no "ambiguous call" errors. The &&-qualified |
|
// operator should be used by WillOnce (since it doesn't need to retain the |
|
// action beyond one call), and the const-qualified one by WillRepeatedly. |
|
TEST(MockMethodTest, ActionHasMultipleCallOperators) { |
|
struct ReturnInt { |
|
int operator()() && { return 17; } |
|
int operator()() const& { return 19; } |
|
}; |
|
|
|
// Directly compatible with mocked function type. |
|
{ |
|
MockFunction<int()> mock; |
|
EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt()); |
|
|
|
EXPECT_EQ(17, mock.AsStdFunction()()); |
|
EXPECT_EQ(19, mock.AsStdFunction()()); |
|
EXPECT_EQ(19, mock.AsStdFunction()()); |
|
} |
|
|
|
// Ignores function arguments. |
|
{ |
|
MockFunction<int(int)> mock; |
|
EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt()); |
|
|
|
EXPECT_EQ(17, mock.AsStdFunction()(0)); |
|
EXPECT_EQ(19, mock.AsStdFunction()(0)); |
|
EXPECT_EQ(19, mock.AsStdFunction()(0)); |
|
} |
|
} |
|
|
|
// WillOnce should have no problem coping with a move-only action, whether it is |
|
// &&-qualified or not. |
|
TEST(MockMethodTest, MoveOnlyAction) { |
|
// &&-qualified |
|
{ |
|
struct Return17 { |
|
Return17() = default; |
|
Return17(Return17&&) = default; |
|
|
|
Return17(const Return17&) = delete; |
|
Return17 operator=(const Return17&) = delete; |
|
|
|
int operator()() && { return 17; } |
|
}; |
|
|
|
MockFunction<int()> mock; |
|
EXPECT_CALL(mock, Call).WillOnce(Return17()); |
|
EXPECT_EQ(17, mock.AsStdFunction()()); |
|
} |
|
|
|
// Not &&-qualified |
|
{ |
|
struct Return17 { |
|
Return17() = default; |
|
Return17(Return17&&) = default; |
|
|
|
Return17(const Return17&) = delete; |
|
Return17 operator=(const Return17&) = delete; |
|
|
|
int operator()() const { return 17; } |
|
}; |
|
|
|
MockFunction<int()> mock; |
|
EXPECT_CALL(mock, Call).WillOnce(Return17()); |
|
EXPECT_EQ(17, mock.AsStdFunction()()); |
|
} |
|
} |
|
|
|
// It should be possible to use an action that returns a value with a mock |
|
// function that doesn't, both through WillOnce and WillRepeatedly. |
|
TEST(MockMethodTest, ActionReturnsIgnoredValue) { |
|
struct ReturnInt { |
|
int operator()() const { return 0; } |
|
}; |
|
|
|
MockFunction<void()> mock; |
|
EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt()); |
|
|
|
mock.AsStdFunction()(); |
|
mock.AsStdFunction()(); |
|
} |
|
|
|
// Despite the fanciness around move-only actions and so on, it should still be |
|
// possible to hand an lvalue reference to a copyable action to WillOnce. |
|
TEST(MockMethodTest, WillOnceCanAcceptLvalueReference) { |
|
MockFunction<int()> mock; |
|
|
|
const auto action = [] { return 17; }; |
|
EXPECT_CALL(mock, Call).WillOnce(action); |
|
|
|
EXPECT_EQ(17, mock.AsStdFunction()()); |
|
} |
|
|
|
// A callable that doesn't use SFINAE to restrict its call operator's overload |
|
// set, but is still picky about which arguments it will accept. |
|
struct StaticAssertSingleArgument { |
|
template <typename... Args> |
|
static constexpr bool CheckArgs() { |
|
static_assert(sizeof...(Args) == 1, ""); |
|
return true; |
|
} |
|
|
|
template <typename... Args, bool = CheckArgs<Args...>()> |
|
int operator()(Args...) const { |
|
return 17; |
|
} |
|
}; |
|
|
|
// WillOnce and WillRepeatedly should both work fine with naïve implementations |
|
// of actions that don't use SFINAE to limit the overload set for their call |
|
// operator. If they are compatible with the actual mocked signature, we |
|
// shouldn't probe them with no arguments and trip a static_assert. |
|
TEST(MockMethodTest, ActionSwallowsAllArguments) { |
|
MockFunction<int(int)> mock; |
|
EXPECT_CALL(mock, Call) |
|
.WillOnce(StaticAssertSingleArgument{}) |
|
.WillRepeatedly(StaticAssertSingleArgument{}); |
|
|
|
EXPECT_EQ(17, mock.AsStdFunction()(0)); |
|
EXPECT_EQ(17, mock.AsStdFunction()(0)); |
|
} |
|
|
|
struct ActionWithTemplatedConversionOperators { |
|
template <typename... Args> |
|
operator OnceAction<int(Args...)>() && { // NOLINT |
|
return [] { return 17; }; |
|
} |
|
|
|
template <typename... Args> |
|
operator Action<int(Args...)>() const { // NOLINT |
|
return [] { return 19; }; |
|
} |
|
}; |
|
|
|
// It should be fine to hand both WillOnce and WillRepeatedly a function that |
|
// defines templated conversion operators to OnceAction and Action. WillOnce |
|
// should prefer the OnceAction version. |
|
TEST(MockMethodTest, ActionHasTemplatedConversionOperators) { |
|
MockFunction<int()> mock; |
|
EXPECT_CALL(mock, Call) |
|
.WillOnce(ActionWithTemplatedConversionOperators{}) |
|
.WillRepeatedly(ActionWithTemplatedConversionOperators{}); |
|
|
|
EXPECT_EQ(17, mock.AsStdFunction()()); |
|
EXPECT_EQ(19, mock.AsStdFunction()()); |
|
} |
|
|
|
// Tests for std::function based action. |
|
|
|
int Add(int val, int& ref, int* ptr) { // NOLINT |
|
int result = val + ref + *ptr; |
|
ref = 42; |
|
*ptr = 43; |
|
return result; |
|
} |
|
|
|
int Deref(std::unique_ptr<int> ptr) { return *ptr; } |
|
|
|
struct Double { |
|
template <typename T> |
|
T operator()(T t) { |
|
return 2 * t; |
|
} |
|
}; |
|
|
|
std::unique_ptr<int> UniqueInt(int i) { return std::make_unique<int>(i); } |
|
|
|
TEST(FunctorActionTest, ActionFromFunction) { |
|
Action<int(int, int&, int*)> a = &Add; |
|
int x = 1, y = 2, z = 3; |
|
EXPECT_EQ(6, a.Perform(std::forward_as_tuple(x, y, &z))); |
|
EXPECT_EQ(42, y); |
|
EXPECT_EQ(43, z); |
|
|
|
Action<int(std::unique_ptr<int>)> a1 = &Deref; |
|
EXPECT_EQ(7, a1.Perform(std::make_tuple(UniqueInt(7)))); |
|
} |
|
|
|
TEST(FunctorActionTest, ActionFromLambda) { |
|
Action<int(bool, int)> a1 = [](bool b, int i) { return b ? i : 0; }; |
|
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5))); |
|
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 5))); |
|
|
|
std::unique_ptr<int> saved; |
|
Action<void(std::unique_ptr<int>)> a2 = [&saved](std::unique_ptr<int> p) { |
|
saved = std::move(p); |
|
}; |
|
a2.Perform(std::make_tuple(UniqueInt(5))); |
|
EXPECT_EQ(5, *saved); |
|
} |
|
|
|
TEST(FunctorActionTest, PolymorphicFunctor) { |
|
Action<int(int)> ai = Double(); |
|
EXPECT_EQ(2, ai.Perform(std::make_tuple(1))); |
|
Action<double(double)> ad = Double(); // Double? Double double! |
|
EXPECT_EQ(3.0, ad.Perform(std::make_tuple(1.5))); |
|
} |
|
|
|
TEST(FunctorActionTest, TypeConversion) { |
|
// Numeric promotions are allowed. |
|
const Action<bool(int)> a1 = [](int i) { return i > 1; }; |
|
const Action<int(bool)> a2 = Action<int(bool)>(a1); |
|
EXPECT_EQ(1, a1.Perform(std::make_tuple(42))); |
|
EXPECT_EQ(0, a2.Perform(std::make_tuple(42))); |
|
|
|
// Implicit constructors are allowed. |
|
const Action<bool(std::string)> s1 = [](std::string s) { return !s.empty(); }; |
|
const Action<int(const char*)> s2 = Action<int(const char*)>(s1); |
|
EXPECT_EQ(0, s2.Perform(std::make_tuple(""))); |
|
EXPECT_EQ(1, s2.Perform(std::make_tuple("hello"))); |
|
|
|
// Also between the lambda and the action itself. |
|
const Action<bool(std::string)> x1 = [](Unused) { return 42; }; |
|
const Action<bool(std::string)> x2 = [] { return 42; }; |
|
EXPECT_TRUE(x1.Perform(std::make_tuple("hello"))); |
|
EXPECT_TRUE(x2.Perform(std::make_tuple("hello"))); |
|
|
|
// Ensure decay occurs where required. |
|
std::function<int()> f = [] { return 7; }; |
|
Action<int(int)> d = f; |
|
f = nullptr; |
|
EXPECT_EQ(7, d.Perform(std::make_tuple(1))); |
|
|
|
// Ensure creation of an empty action succeeds. |
|
Action<void(int)>(nullptr); |
|
} |
|
|
|
TEST(FunctorActionTest, UnusedArguments) { |
|
// Verify that users can ignore uninteresting arguments. |
|
Action<int(int, double y, double z)> a = [](int i, Unused, Unused) { |
|
return 2 * i; |
|
}; |
|
std::tuple<int, double, double> dummy = std::make_tuple(3, 7.3, 9.44); |
|
EXPECT_EQ(6, a.Perform(dummy)); |
|
} |
|
|
|
// Test that basic built-in actions work with move-only arguments. |
|
TEST(MoveOnlyArgumentsTest, ReturningActions) { |
|
Action<int(std::unique_ptr<int>)> a = Return(1); |
|
EXPECT_EQ(1, a.Perform(std::make_tuple(nullptr))); |
|
|
|
a = testing::WithoutArgs([]() { return 7; }); |
|
EXPECT_EQ(7, a.Perform(std::make_tuple(nullptr))); |
|
|
|
Action<void(std::unique_ptr<int>, int*)> a2 = testing::SetArgPointee<1>(3); |
|
int x = 0; |
|
a2.Perform(std::make_tuple(nullptr, &x)); |
|
EXPECT_EQ(x, 3); |
|
} |
|
|
|
ACTION(ReturnArity) { return std::tuple_size<args_type>::value; } |
|
|
|
TEST(ActionMacro, LargeArity) { |
|
EXPECT_EQ( |
|
1, testing::Action<int(int)>(ReturnArity()).Perform(std::make_tuple(0))); |
|
EXPECT_EQ( |
|
10, |
|
testing::Action<int(int, int, int, int, int, int, int, int, int, int)>( |
|
ReturnArity()) |
|
.Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); |
|
EXPECT_EQ( |
|
20, |
|
testing::Action<int(int, int, int, int, int, int, int, int, int, int, int, |
|
int, int, int, int, int, int, int, int, int)>( |
|
ReturnArity()) |
|
.Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, |
|
14, 15, 16, 17, 18, 19))); |
|
} |
|
|
|
} // namespace |
|
} // namespace testing |
|
|
|
#if defined(_MSC_VER) && (_MSC_VER == 1900) |
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4800 |
|
#endif |
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100 4503
|
|
|