GoogleTest - Google Testing and Mocking Framework (grpc protobuff依赖)
https://google.github.io/googletest/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
5631 lines
205 KiB
5631 lines
205 KiB
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// The MATCHER* family of macros can be used in a namespace scope to |
|
// define custom matchers easily. |
|
// |
|
// Basic Usage |
|
// =========== |
|
// |
|
// The syntax |
|
// |
|
// MATCHER(name, description_string) { statements; } |
|
// |
|
// defines a matcher with the given name that executes the statements, |
|
// which must return a bool to indicate if the match succeeds. Inside |
|
// the statements, you can refer to the value being matched by 'arg', |
|
// and refer to its type by 'arg_type'. |
|
// |
|
// The description string documents what the matcher does, and is used |
|
// to generate the failure message when the match fails. Since a |
|
// MATCHER() is usually defined in a header file shared by multiple |
|
// C++ source files, we require the description to be a C-string |
|
// literal to avoid possible side effects. It can be empty, in which |
|
// case we'll use the sequence of words in the matcher name as the |
|
// description. |
|
// |
|
// For example: |
|
// |
|
// MATCHER(IsEven, "") { return (arg % 2) == 0; } |
|
// |
|
// allows you to write |
|
// |
|
// // Expects mock_foo.Bar(n) to be called where n is even. |
|
// EXPECT_CALL(mock_foo, Bar(IsEven())); |
|
// |
|
// or, |
|
// |
|
// // Verifies that the value of some_expression is even. |
|
// EXPECT_THAT(some_expression, IsEven()); |
|
// |
|
// If the above assertion fails, it will print something like: |
|
// |
|
// Value of: some_expression |
|
// Expected: is even |
|
// Actual: 7 |
|
// |
|
// where the description "is even" is automatically calculated from the |
|
// matcher name IsEven. |
|
// |
|
// Argument Type |
|
// ============= |
|
// |
|
// Note that the type of the value being matched (arg_type) is |
|
// determined by the context in which you use the matcher and is |
|
// supplied to you by the compiler, so you don't need to worry about |
|
// declaring it (nor can you). This allows the matcher to be |
|
// polymorphic. For example, IsEven() can be used to match any type |
|
// where the value of "(arg % 2) == 0" can be implicitly converted to |
|
// a bool. In the "Bar(IsEven())" example above, if method Bar() |
|
// takes an int, 'arg_type' will be int; if it takes an unsigned long, |
|
// 'arg_type' will be unsigned long; and so on. |
|
// |
|
// Parameterizing Matchers |
|
// ======================= |
|
// |
|
// Sometimes you'll want to parameterize the matcher. For that you |
|
// can use another macro: |
|
// |
|
// MATCHER_P(name, param_name, description_string) { statements; } |
|
// |
|
// For example: |
|
// |
|
// MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } |
|
// |
|
// will allow you to write: |
|
// |
|
// EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); |
|
// |
|
// which may lead to this message (assuming n is 10): |
|
// |
|
// Value of: Blah("a") |
|
// Expected: has absolute value 10 |
|
// Actual: -9 |
|
// |
|
// Note that both the matcher description and its parameter are |
|
// printed, making the message human-friendly. |
|
// |
|
// In the matcher definition body, you can write 'foo_type' to |
|
// reference the type of a parameter named 'foo'. For example, in the |
|
// body of MATCHER_P(HasAbsoluteValue, value) above, you can write |
|
// 'value_type' to refer to the type of 'value'. |
|
// |
|
// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to |
|
// support multi-parameter matchers. |
|
// |
|
// Describing Parameterized Matchers |
|
// ================================= |
|
// |
|
// The last argument to MATCHER*() is a string-typed expression. The |
|
// expression can reference all of the matcher's parameters and a |
|
// special bool-typed variable named 'negation'. When 'negation' is |
|
// false, the expression should evaluate to the matcher's description; |
|
// otherwise it should evaluate to the description of the negation of |
|
// the matcher. For example, |
|
// |
|
// using testing::PrintToString; |
|
// |
|
// MATCHER_P2(InClosedRange, low, hi, |
|
// std::string(negation ? "is not" : "is") + " in range [" + |
|
// PrintToString(low) + ", " + PrintToString(hi) + "]") { |
|
// return low <= arg && arg <= hi; |
|
// } |
|
// ... |
|
// EXPECT_THAT(3, InClosedRange(4, 6)); |
|
// EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
|
// |
|
// would generate two failures that contain the text: |
|
// |
|
// Expected: is in range [4, 6] |
|
// ... |
|
// Expected: is not in range [2, 4] |
|
// |
|
// If you specify "" as the description, the failure message will |
|
// contain the sequence of words in the matcher name followed by the |
|
// parameter values printed as a tuple. For example, |
|
// |
|
// MATCHER_P2(InClosedRange, low, hi, "") { ... } |
|
// ... |
|
// EXPECT_THAT(3, InClosedRange(4, 6)); |
|
// EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
|
// |
|
// would generate two failures that contain the text: |
|
// |
|
// Expected: in closed range (4, 6) |
|
// ... |
|
// Expected: not (in closed range (2, 4)) |
|
// |
|
// Types of Matcher Parameters |
|
// =========================== |
|
// |
|
// For the purpose of typing, you can view |
|
// |
|
// MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } |
|
// |
|
// as shorthand for |
|
// |
|
// template <typename p1_type, ..., typename pk_type> |
|
// FooMatcherPk<p1_type, ..., pk_type> |
|
// Foo(p1_type p1, ..., pk_type pk) { ... } |
|
// |
|
// When you write Foo(v1, ..., vk), the compiler infers the types of |
|
// the parameters v1, ..., and vk for you. If you are not happy with |
|
// the result of the type inference, you can specify the types by |
|
// explicitly instantiating the template, as in Foo<long, bool>(5, |
|
// false). As said earlier, you don't get to (or need to) specify |
|
// 'arg_type' as that's determined by the context in which the matcher |
|
// is used. You can assign the result of expression Foo(p1, ..., pk) |
|
// to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This |
|
// can be useful when composing matchers. |
|
// |
|
// While you can instantiate a matcher template with reference types, |
|
// passing the parameters by pointer usually makes your code more |
|
// readable. If, however, you still want to pass a parameter by |
|
// reference, be aware that in the failure message generated by the |
|
// matcher you will see the value of the referenced object but not its |
|
// address. |
|
// |
|
// Explaining Match Results |
|
// ======================== |
|
// |
|
// Sometimes the matcher description alone isn't enough to explain why |
|
// the match has failed or succeeded. For example, when expecting a |
|
// long string, it can be very helpful to also print the diff between |
|
// the expected string and the actual one. To achieve that, you can |
|
// optionally stream additional information to a special variable |
|
// named result_listener, whose type is a pointer to class |
|
// MatchResultListener: |
|
// |
|
// MATCHER_P(EqualsLongString, str, "") { |
|
// if (arg == str) return true; |
|
// |
|
// *result_listener << "the difference: " |
|
/// << DiffStrings(str, arg); |
|
// return false; |
|
// } |
|
// |
|
// Overloading Matchers |
|
// ==================== |
|
// |
|
// You can overload matchers with different numbers of parameters: |
|
// |
|
// MATCHER_P(Blah, a, description_string1) { ... } |
|
// MATCHER_P2(Blah, a, b, description_string2) { ... } |
|
// |
|
// Caveats |
|
// ======= |
|
// |
|
// When defining a new matcher, you should also consider implementing |
|
// MatcherInterface or using MakePolymorphicMatcher(). These |
|
// approaches require more work than the MATCHER* macros, but also |
|
// give you more control on the types of the value being matched and |
|
// the matcher parameters, which may leads to better compiler error |
|
// messages when the matcher is used wrong. They also allow |
|
// overloading matchers based on parameter types (as opposed to just |
|
// based on the number of parameters). |
|
// |
|
// MATCHER*() can only be used in a namespace scope as templates cannot be |
|
// declared inside of a local class. |
|
// |
|
// More Information |
|
// ================ |
|
// |
|
// To learn more about using these macros, please search for 'MATCHER' |
|
// on |
|
// https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md |
|
// |
|
// This file also implements some commonly used argument matchers. More |
|
// matchers can be defined by the user implementing the |
|
// MatcherInterface<T> interface if necessary. |
|
// |
|
// See googletest/include/gtest/gtest-matchers.h for the definition of class |
|
// Matcher, class MatcherInterface, and others. |
|
|
|
// IWYU pragma: private, include "gmock/gmock.h" |
|
// IWYU pragma: friend gmock/.* |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
|
|
|
#include <algorithm> |
|
#include <cmath> |
|
#include <initializer_list> |
|
#include <iterator> |
|
#include <limits> |
|
#include <memory> |
|
#include <ostream> // NOLINT |
|
#include <sstream> |
|
#include <string> |
|
#include <type_traits> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#include "gmock/internal/gmock-internal-utils.h" |
|
#include "gmock/internal/gmock-port.h" |
|
#include "gmock/internal/gmock-pp.h" |
|
#include "gtest/gtest.h" |
|
|
|
// MSVC warning C5046 is new as of VS2017 version 15.8. |
|
#if defined(_MSC_VER) && _MSC_VER >= 1915 |
|
#define GMOCK_MAYBE_5046_ 5046 |
|
#else |
|
#define GMOCK_MAYBE_5046_ |
|
#endif |
|
|
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_( |
|
4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by |
|
clients of class B */ |
|
/* Symbol involving type with internal linkage not defined */) |
|
|
|
namespace testing { |
|
|
|
// To implement a matcher Foo for type T, define: |
|
// 1. a class FooMatcherImpl that implements the |
|
// MatcherInterface<T> interface, and |
|
// 2. a factory function that creates a Matcher<T> object from a |
|
// FooMatcherImpl*. |
|
// |
|
// The two-level delegation design makes it possible to allow a user |
|
// to write "v" instead of "Eq(v)" where a Matcher is expected, which |
|
// is impossible if we pass matchers by pointers. It also eases |
|
// ownership management as Matcher objects can now be copied like |
|
// plain values. |
|
|
|
// A match result listener that stores the explanation in a string. |
|
class StringMatchResultListener : public MatchResultListener { |
|
public: |
|
StringMatchResultListener() : MatchResultListener(&ss_) {} |
|
|
|
// Returns the explanation accumulated so far. |
|
std::string str() const { return ss_.str(); } |
|
|
|
// Clears the explanation accumulated so far. |
|
void Clear() { ss_.str(""); } |
|
|
|
private: |
|
::std::stringstream ss_; |
|
|
|
StringMatchResultListener(const StringMatchResultListener&) = delete; |
|
StringMatchResultListener& operator=(const StringMatchResultListener&) = |
|
delete; |
|
}; |
|
|
|
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
|
// and MUST NOT BE USED IN USER CODE!!! |
|
namespace internal { |
|
|
|
// The MatcherCastImpl class template is a helper for implementing |
|
// MatcherCast(). We need this helper in order to partially |
|
// specialize the implementation of MatcherCast() (C++ allows |
|
// class/struct templates to be partially specialized, but not |
|
// function templates.). |
|
|
|
// This general version is used when MatcherCast()'s argument is a |
|
// polymorphic matcher (i.e. something that can be converted to a |
|
// Matcher but is not one yet; for example, Eq(value)) or a value (for |
|
// example, "hello"). |
|
template <typename T, typename M> |
|
class MatcherCastImpl { |
|
public: |
|
static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
|
// M can be a polymorphic matcher, in which case we want to use |
|
// its conversion operator to create Matcher<T>. Or it can be a value |
|
// that should be passed to the Matcher<T>'s constructor. |
|
// |
|
// We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a |
|
// polymorphic matcher because it'll be ambiguous if T has an implicit |
|
// constructor from M (this usually happens when T has an implicit |
|
// constructor from any type). |
|
// |
|
// It won't work to unconditionally implicit_cast |
|
// polymorphic_matcher_or_value to Matcher<T> because it won't trigger |
|
// a user-defined conversion from M to T if one exists (assuming M is |
|
// a value). |
|
return CastImpl(polymorphic_matcher_or_value, |
|
std::is_convertible<M, Matcher<T>>{}, |
|
std::is_convertible<M, T>{}); |
|
} |
|
|
|
private: |
|
template <bool Ignore> |
|
static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, |
|
std::true_type /* convertible_to_matcher */, |
|
std::integral_constant<bool, Ignore>) { |
|
// M is implicitly convertible to Matcher<T>, which means that either |
|
// M is a polymorphic matcher or Matcher<T> has an implicit constructor |
|
// from M. In both cases using the implicit conversion will produce a |
|
// matcher. |
|
// |
|
// Even if T has an implicit constructor from M, it won't be called because |
|
// creating Matcher<T> would require a chain of two user-defined conversions |
|
// (first to create T from M and then to create Matcher<T> from T). |
|
return polymorphic_matcher_or_value; |
|
} |
|
|
|
// M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic |
|
// matcher. It's a value of a type implicitly convertible to T. Use direct |
|
// initialization to create a matcher. |
|
static Matcher<T> CastImpl(const M& value, |
|
std::false_type /* convertible_to_matcher */, |
|
std::true_type /* convertible_to_T */) { |
|
return Matcher<T>(ImplicitCast_<T>(value)); |
|
} |
|
|
|
// M can't be implicitly converted to either Matcher<T> or T. Attempt to use |
|
// polymorphic matcher Eq(value) in this case. |
|
// |
|
// Note that we first attempt to perform an implicit cast on the value and |
|
// only fall back to the polymorphic Eq() matcher afterwards because the |
|
// latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end |
|
// which might be undefined even when Rhs is implicitly convertible to Lhs |
|
// (e.g. std::pair<const int, int> vs. std::pair<int, int>). |
|
// |
|
// We don't define this method inline as we need the declaration of Eq(). |
|
static Matcher<T> CastImpl(const M& value, |
|
std::false_type /* convertible_to_matcher */, |
|
std::false_type /* convertible_to_T */); |
|
}; |
|
|
|
// This more specialized version is used when MatcherCast()'s argument |
|
// is already a Matcher. This only compiles when type T can be |
|
// statically converted to type U. |
|
template <typename T, typename U> |
|
class MatcherCastImpl<T, Matcher<U>> { |
|
public: |
|
static Matcher<T> Cast(const Matcher<U>& source_matcher) { |
|
return Matcher<T>(new Impl(source_matcher)); |
|
} |
|
|
|
private: |
|
class Impl : public MatcherInterface<T> { |
|
public: |
|
explicit Impl(const Matcher<U>& source_matcher) |
|
: source_matcher_(source_matcher) {} |
|
|
|
// We delegate the matching logic to the source matcher. |
|
bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
|
using FromType = typename std::remove_cv<typename std::remove_pointer< |
|
typename std::remove_reference<T>::type>::type>::type; |
|
using ToType = typename std::remove_cv<typename std::remove_pointer< |
|
typename std::remove_reference<U>::type>::type>::type; |
|
// Do not allow implicitly converting base*/& to derived*/&. |
|
static_assert( |
|
// Do not trigger if only one of them is a pointer. That implies a |
|
// regular conversion and not a down_cast. |
|
(std::is_pointer<typename std::remove_reference<T>::type>::value != |
|
std::is_pointer<typename std::remove_reference<U>::type>::value) || |
|
std::is_same<FromType, ToType>::value || |
|
!std::is_base_of<FromType, ToType>::value, |
|
"Can't implicitly convert from <base> to <derived>"); |
|
|
|
// Do the cast to `U` explicitly if necessary. |
|
// Otherwise, let implicit conversions do the trick. |
|
using CastType = |
|
typename std::conditional<std::is_convertible<T&, const U&>::value, |
|
T&, U>::type; |
|
|
|
return source_matcher_.MatchAndExplain(static_cast<CastType>(x), |
|
listener); |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
source_matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
source_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
private: |
|
const Matcher<U> source_matcher_; |
|
}; |
|
}; |
|
|
|
// This even more specialized version is used for efficiently casting |
|
// a matcher to its own type. |
|
template <typename T> |
|
class MatcherCastImpl<T, Matcher<T>> { |
|
public: |
|
static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } |
|
}; |
|
|
|
// Template specialization for parameterless Matcher. |
|
template <typename Derived> |
|
class MatcherBaseImpl { |
|
public: |
|
MatcherBaseImpl() = default; |
|
|
|
template <typename T> |
|
operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit) |
|
return ::testing::Matcher<T>(new |
|
typename Derived::template gmock_Impl<T>()); |
|
} |
|
}; |
|
|
|
// Template specialization for Matcher with parameters. |
|
template <template <typename...> class Derived, typename... Ts> |
|
class MatcherBaseImpl<Derived<Ts...>> { |
|
public: |
|
// Mark the constructor explicit for single argument T to avoid implicit |
|
// conversions. |
|
template <typename E = std::enable_if<sizeof...(Ts) == 1>, |
|
typename E::type* = nullptr> |
|
explicit MatcherBaseImpl(Ts... params) |
|
: params_(std::forward<Ts>(params)...) {} |
|
template <typename E = std::enable_if<sizeof...(Ts) != 1>, |
|
typename = typename E::type> |
|
MatcherBaseImpl(Ts... params) // NOLINT |
|
: params_(std::forward<Ts>(params)...) {} |
|
|
|
template <typename F> |
|
operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit) |
|
return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{}); |
|
} |
|
|
|
private: |
|
template <typename F, std::size_t... tuple_ids> |
|
::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const { |
|
return ::testing::Matcher<F>( |
|
new typename Derived<Ts...>::template gmock_Impl<F>( |
|
std::get<tuple_ids>(params_)...)); |
|
} |
|
|
|
const std::tuple<Ts...> params_; |
|
}; |
|
|
|
} // namespace internal |
|
|
|
// In order to be safe and clear, casting between different matcher |
|
// types is done explicitly via MatcherCast<T>(m), which takes a |
|
// matcher m and returns a Matcher<T>. It compiles only when T can be |
|
// statically converted to the argument type of m. |
|
template <typename T, typename M> |
|
inline Matcher<T> MatcherCast(const M& matcher) { |
|
return internal::MatcherCastImpl<T, M>::Cast(matcher); |
|
} |
|
|
|
// This overload handles polymorphic matchers and values only since |
|
// monomorphic matchers are handled by the next one. |
|
template <typename T, typename M> |
|
inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) { |
|
return MatcherCast<T>(polymorphic_matcher_or_value); |
|
} |
|
|
|
// This overload handles monomorphic matchers. |
|
// |
|
// In general, if type T can be implicitly converted to type U, we can |
|
// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is |
|
// contravariant): just keep a copy of the original Matcher<U>, convert the |
|
// argument from type T to U, and then pass it to the underlying Matcher<U>. |
|
// The only exception is when U is a reference and T is not, as the |
|
// underlying Matcher<U> may be interested in the argument's address, which |
|
// is not preserved in the conversion from T to U. |
|
template <typename T, typename U> |
|
inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) { |
|
// Enforce that T can be implicitly converted to U. |
|
static_assert(std::is_convertible<const T&, const U&>::value, |
|
"T must be implicitly convertible to U"); |
|
// Enforce that we are not converting a non-reference type T to a reference |
|
// type U. |
|
static_assert(std::is_reference<T>::value || !std::is_reference<U>::value, |
|
"cannot convert non reference arg to reference"); |
|
// In case both T and U are arithmetic types, enforce that the |
|
// conversion is not lossy. |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; |
|
constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; |
|
constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; |
|
static_assert( |
|
kTIsOther || kUIsOther || |
|
(internal::LosslessArithmeticConvertible<RawT, RawU>::value), |
|
"conversion of arithmetic types must be lossless"); |
|
return MatcherCast<T>(matcher); |
|
} |
|
|
|
// A<T>() returns a matcher that matches any value of type T. |
|
template <typename T> |
|
Matcher<T> A(); |
|
|
|
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
|
// and MUST NOT BE USED IN USER CODE!!! |
|
namespace internal { |
|
|
|
// If the explanation is not empty, prints it to the ostream. |
|
inline void PrintIfNotEmpty(const std::string& explanation, |
|
::std::ostream* os) { |
|
if (explanation != "" && os != nullptr) { |
|
*os << ", " << explanation; |
|
} |
|
} |
|
|
|
// Returns true if the given type name is easy to read by a human. |
|
// This is used to decide whether printing the type of a value might |
|
// be helpful. |
|
inline bool IsReadableTypeName(const std::string& type_name) { |
|
// We consider a type name readable if it's short or doesn't contain |
|
// a template or function type. |
|
return (type_name.length() <= 20 || |
|
type_name.find_first_of("<(") == std::string::npos); |
|
} |
|
|
|
// Matches the value against the given matcher, prints the value and explains |
|
// the match result to the listener. Returns the match result. |
|
// 'listener' must not be NULL. |
|
// Value cannot be passed by const reference, because some matchers take a |
|
// non-const argument. |
|
template <typename Value, typename T> |
|
bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, |
|
MatchResultListener* listener) { |
|
if (!listener->IsInterested()) { |
|
// If the listener is not interested, we do not need to construct the |
|
// inner explanation. |
|
return matcher.Matches(value); |
|
} |
|
|
|
StringMatchResultListener inner_listener; |
|
const bool match = matcher.MatchAndExplain(value, &inner_listener); |
|
|
|
UniversalPrint(value, listener->stream()); |
|
#if GTEST_HAS_RTTI |
|
const std::string& type_name = GetTypeName<Value>(); |
|
if (IsReadableTypeName(type_name)) |
|
*listener->stream() << " (of type " << type_name << ")"; |
|
#endif |
|
PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
|
|
|
return match; |
|
} |
|
|
|
// An internal helper class for doing compile-time loop on a tuple's |
|
// fields. |
|
template <size_t N> |
|
class TuplePrefix { |
|
public: |
|
// TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true |
|
// if and only if the first N fields of matcher_tuple matches |
|
// the first N fields of value_tuple, respectively. |
|
template <typename MatcherTuple, typename ValueTuple> |
|
static bool Matches(const MatcherTuple& matcher_tuple, |
|
const ValueTuple& value_tuple) { |
|
return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && |
|
std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); |
|
} |
|
|
|
// TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) |
|
// describes failures in matching the first N fields of matchers |
|
// against the first N fields of values. If there is no failure, |
|
// nothing will be streamed to os. |
|
template <typename MatcherTuple, typename ValueTuple> |
|
static void ExplainMatchFailuresTo(const MatcherTuple& matchers, |
|
const ValueTuple& values, |
|
::std::ostream* os) { |
|
// First, describes failures in the first N - 1 fields. |
|
TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); |
|
|
|
// Then describes the failure (if any) in the (N - 1)-th (0-based) |
|
// field. |
|
typename std::tuple_element<N - 1, MatcherTuple>::type matcher = |
|
std::get<N - 1>(matchers); |
|
typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; |
|
const Value& value = std::get<N - 1>(values); |
|
StringMatchResultListener listener; |
|
if (!matcher.MatchAndExplain(value, &listener)) { |
|
*os << " Expected arg #" << N - 1 << ": "; |
|
std::get<N - 1>(matchers).DescribeTo(os); |
|
*os << "\n Actual: "; |
|
// We remove the reference in type Value to prevent the |
|
// universal printer from printing the address of value, which |
|
// isn't interesting to the user most of the time. The |
|
// matcher's MatchAndExplain() method handles the case when |
|
// the address is interesting. |
|
internal::UniversalPrint(value, os); |
|
PrintIfNotEmpty(listener.str(), os); |
|
*os << "\n"; |
|
} |
|
} |
|
}; |
|
|
|
// The base case. |
|
template <> |
|
class TuplePrefix<0> { |
|
public: |
|
template <typename MatcherTuple, typename ValueTuple> |
|
static bool Matches(const MatcherTuple& /* matcher_tuple */, |
|
const ValueTuple& /* value_tuple */) { |
|
return true; |
|
} |
|
|
|
template <typename MatcherTuple, typename ValueTuple> |
|
static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, |
|
const ValueTuple& /* values */, |
|
::std::ostream* /* os */) {} |
|
}; |
|
|
|
// TupleMatches(matcher_tuple, value_tuple) returns true if and only if |
|
// all matchers in matcher_tuple match the corresponding fields in |
|
// value_tuple. It is a compiler error if matcher_tuple and |
|
// value_tuple have different number of fields or incompatible field |
|
// types. |
|
template <typename MatcherTuple, typename ValueTuple> |
|
bool TupleMatches(const MatcherTuple& matcher_tuple, |
|
const ValueTuple& value_tuple) { |
|
// Makes sure that matcher_tuple and value_tuple have the same |
|
// number of fields. |
|
static_assert(std::tuple_size<MatcherTuple>::value == |
|
std::tuple_size<ValueTuple>::value, |
|
"matcher and value have different numbers of fields"); |
|
return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, |
|
value_tuple); |
|
} |
|
|
|
// Describes failures in matching matchers against values. If there |
|
// is no failure, nothing will be streamed to os. |
|
template <typename MatcherTuple, typename ValueTuple> |
|
void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, |
|
const ValueTuple& values, ::std::ostream* os) { |
|
TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( |
|
matchers, values, os); |
|
} |
|
|
|
// TransformTupleValues and its helper. |
|
// |
|
// TransformTupleValuesHelper hides the internal machinery that |
|
// TransformTupleValues uses to implement a tuple traversal. |
|
template <typename Tuple, typename Func, typename OutIter> |
|
class TransformTupleValuesHelper { |
|
private: |
|
typedef ::std::tuple_size<Tuple> TupleSize; |
|
|
|
public: |
|
// For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. |
|
// Returns the final value of 'out' in case the caller needs it. |
|
static OutIter Run(Func f, const Tuple& t, OutIter out) { |
|
return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); |
|
} |
|
|
|
private: |
|
template <typename Tup, size_t kRemainingSize> |
|
struct IterateOverTuple { |
|
OutIter operator()(Func f, const Tup& t, OutIter out) const { |
|
*out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); |
|
return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); |
|
} |
|
}; |
|
template <typename Tup> |
|
struct IterateOverTuple<Tup, 0> { |
|
OutIter operator()(Func /* f */, const Tup& /* t */, OutIter out) const { |
|
return out; |
|
} |
|
}; |
|
}; |
|
|
|
// Successively invokes 'f(element)' on each element of the tuple 't', |
|
// appending each result to the 'out' iterator. Returns the final value |
|
// of 'out'. |
|
template <typename Tuple, typename Func, typename OutIter> |
|
OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { |
|
return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); |
|
} |
|
|
|
// Implements _, a matcher that matches any value of any |
|
// type. This is a polymorphic matcher, so we need a template type |
|
// conversion operator to make it appearing as a Matcher<T> for any |
|
// type T. |
|
class AnythingMatcher { |
|
public: |
|
using is_gtest_matcher = void; |
|
|
|
template <typename T> |
|
bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const { |
|
return true; |
|
} |
|
void DescribeTo(std::ostream* os) const { *os << "is anything"; } |
|
void DescribeNegationTo(::std::ostream* os) const { |
|
// This is mostly for completeness' sake, as it's not very useful |
|
// to write Not(A<bool>()). However we cannot completely rule out |
|
// such a possibility, and it doesn't hurt to be prepared. |
|
*os << "never matches"; |
|
} |
|
}; |
|
|
|
// Implements the polymorphic IsNull() matcher, which matches any raw or smart |
|
// pointer that is NULL. |
|
class IsNullMatcher { |
|
public: |
|
template <typename Pointer> |
|
bool MatchAndExplain(const Pointer& p, |
|
MatchResultListener* /* listener */) const { |
|
return p == nullptr; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } |
|
void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; } |
|
}; |
|
|
|
// Implements the polymorphic NotNull() matcher, which matches any raw or smart |
|
// pointer that is not NULL. |
|
class NotNullMatcher { |
|
public: |
|
template <typename Pointer> |
|
bool MatchAndExplain(const Pointer& p, |
|
MatchResultListener* /* listener */) const { |
|
return p != nullptr; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } |
|
void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; } |
|
}; |
|
|
|
// Ref(variable) matches any argument that is a reference to |
|
// 'variable'. This matcher is polymorphic as it can match any |
|
// super type of the type of 'variable'. |
|
// |
|
// The RefMatcher template class implements Ref(variable). It can |
|
// only be instantiated with a reference type. This prevents a user |
|
// from mistakenly using Ref(x) to match a non-reference function |
|
// argument. For example, the following will righteously cause a |
|
// compiler error: |
|
// |
|
// int n; |
|
// Matcher<int> m1 = Ref(n); // This won't compile. |
|
// Matcher<int&> m2 = Ref(n); // This will compile. |
|
template <typename T> |
|
class RefMatcher; |
|
|
|
template <typename T> |
|
class RefMatcher<T&> { |
|
// Google Mock is a generic framework and thus needs to support |
|
// mocking any function types, including those that take non-const |
|
// reference arguments. Therefore the template parameter T (and |
|
// Super below) can be instantiated to either a const type or a |
|
// non-const type. |
|
public: |
|
// RefMatcher() takes a T& instead of const T&, as we want the |
|
// compiler to catch using Ref(const_value) as a matcher for a |
|
// non-const reference. |
|
explicit RefMatcher(T& x) : object_(x) {} // NOLINT |
|
|
|
template <typename Super> |
|
operator Matcher<Super&>() const { |
|
// By passing object_ (type T&) to Impl(), which expects a Super&, |
|
// we make sure that Super is a super type of T. In particular, |
|
// this catches using Ref(const_value) as a matcher for a |
|
// non-const reference, as you cannot implicitly convert a const |
|
// reference to a non-const reference. |
|
return MakeMatcher(new Impl<Super>(object_)); |
|
} |
|
|
|
private: |
|
template <typename Super> |
|
class Impl : public MatcherInterface<Super&> { |
|
public: |
|
explicit Impl(Super& x) : object_(x) {} // NOLINT |
|
|
|
// MatchAndExplain() takes a Super& (as opposed to const Super&) |
|
// in order to match the interface MatcherInterface<Super&>. |
|
bool MatchAndExplain(Super& x, |
|
MatchResultListener* listener) const override { |
|
*listener << "which is located @" << static_cast<const void*>(&x); |
|
return &x == &object_; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "references the variable "; |
|
UniversalPrinter<Super&>::Print(object_, os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "does not reference the variable "; |
|
UniversalPrinter<Super&>::Print(object_, os); |
|
} |
|
|
|
private: |
|
const Super& object_; |
|
}; |
|
|
|
T& object_; |
|
}; |
|
|
|
// Polymorphic helper functions for narrow and wide string matchers. |
|
inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { |
|
return String::CaseInsensitiveCStringEquals(lhs, rhs); |
|
} |
|
|
|
inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, |
|
const wchar_t* rhs) { |
|
return String::CaseInsensitiveWideCStringEquals(lhs, rhs); |
|
} |
|
|
|
// String comparison for narrow or wide strings that can have embedded NUL |
|
// characters. |
|
template <typename StringType> |
|
bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) { |
|
// Are the heads equal? |
|
if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { |
|
return false; |
|
} |
|
|
|
// Skip the equal heads. |
|
const typename StringType::value_type nul = 0; |
|
const size_t i1 = s1.find(nul), i2 = s2.find(nul); |
|
|
|
// Are we at the end of either s1 or s2? |
|
if (i1 == StringType::npos || i2 == StringType::npos) { |
|
return i1 == i2; |
|
} |
|
|
|
// Are the tails equal? |
|
return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); |
|
} |
|
|
|
// String matchers. |
|
|
|
// Implements equality-based string matchers like StrEq, StrCaseNe, and etc. |
|
template <typename StringType> |
|
class StrEqualityMatcher { |
|
public: |
|
StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive) |
|
: string_(std::move(str)), |
|
expect_eq_(expect_eq), |
|
case_sensitive_(case_sensitive) {} |
|
|
|
#if GTEST_INTERNAL_HAS_STRING_VIEW |
|
bool MatchAndExplain(const internal::StringView& s, |
|
MatchResultListener* listener) const { |
|
// This should fail to compile if StringView is used with wide |
|
// strings. |
|
const StringType& str = std::string(s); |
|
return MatchAndExplain(str, listener); |
|
} |
|
#endif // GTEST_INTERNAL_HAS_STRING_VIEW |
|
|
|
// Accepts pointer types, particularly: |
|
// const char* |
|
// char* |
|
// const wchar_t* |
|
// wchar_t* |
|
template <typename CharType> |
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
|
if (s == nullptr) { |
|
return !expect_eq_; |
|
} |
|
return MatchAndExplain(StringType(s), listener); |
|
} |
|
|
|
// Matches anything that can convert to StringType. |
|
// |
|
// This is a template, not just a plain function with const StringType&, |
|
// because StringView has some interfering non-explicit constructors. |
|
template <typename MatcheeStringType> |
|
bool MatchAndExplain(const MatcheeStringType& s, |
|
MatchResultListener* /* listener */) const { |
|
const StringType s2(s); |
|
const bool eq = case_sensitive_ ? s2 == string_ |
|
: CaseInsensitiveStringEquals(s2, string_); |
|
return expect_eq_ == eq; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
DescribeToHelper(expect_eq_, os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
DescribeToHelper(!expect_eq_, os); |
|
} |
|
|
|
private: |
|
void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { |
|
*os << (expect_eq ? "is " : "isn't "); |
|
*os << "equal to "; |
|
if (!case_sensitive_) { |
|
*os << "(ignoring case) "; |
|
} |
|
UniversalPrint(string_, os); |
|
} |
|
|
|
const StringType string_; |
|
const bool expect_eq_; |
|
const bool case_sensitive_; |
|
}; |
|
|
|
// Implements the polymorphic HasSubstr(substring) matcher, which |
|
// can be used as a Matcher<T> as long as T can be converted to a |
|
// string. |
|
template <typename StringType> |
|
class HasSubstrMatcher { |
|
public: |
|
explicit HasSubstrMatcher(const StringType& substring) |
|
: substring_(substring) {} |
|
|
|
#if GTEST_INTERNAL_HAS_STRING_VIEW |
|
bool MatchAndExplain(const internal::StringView& s, |
|
MatchResultListener* listener) const { |
|
// This should fail to compile if StringView is used with wide |
|
// strings. |
|
const StringType& str = std::string(s); |
|
return MatchAndExplain(str, listener); |
|
} |
|
#endif // GTEST_INTERNAL_HAS_STRING_VIEW |
|
|
|
// Accepts pointer types, particularly: |
|
// const char* |
|
// char* |
|
// const wchar_t* |
|
// wchar_t* |
|
template <typename CharType> |
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
|
return s != nullptr && MatchAndExplain(StringType(s), listener); |
|
} |
|
|
|
// Matches anything that can convert to StringType. |
|
// |
|
// This is a template, not just a plain function with const StringType&, |
|
// because StringView has some interfering non-explicit constructors. |
|
template <typename MatcheeStringType> |
|
bool MatchAndExplain(const MatcheeStringType& s, |
|
MatchResultListener* /* listener */) const { |
|
return StringType(s).find(substring_) != StringType::npos; |
|
} |
|
|
|
// Describes what this matcher matches. |
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "has substring "; |
|
UniversalPrint(substring_, os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "has no substring "; |
|
UniversalPrint(substring_, os); |
|
} |
|
|
|
private: |
|
const StringType substring_; |
|
}; |
|
|
|
// Implements the polymorphic StartsWith(substring) matcher, which |
|
// can be used as a Matcher<T> as long as T can be converted to a |
|
// string. |
|
template <typename StringType> |
|
class StartsWithMatcher { |
|
public: |
|
explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {} |
|
|
|
#if GTEST_INTERNAL_HAS_STRING_VIEW |
|
bool MatchAndExplain(const internal::StringView& s, |
|
MatchResultListener* listener) const { |
|
// This should fail to compile if StringView is used with wide |
|
// strings. |
|
const StringType& str = std::string(s); |
|
return MatchAndExplain(str, listener); |
|
} |
|
#endif // GTEST_INTERNAL_HAS_STRING_VIEW |
|
|
|
// Accepts pointer types, particularly: |
|
// const char* |
|
// char* |
|
// const wchar_t* |
|
// wchar_t* |
|
template <typename CharType> |
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
|
return s != nullptr && MatchAndExplain(StringType(s), listener); |
|
} |
|
|
|
// Matches anything that can convert to StringType. |
|
// |
|
// This is a template, not just a plain function with const StringType&, |
|
// because StringView has some interfering non-explicit constructors. |
|
template <typename MatcheeStringType> |
|
bool MatchAndExplain(const MatcheeStringType& s, |
|
MatchResultListener* /* listener */) const { |
|
const StringType& s2(s); |
|
return s2.length() >= prefix_.length() && |
|
s2.substr(0, prefix_.length()) == prefix_; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "starts with "; |
|
UniversalPrint(prefix_, os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "doesn't start with "; |
|
UniversalPrint(prefix_, os); |
|
} |
|
|
|
private: |
|
const StringType prefix_; |
|
}; |
|
|
|
// Implements the polymorphic EndsWith(substring) matcher, which |
|
// can be used as a Matcher<T> as long as T can be converted to a |
|
// string. |
|
template <typename StringType> |
|
class EndsWithMatcher { |
|
public: |
|
explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} |
|
|
|
#if GTEST_INTERNAL_HAS_STRING_VIEW |
|
bool MatchAndExplain(const internal::StringView& s, |
|
MatchResultListener* listener) const { |
|
// This should fail to compile if StringView is used with wide |
|
// strings. |
|
const StringType& str = std::string(s); |
|
return MatchAndExplain(str, listener); |
|
} |
|
#endif // GTEST_INTERNAL_HAS_STRING_VIEW |
|
|
|
// Accepts pointer types, particularly: |
|
// const char* |
|
// char* |
|
// const wchar_t* |
|
// wchar_t* |
|
template <typename CharType> |
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
|
return s != nullptr && MatchAndExplain(StringType(s), listener); |
|
} |
|
|
|
// Matches anything that can convert to StringType. |
|
// |
|
// This is a template, not just a plain function with const StringType&, |
|
// because StringView has some interfering non-explicit constructors. |
|
template <typename MatcheeStringType> |
|
bool MatchAndExplain(const MatcheeStringType& s, |
|
MatchResultListener* /* listener */) const { |
|
const StringType& s2(s); |
|
return s2.length() >= suffix_.length() && |
|
s2.substr(s2.length() - suffix_.length()) == suffix_; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "ends with "; |
|
UniversalPrint(suffix_, os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "doesn't end with "; |
|
UniversalPrint(suffix_, os); |
|
} |
|
|
|
private: |
|
const StringType suffix_; |
|
}; |
|
|
|
// Implements the polymorphic WhenBase64Unescaped(matcher) matcher, which can be |
|
// used as a Matcher<T> as long as T can be converted to a string. |
|
class WhenBase64UnescapedMatcher { |
|
public: |
|
using is_gtest_matcher = void; |
|
|
|
explicit WhenBase64UnescapedMatcher( |
|
const Matcher<const std::string&>& internal_matcher) |
|
: internal_matcher_(internal_matcher) {} |
|
|
|
// Matches anything that can convert to std::string. |
|
template <typename MatcheeStringType> |
|
bool MatchAndExplain(const MatcheeStringType& s, |
|
MatchResultListener* listener) const { |
|
const std::string s2(s); // NOLINT (needed for working with string_view). |
|
std::string unescaped; |
|
if (!internal::Base64Unescape(s2, &unescaped)) { |
|
if (listener != nullptr) { |
|
*listener << "is not a valid base64 escaped string"; |
|
} |
|
return false; |
|
} |
|
return MatchPrintAndExplain(unescaped, internal_matcher_, listener); |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "matches after Base64Unescape "; |
|
internal_matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "does not match after Base64Unescape "; |
|
internal_matcher_.DescribeTo(os); |
|
} |
|
|
|
private: |
|
const Matcher<const std::string&> internal_matcher_; |
|
}; |
|
|
|
// Implements a matcher that compares the two fields of a 2-tuple |
|
// using one of the ==, <=, <, etc, operators. The two fields being |
|
// compared don't have to have the same type. |
|
// |
|
// The matcher defined here is polymorphic (for example, Eq() can be |
|
// used to match a std::tuple<int, short>, a std::tuple<const long&, double>, |
|
// etc). Therefore we use a template type conversion operator in the |
|
// implementation. |
|
template <typename D, typename Op> |
|
class PairMatchBase { |
|
public: |
|
template <typename T1, typename T2> |
|
operator Matcher<::std::tuple<T1, T2>>() const { |
|
return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); |
|
} |
|
template <typename T1, typename T2> |
|
operator Matcher<const ::std::tuple<T1, T2>&>() const { |
|
return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); |
|
} |
|
|
|
private: |
|
static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
|
return os << D::Desc(); |
|
} |
|
|
|
template <typename Tuple> |
|
class Impl : public MatcherInterface<Tuple> { |
|
public: |
|
bool MatchAndExplain(Tuple args, |
|
MatchResultListener* /* listener */) const override { |
|
return Op()(::std::get<0>(args), ::std::get<1>(args)); |
|
} |
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "are " << GetDesc; |
|
} |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "aren't " << GetDesc; |
|
} |
|
}; |
|
}; |
|
|
|
class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { |
|
public: |
|
static const char* Desc() { return "an equal pair"; } |
|
}; |
|
class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { |
|
public: |
|
static const char* Desc() { return "an unequal pair"; } |
|
}; |
|
class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { |
|
public: |
|
static const char* Desc() { return "a pair where the first < the second"; } |
|
}; |
|
class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { |
|
public: |
|
static const char* Desc() { return "a pair where the first > the second"; } |
|
}; |
|
class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { |
|
public: |
|
static const char* Desc() { return "a pair where the first <= the second"; } |
|
}; |
|
class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { |
|
public: |
|
static const char* Desc() { return "a pair where the first >= the second"; } |
|
}; |
|
|
|
// Implements the Not(...) matcher for a particular argument type T. |
|
// We do not nest it inside the NotMatcher class template, as that |
|
// will prevent different instantiations of NotMatcher from sharing |
|
// the same NotMatcherImpl<T> class. |
|
template <typename T> |
|
class NotMatcherImpl : public MatcherInterface<const T&> { |
|
public: |
|
explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {} |
|
|
|
bool MatchAndExplain(const T& x, |
|
MatchResultListener* listener) const override { |
|
return !matcher_.MatchAndExplain(x, listener); |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
private: |
|
const Matcher<T> matcher_; |
|
}; |
|
|
|
// Implements the Not(m) matcher, which matches a value that doesn't |
|
// match matcher m. |
|
template <typename InnerMatcher> |
|
class NotMatcher { |
|
public: |
|
explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} |
|
|
|
// This template type conversion operator allows Not(m) to be used |
|
// to match any type m can match. |
|
template <typename T> |
|
operator Matcher<T>() const { |
|
return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); |
|
} |
|
|
|
private: |
|
InnerMatcher matcher_; |
|
}; |
|
|
|
// Implements the AllOf(m1, m2) matcher for a particular argument type |
|
// T. We do not nest it inside the BothOfMatcher class template, as |
|
// that will prevent different instantiations of BothOfMatcher from |
|
// sharing the same BothOfMatcherImpl<T> class. |
|
template <typename T> |
|
class AllOfMatcherImpl : public MatcherInterface<const T&> { |
|
public: |
|
explicit AllOfMatcherImpl(std::vector<Matcher<T>> matchers) |
|
: matchers_(std::move(matchers)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "("; |
|
for (size_t i = 0; i < matchers_.size(); ++i) { |
|
if (i != 0) *os << ") and ("; |
|
matchers_[i].DescribeTo(os); |
|
} |
|
*os << ")"; |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "("; |
|
for (size_t i = 0; i < matchers_.size(); ++i) { |
|
if (i != 0) *os << ") or ("; |
|
matchers_[i].DescribeNegationTo(os); |
|
} |
|
*os << ")"; |
|
} |
|
|
|
bool MatchAndExplain(const T& x, |
|
MatchResultListener* listener) const override { |
|
// If either matcher1_ or matcher2_ doesn't match x, we only need |
|
// to explain why one of them fails. |
|
std::string all_match_result; |
|
|
|
for (size_t i = 0; i < matchers_.size(); ++i) { |
|
StringMatchResultListener slistener; |
|
if (matchers_[i].MatchAndExplain(x, &slistener)) { |
|
if (all_match_result.empty()) { |
|
all_match_result = slistener.str(); |
|
} else { |
|
std::string result = slistener.str(); |
|
if (!result.empty()) { |
|
all_match_result += ", and "; |
|
all_match_result += result; |
|
} |
|
} |
|
} else { |
|
*listener << slistener.str(); |
|
return false; |
|
} |
|
} |
|
|
|
// Otherwise we need to explain why *both* of them match. |
|
*listener << all_match_result; |
|
return true; |
|
} |
|
|
|
private: |
|
const std::vector<Matcher<T>> matchers_; |
|
}; |
|
|
|
// VariadicMatcher is used for the variadic implementation of |
|
// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). |
|
// CombiningMatcher<T> is used to recursively combine the provided matchers |
|
// (of type Args...). |
|
template <template <typename T> class CombiningMatcher, typename... Args> |
|
class VariadicMatcher { |
|
public: |
|
VariadicMatcher(const Args&... matchers) // NOLINT |
|
: matchers_(matchers...) { |
|
static_assert(sizeof...(Args) > 0, "Must have at least one matcher."); |
|
} |
|
|
|
VariadicMatcher(const VariadicMatcher&) = default; |
|
VariadicMatcher& operator=(const VariadicMatcher&) = delete; |
|
|
|
// This template type conversion operator allows an |
|
// VariadicMatcher<Matcher1, Matcher2...> object to match any type that |
|
// all of the provided matchers (Matcher1, Matcher2, ...) can match. |
|
template <typename T> |
|
operator Matcher<T>() const { |
|
std::vector<Matcher<T>> values; |
|
CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); |
|
return Matcher<T>(new CombiningMatcher<T>(std::move(values))); |
|
} |
|
|
|
private: |
|
template <typename T, size_t I> |
|
void CreateVariadicMatcher(std::vector<Matcher<T>>* values, |
|
std::integral_constant<size_t, I>) const { |
|
values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); |
|
CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); |
|
} |
|
|
|
template <typename T> |
|
void CreateVariadicMatcher( |
|
std::vector<Matcher<T>>*, |
|
std::integral_constant<size_t, sizeof...(Args)>) const {} |
|
|
|
std::tuple<Args...> matchers_; |
|
}; |
|
|
|
template <typename... Args> |
|
using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; |
|
|
|
// Implements the AnyOf(m1, m2) matcher for a particular argument type |
|
// T. We do not nest it inside the AnyOfMatcher class template, as |
|
// that will prevent different instantiations of AnyOfMatcher from |
|
// sharing the same EitherOfMatcherImpl<T> class. |
|
template <typename T> |
|
class AnyOfMatcherImpl : public MatcherInterface<const T&> { |
|
public: |
|
explicit AnyOfMatcherImpl(std::vector<Matcher<T>> matchers) |
|
: matchers_(std::move(matchers)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "("; |
|
for (size_t i = 0; i < matchers_.size(); ++i) { |
|
if (i != 0) *os << ") or ("; |
|
matchers_[i].DescribeTo(os); |
|
} |
|
*os << ")"; |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "("; |
|
for (size_t i = 0; i < matchers_.size(); ++i) { |
|
if (i != 0) *os << ") and ("; |
|
matchers_[i].DescribeNegationTo(os); |
|
} |
|
*os << ")"; |
|
} |
|
|
|
bool MatchAndExplain(const T& x, |
|
MatchResultListener* listener) const override { |
|
std::string no_match_result; |
|
|
|
// If either matcher1_ or matcher2_ matches x, we just need to |
|
// explain why *one* of them matches. |
|
for (size_t i = 0; i < matchers_.size(); ++i) { |
|
StringMatchResultListener slistener; |
|
if (matchers_[i].MatchAndExplain(x, &slistener)) { |
|
*listener << slistener.str(); |
|
return true; |
|
} else { |
|
if (no_match_result.empty()) { |
|
no_match_result = slistener.str(); |
|
} else { |
|
std::string result = slistener.str(); |
|
if (!result.empty()) { |
|
no_match_result += ", and "; |
|
no_match_result += result; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Otherwise we need to explain why *both* of them fail. |
|
*listener << no_match_result; |
|
return false; |
|
} |
|
|
|
private: |
|
const std::vector<Matcher<T>> matchers_; |
|
}; |
|
|
|
// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). |
|
template <typename... Args> |
|
using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; |
|
|
|
// ConditionalMatcher is the implementation of Conditional(cond, m1, m2) |
|
template <typename MatcherTrue, typename MatcherFalse> |
|
class ConditionalMatcher { |
|
public: |
|
ConditionalMatcher(bool condition, MatcherTrue matcher_true, |
|
MatcherFalse matcher_false) |
|
: condition_(condition), |
|
matcher_true_(std::move(matcher_true)), |
|
matcher_false_(std::move(matcher_false)) {} |
|
|
|
template <typename T> |
|
operator Matcher<T>() const { // NOLINT(runtime/explicit) |
|
return condition_ ? SafeMatcherCast<T>(matcher_true_) |
|
: SafeMatcherCast<T>(matcher_false_); |
|
} |
|
|
|
private: |
|
bool condition_; |
|
MatcherTrue matcher_true_; |
|
MatcherFalse matcher_false_; |
|
}; |
|
|
|
// Wrapper for implementation of Any/AllOfArray(). |
|
template <template <class> class MatcherImpl, typename T> |
|
class SomeOfArrayMatcher { |
|
public: |
|
// Constructs the matcher from a sequence of element values or |
|
// element matchers. |
|
template <typename Iter> |
|
SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
|
|
|
template <typename U> |
|
operator Matcher<U>() const { // NOLINT |
|
using RawU = typename std::decay<U>::type; |
|
std::vector<Matcher<RawU>> matchers; |
|
for (const auto& matcher : matchers_) { |
|
matchers.push_back(MatcherCast<RawU>(matcher)); |
|
} |
|
return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); |
|
} |
|
|
|
private: |
|
const ::std::vector<T> matchers_; |
|
}; |
|
|
|
template <typename T> |
|
using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>; |
|
|
|
template <typename T> |
|
using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>; |
|
|
|
// Used for implementing Truly(pred), which turns a predicate into a |
|
// matcher. |
|
template <typename Predicate> |
|
class TrulyMatcher { |
|
public: |
|
explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} |
|
|
|
// This method template allows Truly(pred) to be used as a matcher |
|
// for type T where T is the argument type of predicate 'pred'. The |
|
// argument is passed by reference as the predicate may be |
|
// interested in the address of the argument. |
|
template <typename T> |
|
bool MatchAndExplain(T& x, // NOLINT |
|
MatchResultListener* listener) const { |
|
// Without the if-statement, MSVC sometimes warns about converting |
|
// a value to bool (warning 4800). |
|
// |
|
// We cannot write 'return !!predicate_(x);' as that doesn't work |
|
// when predicate_(x) returns a class convertible to bool but |
|
// having no operator!(). |
|
if (predicate_(x)) return true; |
|
*listener << "didn't satisfy the given predicate"; |
|
return false; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "satisfies the given predicate"; |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "doesn't satisfy the given predicate"; |
|
} |
|
|
|
private: |
|
Predicate predicate_; |
|
}; |
|
|
|
// Used for implementing Matches(matcher), which turns a matcher into |
|
// a predicate. |
|
template <typename M> |
|
class MatcherAsPredicate { |
|
public: |
|
explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} |
|
|
|
// This template operator() allows Matches(m) to be used as a |
|
// predicate on type T where m is a matcher on type T. |
|
// |
|
// The argument x is passed by reference instead of by value, as |
|
// some matcher may be interested in its address (e.g. as in |
|
// Matches(Ref(n))(x)). |
|
template <typename T> |
|
bool operator()(const T& x) const { |
|
// We let matcher_ commit to a particular type here instead of |
|
// when the MatcherAsPredicate object was constructed. This |
|
// allows us to write Matches(m) where m is a polymorphic matcher |
|
// (e.g. Eq(5)). |
|
// |
|
// If we write Matcher<T>(matcher_).Matches(x) here, it won't |
|
// compile when matcher_ has type Matcher<const T&>; if we write |
|
// Matcher<const T&>(matcher_).Matches(x) here, it won't compile |
|
// when matcher_ has type Matcher<T>; if we just write |
|
// matcher_.Matches(x), it won't compile when matcher_ is |
|
// polymorphic, e.g. Eq(5). |
|
// |
|
// MatcherCast<const T&>() is necessary for making the code work |
|
// in all of the above situations. |
|
return MatcherCast<const T&>(matcher_).Matches(x); |
|
} |
|
|
|
private: |
|
M matcher_; |
|
}; |
|
|
|
// For implementing ASSERT_THAT() and EXPECT_THAT(). The template |
|
// argument M must be a type that can be converted to a matcher. |
|
template <typename M> |
|
class PredicateFormatterFromMatcher { |
|
public: |
|
explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {} |
|
|
|
// This template () operator allows a PredicateFormatterFromMatcher |
|
// object to act as a predicate-formatter suitable for using with |
|
// Google Test's EXPECT_PRED_FORMAT1() macro. |
|
template <typename T> |
|
AssertionResult operator()(const char* value_text, const T& x) const { |
|
// We convert matcher_ to a Matcher<const T&> *now* instead of |
|
// when the PredicateFormatterFromMatcher object was constructed, |
|
// as matcher_ may be polymorphic (e.g. NotNull()) and we won't |
|
// know which type to instantiate it to until we actually see the |
|
// type of x here. |
|
// |
|
// We write SafeMatcherCast<const T&>(matcher_) instead of |
|
// Matcher<const T&>(matcher_), as the latter won't compile when |
|
// matcher_ has type Matcher<T> (e.g. An<int>()). |
|
// We don't write MatcherCast<const T&> either, as that allows |
|
// potentially unsafe downcasting of the matcher argument. |
|
const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); |
|
|
|
// The expected path here is that the matcher should match (i.e. that most |
|
// tests pass) so optimize for this case. |
|
if (matcher.Matches(x)) { |
|
return AssertionSuccess(); |
|
} |
|
|
|
::std::stringstream ss; |
|
ss << "Value of: " << value_text << "\n" |
|
<< "Expected: "; |
|
matcher.DescribeTo(&ss); |
|
|
|
// Rerun the matcher to "PrintAndExplain" the failure. |
|
StringMatchResultListener listener; |
|
if (MatchPrintAndExplain(x, matcher, &listener)) { |
|
ss << "\n The matcher failed on the initial attempt; but passed when " |
|
"rerun to generate the explanation."; |
|
} |
|
ss << "\n Actual: " << listener.str(); |
|
return AssertionFailure() << ss.str(); |
|
} |
|
|
|
private: |
|
const M matcher_; |
|
}; |
|
|
|
// A helper function for converting a matcher to a predicate-formatter |
|
// without the user needing to explicitly write the type. This is |
|
// used for implementing ASSERT_THAT() and EXPECT_THAT(). |
|
// Implementation detail: 'matcher' is received by-value to force decaying. |
|
template <typename M> |
|
inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher( |
|
M matcher) { |
|
return PredicateFormatterFromMatcher<M>(std::move(matcher)); |
|
} |
|
|
|
// Implements the polymorphic IsNan() matcher, which matches any floating type |
|
// value that is Nan. |
|
class IsNanMatcher { |
|
public: |
|
template <typename FloatType> |
|
bool MatchAndExplain(const FloatType& f, |
|
MatchResultListener* /* listener */) const { |
|
return (::std::isnan)(f); |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "is NaN"; } |
|
void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN"; } |
|
}; |
|
|
|
// Implements the polymorphic floating point equality matcher, which matches |
|
// two float values using ULP-based approximation or, optionally, a |
|
// user-specified epsilon. The template is meant to be instantiated with |
|
// FloatType being either float or double. |
|
template <typename FloatType> |
|
class FloatingEqMatcher { |
|
public: |
|
// Constructor for FloatingEqMatcher. |
|
// The matcher's input will be compared with expected. The matcher treats two |
|
// NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, |
|
// equality comparisons between NANs will always return false. We specify a |
|
// negative max_abs_error_ term to indicate that ULP-based approximation will |
|
// be used for comparison. |
|
FloatingEqMatcher(FloatType expected, bool nan_eq_nan) |
|
: expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {} |
|
|
|
// Constructor that supports a user-specified max_abs_error that will be used |
|
// for comparison instead of ULP-based approximation. The max absolute |
|
// should be non-negative. |
|
FloatingEqMatcher(FloatType expected, bool nan_eq_nan, |
|
FloatType max_abs_error) |
|
: expected_(expected), |
|
nan_eq_nan_(nan_eq_nan), |
|
max_abs_error_(max_abs_error) { |
|
GTEST_CHECK_(max_abs_error >= 0) |
|
<< ", where max_abs_error is" << max_abs_error; |
|
} |
|
|
|
// Implements floating point equality matcher as a Matcher<T>. |
|
template <typename T> |
|
class Impl : public MatcherInterface<T> { |
|
public: |
|
Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) |
|
: expected_(expected), |
|
nan_eq_nan_(nan_eq_nan), |
|
max_abs_error_(max_abs_error) {} |
|
|
|
bool MatchAndExplain(T value, |
|
MatchResultListener* listener) const override { |
|
const FloatingPoint<FloatType> actual(value), expected(expected_); |
|
|
|
// Compares NaNs first, if nan_eq_nan_ is true. |
|
if (actual.is_nan() || expected.is_nan()) { |
|
if (actual.is_nan() && expected.is_nan()) { |
|
return nan_eq_nan_; |
|
} |
|
// One is nan; the other is not nan. |
|
return false; |
|
} |
|
if (HasMaxAbsError()) { |
|
// We perform an equality check so that inf will match inf, regardless |
|
// of error bounds. If the result of value - expected_ would result in |
|
// overflow or if either value is inf, the default result is infinity, |
|
// which should only match if max_abs_error_ is also infinity. |
|
if (value == expected_) { |
|
return true; |
|
} |
|
|
|
const FloatType diff = value - expected_; |
|
if (::std::fabs(diff) <= max_abs_error_) { |
|
return true; |
|
} |
|
|
|
if (listener->IsInterested()) { |
|
*listener << "which is " << diff << " from " << expected_; |
|
} |
|
return false; |
|
} else { |
|
return actual.AlmostEquals(expected); |
|
} |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
// os->precision() returns the previously set precision, which we |
|
// store to restore the ostream to its original configuration |
|
// after outputting. |
|
const ::std::streamsize old_precision = |
|
os->precision(::std::numeric_limits<FloatType>::digits10 + 2); |
|
if (FloatingPoint<FloatType>(expected_).is_nan()) { |
|
if (nan_eq_nan_) { |
|
*os << "is NaN"; |
|
} else { |
|
*os << "never matches"; |
|
} |
|
} else { |
|
*os << "is approximately " << expected_; |
|
if (HasMaxAbsError()) { |
|
*os << " (absolute error <= " << max_abs_error_ << ")"; |
|
} |
|
} |
|
os->precision(old_precision); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
// As before, get original precision. |
|
const ::std::streamsize old_precision = |
|
os->precision(::std::numeric_limits<FloatType>::digits10 + 2); |
|
if (FloatingPoint<FloatType>(expected_).is_nan()) { |
|
if (nan_eq_nan_) { |
|
*os << "isn't NaN"; |
|
} else { |
|
*os << "is anything"; |
|
} |
|
} else { |
|
*os << "isn't approximately " << expected_; |
|
if (HasMaxAbsError()) { |
|
*os << " (absolute error > " << max_abs_error_ << ")"; |
|
} |
|
} |
|
// Restore original precision. |
|
os->precision(old_precision); |
|
} |
|
|
|
private: |
|
bool HasMaxAbsError() const { return max_abs_error_ >= 0; } |
|
|
|
const FloatType expected_; |
|
const bool nan_eq_nan_; |
|
// max_abs_error will be used for value comparison when >= 0. |
|
const FloatType max_abs_error_; |
|
}; |
|
|
|
// The following 3 type conversion operators allow FloatEq(expected) and |
|
// NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a |
|
// Matcher<const float&>, or a Matcher<float&>, but nothing else. |
|
operator Matcher<FloatType>() const { |
|
return MakeMatcher( |
|
new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); |
|
} |
|
|
|
operator Matcher<const FloatType&>() const { |
|
return MakeMatcher( |
|
new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
|
} |
|
|
|
operator Matcher<FloatType&>() const { |
|
return MakeMatcher( |
|
new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
|
} |
|
|
|
private: |
|
const FloatType expected_; |
|
const bool nan_eq_nan_; |
|
// max_abs_error will be used for value comparison when >= 0. |
|
const FloatType max_abs_error_; |
|
}; |
|
|
|
// A 2-tuple ("binary") wrapper around FloatingEqMatcher: |
|
// FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) |
|
// against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) |
|
// against y. The former implements "Eq", the latter "Near". At present, there |
|
// is no version that compares NaNs as equal. |
|
template <typename FloatType> |
|
class FloatingEq2Matcher { |
|
public: |
|
FloatingEq2Matcher() { Init(-1, false); } |
|
|
|
explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } |
|
|
|
explicit FloatingEq2Matcher(FloatType max_abs_error) { |
|
Init(max_abs_error, false); |
|
} |
|
|
|
FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { |
|
Init(max_abs_error, nan_eq_nan); |
|
} |
|
|
|
template <typename T1, typename T2> |
|
operator Matcher<::std::tuple<T1, T2>>() const { |
|
return MakeMatcher( |
|
new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); |
|
} |
|
template <typename T1, typename T2> |
|
operator Matcher<const ::std::tuple<T1, T2>&>() const { |
|
return MakeMatcher( |
|
new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); |
|
} |
|
|
|
private: |
|
static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
|
return os << "an almost-equal pair"; |
|
} |
|
|
|
template <typename Tuple> |
|
class Impl : public MatcherInterface<Tuple> { |
|
public: |
|
Impl(FloatType max_abs_error, bool nan_eq_nan) |
|
: max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {} |
|
|
|
bool MatchAndExplain(Tuple args, |
|
MatchResultListener* listener) const override { |
|
if (max_abs_error_ == -1) { |
|
FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); |
|
return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
|
::std::get<1>(args), listener); |
|
} else { |
|
FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, |
|
max_abs_error_); |
|
return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
|
::std::get<1>(args), listener); |
|
} |
|
} |
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "are " << GetDesc; |
|
} |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "aren't " << GetDesc; |
|
} |
|
|
|
private: |
|
FloatType max_abs_error_; |
|
const bool nan_eq_nan_; |
|
}; |
|
|
|
void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { |
|
max_abs_error_ = max_abs_error_val; |
|
nan_eq_nan_ = nan_eq_nan_val; |
|
} |
|
FloatType max_abs_error_; |
|
bool nan_eq_nan_; |
|
}; |
|
|
|
// Implements the Pointee(m) matcher for matching a pointer whose |
|
// pointee matches matcher m. The pointer can be either raw or smart. |
|
template <typename InnerMatcher> |
|
class PointeeMatcher { |
|
public: |
|
explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
|
|
|
// This type conversion operator template allows Pointee(m) to be |
|
// used as a matcher for any pointer type whose pointee type is |
|
// compatible with the inner matcher, where type Pointer can be |
|
// either a raw pointer or a smart pointer. |
|
// |
|
// The reason we do this instead of relying on |
|
// MakePolymorphicMatcher() is that the latter is not flexible |
|
// enough for implementing the DescribeTo() method of Pointee(). |
|
template <typename Pointer> |
|
operator Matcher<Pointer>() const { |
|
return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); |
|
} |
|
|
|
private: |
|
// The monomorphic implementation that works for a particular pointer type. |
|
template <typename Pointer> |
|
class Impl : public MatcherInterface<Pointer> { |
|
public: |
|
using Pointee = |
|
typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( |
|
Pointer)>::element_type; |
|
|
|
explicit Impl(const InnerMatcher& matcher) |
|
: matcher_(MatcherCast<const Pointee&>(matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "points to a value that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "does not point to a value that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Pointer pointer, |
|
MatchResultListener* listener) const override { |
|
if (GetRawPointer(pointer) == nullptr) return false; |
|
|
|
*listener << "which points to "; |
|
return MatchPrintAndExplain(*pointer, matcher_, listener); |
|
} |
|
|
|
private: |
|
const Matcher<const Pointee&> matcher_; |
|
}; |
|
|
|
const InnerMatcher matcher_; |
|
}; |
|
|
|
// Implements the Pointer(m) matcher |
|
// Implements the Pointer(m) matcher for matching a pointer that matches matcher |
|
// m. The pointer can be either raw or smart, and will match `m` against the |
|
// raw pointer. |
|
template <typename InnerMatcher> |
|
class PointerMatcher { |
|
public: |
|
explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
|
|
|
// This type conversion operator template allows Pointer(m) to be |
|
// used as a matcher for any pointer type whose pointer type is |
|
// compatible with the inner matcher, where type PointerType can be |
|
// either a raw pointer or a smart pointer. |
|
// |
|
// The reason we do this instead of relying on |
|
// MakePolymorphicMatcher() is that the latter is not flexible |
|
// enough for implementing the DescribeTo() method of Pointer(). |
|
template <typename PointerType> |
|
operator Matcher<PointerType>() const { // NOLINT |
|
return Matcher<PointerType>(new Impl<const PointerType&>(matcher_)); |
|
} |
|
|
|
private: |
|
// The monomorphic implementation that works for a particular pointer type. |
|
template <typename PointerType> |
|
class Impl : public MatcherInterface<PointerType> { |
|
public: |
|
using Pointer = |
|
const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( |
|
PointerType)>::element_type*; |
|
|
|
explicit Impl(const InnerMatcher& matcher) |
|
: matcher_(MatcherCast<Pointer>(matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "is a pointer that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "is not a pointer that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
bool MatchAndExplain(PointerType pointer, |
|
MatchResultListener* listener) const override { |
|
*listener << "which is a pointer that "; |
|
Pointer p = GetRawPointer(pointer); |
|
return MatchPrintAndExplain(p, matcher_, listener); |
|
} |
|
|
|
private: |
|
Matcher<Pointer> matcher_; |
|
}; |
|
|
|
const InnerMatcher matcher_; |
|
}; |
|
|
|
#if GTEST_HAS_RTTI |
|
// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or |
|
// reference that matches inner_matcher when dynamic_cast<T> is applied. |
|
// The result of dynamic_cast<To> is forwarded to the inner matcher. |
|
// If To is a pointer and the cast fails, the inner matcher will receive NULL. |
|
// If To is a reference and the cast fails, this matcher returns false |
|
// immediately. |
|
template <typename To> |
|
class WhenDynamicCastToMatcherBase { |
|
public: |
|
explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) |
|
: matcher_(matcher) {} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
GetCastTypeDescription(os); |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
GetCastTypeDescription(os); |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
protected: |
|
const Matcher<To> matcher_; |
|
|
|
static std::string GetToName() { return GetTypeName<To>(); } |
|
|
|
private: |
|
static void GetCastTypeDescription(::std::ostream* os) { |
|
*os << "when dynamic_cast to " << GetToName() << ", "; |
|
} |
|
}; |
|
|
|
// Primary template. |
|
// To is a pointer. Cast and forward the result. |
|
template <typename To> |
|
class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { |
|
public: |
|
explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) |
|
: WhenDynamicCastToMatcherBase<To>(matcher) {} |
|
|
|
template <typename From> |
|
bool MatchAndExplain(From from, MatchResultListener* listener) const { |
|
To to = dynamic_cast<To>(from); |
|
return MatchPrintAndExplain(to, this->matcher_, listener); |
|
} |
|
}; |
|
|
|
// Specialize for references. |
|
// In this case we return false if the dynamic_cast fails. |
|
template <typename To> |
|
class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { |
|
public: |
|
explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) |
|
: WhenDynamicCastToMatcherBase<To&>(matcher) {} |
|
|
|
template <typename From> |
|
bool MatchAndExplain(From& from, MatchResultListener* listener) const { |
|
// We don't want an std::bad_cast here, so do the cast with pointers. |
|
To* to = dynamic_cast<To*>(&from); |
|
if (to == nullptr) { |
|
*listener << "which cannot be dynamic_cast to " << this->GetToName(); |
|
return false; |
|
} |
|
return MatchPrintAndExplain(*to, this->matcher_, listener); |
|
} |
|
}; |
|
#endif // GTEST_HAS_RTTI |
|
|
|
// Implements the Field() matcher for matching a field (i.e. member |
|
// variable) of an object. |
|
template <typename Class, typename FieldType> |
|
class FieldMatcher { |
|
public: |
|
FieldMatcher(FieldType Class::*field, |
|
const Matcher<const FieldType&>& matcher) |
|
: field_(field), matcher_(matcher), whose_field_("whose given field ") {} |
|
|
|
FieldMatcher(const std::string& field_name, FieldType Class::*field, |
|
const Matcher<const FieldType&>& matcher) |
|
: field_(field), |
|
matcher_(matcher), |
|
whose_field_("whose field `" + field_name + "` ") {} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "is an object " << whose_field_; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "is an object " << whose_field_; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
template <typename T> |
|
bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
|
// FIXME: The dispatch on std::is_pointer was introduced as a workaround for |
|
// a compiler bug, and can now be removed. |
|
return MatchAndExplainImpl( |
|
typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
|
value, listener); |
|
} |
|
|
|
private: |
|
bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
|
const Class& obj, |
|
MatchResultListener* listener) const { |
|
*listener << whose_field_ << "is "; |
|
return MatchPrintAndExplain(obj.*field_, matcher_, listener); |
|
} |
|
|
|
bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
|
MatchResultListener* listener) const { |
|
if (p == nullptr) return false; |
|
|
|
*listener << "which points to an object "; |
|
// Since *p has a field, it must be a class/struct/union type and |
|
// thus cannot be a pointer. Therefore we pass false_type() as |
|
// the first argument. |
|
return MatchAndExplainImpl(std::false_type(), *p, listener); |
|
} |
|
|
|
const FieldType Class::*field_; |
|
const Matcher<const FieldType&> matcher_; |
|
|
|
// Contains either "whose given field " if the name of the field is unknown |
|
// or "whose field `name_of_field` " if the name is known. |
|
const std::string whose_field_; |
|
}; |
|
|
|
// Implements the Property() matcher for matching a property |
|
// (i.e. return value of a getter method) of an object. |
|
// |
|
// Property is a const-qualified member function of Class returning |
|
// PropertyType. |
|
template <typename Class, typename PropertyType, typename Property> |
|
class PropertyMatcher { |
|
public: |
|
typedef const PropertyType& RefToConstProperty; |
|
|
|
PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) |
|
: property_(property), |
|
matcher_(matcher), |
|
whose_property_("whose given property ") {} |
|
|
|
PropertyMatcher(const std::string& property_name, Property property, |
|
const Matcher<RefToConstProperty>& matcher) |
|
: property_(property), |
|
matcher_(matcher), |
|
whose_property_("whose property `" + property_name + "` ") {} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "is an object " << whose_property_; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "is an object " << whose_property_; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
template <typename T> |
|
bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
|
return MatchAndExplainImpl( |
|
typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
|
value, listener); |
|
} |
|
|
|
private: |
|
bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
|
const Class& obj, |
|
MatchResultListener* listener) const { |
|
*listener << whose_property_ << "is "; |
|
// Cannot pass the return value (for example, int) to MatchPrintAndExplain, |
|
// which takes a non-const reference as argument. |
|
RefToConstProperty result = (obj.*property_)(); |
|
return MatchPrintAndExplain(result, matcher_, listener); |
|
} |
|
|
|
bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
|
MatchResultListener* listener) const { |
|
if (p == nullptr) return false; |
|
|
|
*listener << "which points to an object "; |
|
// Since *p has a property method, it must be a class/struct/union |
|
// type and thus cannot be a pointer. Therefore we pass |
|
// false_type() as the first argument. |
|
return MatchAndExplainImpl(std::false_type(), *p, listener); |
|
} |
|
|
|
Property property_; |
|
const Matcher<RefToConstProperty> matcher_; |
|
|
|
// Contains either "whose given property " if the name of the property is |
|
// unknown or "whose property `name_of_property` " if the name is known. |
|
const std::string whose_property_; |
|
}; |
|
|
|
// Type traits specifying various features of different functors for ResultOf. |
|
// The default template specifies features for functor objects. |
|
template <typename Functor> |
|
struct CallableTraits { |
|
typedef Functor StorageType; |
|
|
|
static void CheckIsValid(Functor /* functor */) {} |
|
|
|
template <typename T> |
|
static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) { |
|
return f(arg); |
|
} |
|
}; |
|
|
|
// Specialization for function pointers. |
|
template <typename ArgType, typename ResType> |
|
struct CallableTraits<ResType (*)(ArgType)> { |
|
typedef ResType ResultType; |
|
typedef ResType (*StorageType)(ArgType); |
|
|
|
static void CheckIsValid(ResType (*f)(ArgType)) { |
|
GTEST_CHECK_(f != nullptr) |
|
<< "NULL function pointer is passed into ResultOf()."; |
|
} |
|
template <typename T> |
|
static ResType Invoke(ResType (*f)(ArgType), T arg) { |
|
return (*f)(arg); |
|
} |
|
}; |
|
|
|
// Implements the ResultOf() matcher for matching a return value of a |
|
// unary function of an object. |
|
template <typename Callable, typename InnerMatcher> |
|
class ResultOfMatcher { |
|
public: |
|
ResultOfMatcher(Callable callable, InnerMatcher matcher) |
|
: ResultOfMatcher(/*result_description=*/"", std::move(callable), |
|
std::move(matcher)) {} |
|
|
|
ResultOfMatcher(const std::string& result_description, Callable callable, |
|
InnerMatcher matcher) |
|
: result_description_(result_description), |
|
callable_(std::move(callable)), |
|
matcher_(std::move(matcher)) { |
|
CallableTraits<Callable>::CheckIsValid(callable_); |
|
} |
|
|
|
template <typename T> |
|
operator Matcher<T>() const { |
|
return Matcher<T>( |
|
new Impl<const T&>(result_description_, callable_, matcher_)); |
|
} |
|
|
|
private: |
|
typedef typename CallableTraits<Callable>::StorageType CallableStorageType; |
|
|
|
template <typename T> |
|
class Impl : public MatcherInterface<T> { |
|
using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( |
|
std::declval<CallableStorageType>(), std::declval<T>())); |
|
|
|
public: |
|
template <typename M> |
|
Impl(const std::string& result_description, |
|
const CallableStorageType& callable, const M& matcher) |
|
: result_description_(result_description), |
|
callable_(callable), |
|
matcher_(MatcherCast<ResultType>(matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
if (result_description_.empty()) { |
|
*os << "is mapped by the given callable to a value that "; |
|
} else { |
|
*os << "whose " << result_description_ << " "; |
|
} |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
if (result_description_.empty()) { |
|
*os << "is mapped by the given callable to a value that "; |
|
} else { |
|
*os << "whose " << result_description_ << " "; |
|
} |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(T obj, MatchResultListener* listener) const override { |
|
if (result_description_.empty()) { |
|
*listener << "which is mapped by the given callable to "; |
|
} else { |
|
*listener << "whose " << result_description_ << " is "; |
|
} |
|
// Cannot pass the return value directly to MatchPrintAndExplain, which |
|
// takes a non-const reference as argument. |
|
// Also, specifying template argument explicitly is needed because T could |
|
// be a non-const reference (e.g. Matcher<Uncopyable&>). |
|
ResultType result = |
|
CallableTraits<Callable>::template Invoke<T>(callable_, obj); |
|
return MatchPrintAndExplain(result, matcher_, listener); |
|
} |
|
|
|
private: |
|
const std::string result_description_; |
|
// Functors often define operator() as non-const method even though |
|
// they are actually stateless. But we need to use them even when |
|
// 'this' is a const pointer. It's the user's responsibility not to |
|
// use stateful callables with ResultOf(), which doesn't guarantee |
|
// how many times the callable will be invoked. |
|
mutable CallableStorageType callable_; |
|
const Matcher<ResultType> matcher_; |
|
}; // class Impl |
|
|
|
const std::string result_description_; |
|
const CallableStorageType callable_; |
|
const InnerMatcher matcher_; |
|
}; |
|
|
|
// Implements a matcher that checks the size of an STL-style container. |
|
template <typename SizeMatcher> |
|
class SizeIsMatcher { |
|
public: |
|
explicit SizeIsMatcher(const SizeMatcher& size_matcher) |
|
: size_matcher_(size_matcher) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
return Matcher<Container>(new Impl<const Container&>(size_matcher_)); |
|
} |
|
|
|
template <typename Container> |
|
class Impl : public MatcherInterface<Container> { |
|
public: |
|
using SizeType = decltype(std::declval<Container>().size()); |
|
explicit Impl(const SizeMatcher& size_matcher) |
|
: size_matcher_(MatcherCast<SizeType>(size_matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "has a size that "; |
|
size_matcher_.DescribeTo(os); |
|
} |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "has a size that "; |
|
size_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Container container, |
|
MatchResultListener* listener) const override { |
|
SizeType size = container.size(); |
|
StringMatchResultListener size_listener; |
|
const bool result = size_matcher_.MatchAndExplain(size, &size_listener); |
|
*listener << "whose size " << size |
|
<< (result ? " matches" : " doesn't match"); |
|
PrintIfNotEmpty(size_listener.str(), listener->stream()); |
|
return result; |
|
} |
|
|
|
private: |
|
const Matcher<SizeType> size_matcher_; |
|
}; |
|
|
|
private: |
|
const SizeMatcher size_matcher_; |
|
}; |
|
|
|
// Implements a matcher that checks the begin()..end() distance of an STL-style |
|
// container. |
|
template <typename DistanceMatcher> |
|
class BeginEndDistanceIsMatcher { |
|
public: |
|
explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) |
|
: distance_matcher_(distance_matcher) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); |
|
} |
|
|
|
template <typename Container> |
|
class Impl : public MatcherInterface<Container> { |
|
public: |
|
typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( |
|
Container)> |
|
ContainerView; |
|
typedef typename std::iterator_traits< |
|
typename ContainerView::type::const_iterator>::difference_type |
|
DistanceType; |
|
explicit Impl(const DistanceMatcher& distance_matcher) |
|
: distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "distance between begin() and end() "; |
|
distance_matcher_.DescribeTo(os); |
|
} |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "distance between begin() and end() "; |
|
distance_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Container container, |
|
MatchResultListener* listener) const override { |
|
using std::begin; |
|
using std::end; |
|
DistanceType distance = std::distance(begin(container), end(container)); |
|
StringMatchResultListener distance_listener; |
|
const bool result = |
|
distance_matcher_.MatchAndExplain(distance, &distance_listener); |
|
*listener << "whose distance between begin() and end() " << distance |
|
<< (result ? " matches" : " doesn't match"); |
|
PrintIfNotEmpty(distance_listener.str(), listener->stream()); |
|
return result; |
|
} |
|
|
|
private: |
|
const Matcher<DistanceType> distance_matcher_; |
|
}; |
|
|
|
private: |
|
const DistanceMatcher distance_matcher_; |
|
}; |
|
|
|
// Implements an equality matcher for any STL-style container whose elements |
|
// support ==. This matcher is like Eq(), but its failure explanations provide |
|
// more detailed information that is useful when the container is used as a set. |
|
// The failure message reports elements that are in one of the operands but not |
|
// the other. The failure messages do not report duplicate or out-of-order |
|
// elements in the containers (which don't properly matter to sets, but can |
|
// occur if the containers are vectors or lists, for example). |
|
// |
|
// Uses the container's const_iterator, value_type, operator ==, |
|
// begin(), and end(). |
|
template <typename Container> |
|
class ContainerEqMatcher { |
|
public: |
|
typedef internal::StlContainerView<Container> View; |
|
typedef typename View::type StlContainer; |
|
typedef typename View::const_reference StlContainerReference; |
|
|
|
static_assert(!std::is_const<Container>::value, |
|
"Container type must not be const"); |
|
static_assert(!std::is_reference<Container>::value, |
|
"Container type must not be a reference"); |
|
|
|
// We make a copy of expected in case the elements in it are modified |
|
// after this matcher is created. |
|
explicit ContainerEqMatcher(const Container& expected) |
|
: expected_(View::Copy(expected)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "equals "; |
|
UniversalPrint(expected_, os); |
|
} |
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "does not equal "; |
|
UniversalPrint(expected_, os); |
|
} |
|
|
|
template <typename LhsContainer> |
|
bool MatchAndExplain(const LhsContainer& lhs, |
|
MatchResultListener* listener) const { |
|
typedef internal::StlContainerView< |
|
typename std::remove_const<LhsContainer>::type> |
|
LhsView; |
|
StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
|
if (lhs_stl_container == expected_) return true; |
|
|
|
::std::ostream* const os = listener->stream(); |
|
if (os != nullptr) { |
|
// Something is different. Check for extra values first. |
|
bool printed_header = false; |
|
for (auto it = lhs_stl_container.begin(); it != lhs_stl_container.end(); |
|
++it) { |
|
if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == |
|
expected_.end()) { |
|
if (printed_header) { |
|
*os << ", "; |
|
} else { |
|
*os << "which has these unexpected elements: "; |
|
printed_header = true; |
|
} |
|
UniversalPrint(*it, os); |
|
} |
|
} |
|
|
|
// Now check for missing values. |
|
bool printed_header2 = false; |
|
for (auto it = expected_.begin(); it != expected_.end(); ++it) { |
|
if (internal::ArrayAwareFind(lhs_stl_container.begin(), |
|
lhs_stl_container.end(), |
|
*it) == lhs_stl_container.end()) { |
|
if (printed_header2) { |
|
*os << ", "; |
|
} else { |
|
*os << (printed_header ? ",\nand" : "which") |
|
<< " doesn't have these expected elements: "; |
|
printed_header2 = true; |
|
} |
|
UniversalPrint(*it, os); |
|
} |
|
} |
|
} |
|
|
|
return false; |
|
} |
|
|
|
private: |
|
const StlContainer expected_; |
|
}; |
|
|
|
// A comparator functor that uses the < operator to compare two values. |
|
struct LessComparator { |
|
template <typename T, typename U> |
|
bool operator()(const T& lhs, const U& rhs) const { |
|
return lhs < rhs; |
|
} |
|
}; |
|
|
|
// Implements WhenSortedBy(comparator, container_matcher). |
|
template <typename Comparator, typename ContainerMatcher> |
|
class WhenSortedByMatcher { |
|
public: |
|
WhenSortedByMatcher(const Comparator& comparator, |
|
const ContainerMatcher& matcher) |
|
: comparator_(comparator), matcher_(matcher) {} |
|
|
|
template <typename LhsContainer> |
|
operator Matcher<LhsContainer>() const { |
|
return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); |
|
} |
|
|
|
template <typename LhsContainer> |
|
class Impl : public MatcherInterface<LhsContainer> { |
|
public: |
|
typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( |
|
LhsContainer)> |
|
LhsView; |
|
typedef typename LhsView::type LhsStlContainer; |
|
typedef typename LhsView::const_reference LhsStlContainerReference; |
|
// Transforms std::pair<const Key, Value> into std::pair<Key, Value> |
|
// so that we can match associative containers. |
|
typedef |
|
typename RemoveConstFromKey<typename LhsStlContainer::value_type>::type |
|
LhsValue; |
|
|
|
Impl(const Comparator& comparator, const ContainerMatcher& matcher) |
|
: comparator_(comparator), matcher_(matcher) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "(when sorted) "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "(when sorted) "; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(LhsContainer lhs, |
|
MatchResultListener* listener) const override { |
|
LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
|
::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), |
|
lhs_stl_container.end()); |
|
::std::sort(sorted_container.begin(), sorted_container.end(), |
|
comparator_); |
|
|
|
if (!listener->IsInterested()) { |
|
// If the listener is not interested, we do not need to |
|
// construct the inner explanation. |
|
return matcher_.Matches(sorted_container); |
|
} |
|
|
|
*listener << "which is "; |
|
UniversalPrint(sorted_container, listener->stream()); |
|
*listener << " when sorted"; |
|
|
|
StringMatchResultListener inner_listener; |
|
const bool match = |
|
matcher_.MatchAndExplain(sorted_container, &inner_listener); |
|
PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
|
return match; |
|
} |
|
|
|
private: |
|
const Comparator comparator_; |
|
const Matcher<const ::std::vector<LhsValue>&> matcher_; |
|
|
|
Impl(const Impl&) = delete; |
|
Impl& operator=(const Impl&) = delete; |
|
}; |
|
|
|
private: |
|
const Comparator comparator_; |
|
const ContainerMatcher matcher_; |
|
}; |
|
|
|
// Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher |
|
// must be able to be safely cast to Matcher<std::tuple<const T1&, const |
|
// T2&> >, where T1 and T2 are the types of elements in the LHS |
|
// container and the RHS container respectively. |
|
template <typename TupleMatcher, typename RhsContainer> |
|
class PointwiseMatcher { |
|
static_assert( |
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, |
|
"use UnorderedPointwise with hash tables"); |
|
|
|
public: |
|
typedef internal::StlContainerView<RhsContainer> RhsView; |
|
typedef typename RhsView::type RhsStlContainer; |
|
typedef typename RhsStlContainer::value_type RhsValue; |
|
|
|
static_assert(!std::is_const<RhsContainer>::value, |
|
"RhsContainer type must not be const"); |
|
static_assert(!std::is_reference<RhsContainer>::value, |
|
"RhsContainer type must not be a reference"); |
|
|
|
// Like ContainerEq, we make a copy of rhs in case the elements in |
|
// it are modified after this matcher is created. |
|
PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) |
|
: tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {} |
|
|
|
template <typename LhsContainer> |
|
operator Matcher<LhsContainer>() const { |
|
static_assert( |
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, |
|
"use UnorderedPointwise with hash tables"); |
|
|
|
return Matcher<LhsContainer>( |
|
new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); |
|
} |
|
|
|
template <typename LhsContainer> |
|
class Impl : public MatcherInterface<LhsContainer> { |
|
public: |
|
typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( |
|
LhsContainer)> |
|
LhsView; |
|
typedef typename LhsView::type LhsStlContainer; |
|
typedef typename LhsView::const_reference LhsStlContainerReference; |
|
typedef typename LhsStlContainer::value_type LhsValue; |
|
// We pass the LHS value and the RHS value to the inner matcher by |
|
// reference, as they may be expensive to copy. We must use tuple |
|
// instead of pair here, as a pair cannot hold references (C++ 98, |
|
// 20.2.2 [lib.pairs]). |
|
typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; |
|
|
|
Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) |
|
// mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. |
|
: mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), |
|
rhs_(rhs) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "contains " << rhs_.size() |
|
<< " values, where each value and its corresponding value in "; |
|
UniversalPrinter<RhsStlContainer>::Print(rhs_, os); |
|
*os << " "; |
|
mono_tuple_matcher_.DescribeTo(os); |
|
} |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "doesn't contain exactly " << rhs_.size() |
|
<< " values, or contains a value x at some index i" |
|
<< " where x and the i-th value of "; |
|
UniversalPrint(rhs_, os); |
|
*os << " "; |
|
mono_tuple_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(LhsContainer lhs, |
|
MatchResultListener* listener) const override { |
|
LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
|
const size_t actual_size = lhs_stl_container.size(); |
|
if (actual_size != rhs_.size()) { |
|
*listener << "which contains " << actual_size << " values"; |
|
return false; |
|
} |
|
|
|
auto left = lhs_stl_container.begin(); |
|
auto right = rhs_.begin(); |
|
for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { |
|
if (listener->IsInterested()) { |
|
StringMatchResultListener inner_listener; |
|
// Create InnerMatcherArg as a temporarily object to avoid it outlives |
|
// *left and *right. Dereference or the conversion to `const T&` may |
|
// return temp objects, e.g. for vector<bool>. |
|
if (!mono_tuple_matcher_.MatchAndExplain( |
|
InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
|
ImplicitCast_<const RhsValue&>(*right)), |
|
&inner_listener)) { |
|
*listener << "where the value pair ("; |
|
UniversalPrint(*left, listener->stream()); |
|
*listener << ", "; |
|
UniversalPrint(*right, listener->stream()); |
|
*listener << ") at index #" << i << " don't match"; |
|
PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
|
return false; |
|
} |
|
} else { |
|
if (!mono_tuple_matcher_.Matches( |
|
InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
|
ImplicitCast_<const RhsValue&>(*right)))) |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
private: |
|
const Matcher<InnerMatcherArg> mono_tuple_matcher_; |
|
const RhsStlContainer rhs_; |
|
}; |
|
|
|
private: |
|
const TupleMatcher tuple_matcher_; |
|
const RhsStlContainer rhs_; |
|
}; |
|
|
|
// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. |
|
template <typename Container> |
|
class QuantifierMatcherImpl : public MatcherInterface<Container> { |
|
public: |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
|
typedef StlContainerView<RawContainer> View; |
|
typedef typename View::type StlContainer; |
|
typedef typename View::const_reference StlContainerReference; |
|
typedef typename StlContainer::value_type Element; |
|
|
|
template <typename InnerMatcher> |
|
explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) |
|
: inner_matcher_( |
|
testing::SafeMatcherCast<const Element&>(inner_matcher)) {} |
|
|
|
// Checks whether: |
|
// * All elements in the container match, if all_elements_should_match. |
|
// * Any element in the container matches, if !all_elements_should_match. |
|
bool MatchAndExplainImpl(bool all_elements_should_match, Container container, |
|
MatchResultListener* listener) const { |
|
StlContainerReference stl_container = View::ConstReference(container); |
|
size_t i = 0; |
|
for (auto it = stl_container.begin(); it != stl_container.end(); |
|
++it, ++i) { |
|
StringMatchResultListener inner_listener; |
|
const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
|
|
|
if (matches != all_elements_should_match) { |
|
*listener << "whose element #" << i |
|
<< (matches ? " matches" : " doesn't match"); |
|
PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
|
return !all_elements_should_match; |
|
} |
|
} |
|
return all_elements_should_match; |
|
} |
|
|
|
bool MatchAndExplainImpl(const Matcher<size_t>& count_matcher, |
|
Container container, |
|
MatchResultListener* listener) const { |
|
StlContainerReference stl_container = View::ConstReference(container); |
|
size_t i = 0; |
|
std::vector<size_t> match_elements; |
|
for (auto it = stl_container.begin(); it != stl_container.end(); |
|
++it, ++i) { |
|
StringMatchResultListener inner_listener; |
|
const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
|
if (matches) { |
|
match_elements.push_back(i); |
|
} |
|
} |
|
if (listener->IsInterested()) { |
|
if (match_elements.empty()) { |
|
*listener << "has no element that matches"; |
|
} else if (match_elements.size() == 1) { |
|
*listener << "whose element #" << match_elements[0] << " matches"; |
|
} else { |
|
*listener << "whose elements ("; |
|
std::string sep = ""; |
|
for (size_t e : match_elements) { |
|
*listener << sep << e; |
|
sep = ", "; |
|
} |
|
*listener << ") match"; |
|
} |
|
} |
|
StringMatchResultListener count_listener; |
|
if (count_matcher.MatchAndExplain(match_elements.size(), &count_listener)) { |
|
*listener << " and whose match quantity of " << match_elements.size() |
|
<< " matches"; |
|
PrintIfNotEmpty(count_listener.str(), listener->stream()); |
|
return true; |
|
} else { |
|
if (match_elements.empty()) { |
|
*listener << " and"; |
|
} else { |
|
*listener << " but"; |
|
} |
|
*listener << " whose match quantity of " << match_elements.size() |
|
<< " does not match"; |
|
PrintIfNotEmpty(count_listener.str(), listener->stream()); |
|
return false; |
|
} |
|
} |
|
|
|
protected: |
|
const Matcher<const Element&> inner_matcher_; |
|
}; |
|
|
|
// Implements Contains(element_matcher) for the given argument type Container. |
|
// Symmetric to EachMatcherImpl. |
|
template <typename Container> |
|
class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { |
|
public: |
|
template <typename InnerMatcher> |
|
explicit ContainsMatcherImpl(InnerMatcher inner_matcher) |
|
: QuantifierMatcherImpl<Container>(inner_matcher) {} |
|
|
|
// Describes what this matcher does. |
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "contains at least one element that "; |
|
this->inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "doesn't contain any element that "; |
|
this->inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Container container, |
|
MatchResultListener* listener) const override { |
|
return this->MatchAndExplainImpl(false, container, listener); |
|
} |
|
}; |
|
|
|
// Implements Each(element_matcher) for the given argument type Container. |
|
// Symmetric to ContainsMatcherImpl. |
|
template <typename Container> |
|
class EachMatcherImpl : public QuantifierMatcherImpl<Container> { |
|
public: |
|
template <typename InnerMatcher> |
|
explicit EachMatcherImpl(InnerMatcher inner_matcher) |
|
: QuantifierMatcherImpl<Container>(inner_matcher) {} |
|
|
|
// Describes what this matcher does. |
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "only contains elements that "; |
|
this->inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "contains some element that "; |
|
this->inner_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Container container, |
|
MatchResultListener* listener) const override { |
|
return this->MatchAndExplainImpl(true, container, listener); |
|
} |
|
}; |
|
|
|
// Implements Contains(element_matcher).Times(n) for the given argument type |
|
// Container. |
|
template <typename Container> |
|
class ContainsTimesMatcherImpl : public QuantifierMatcherImpl<Container> { |
|
public: |
|
template <typename InnerMatcher> |
|
explicit ContainsTimesMatcherImpl(InnerMatcher inner_matcher, |
|
Matcher<size_t> count_matcher) |
|
: QuantifierMatcherImpl<Container>(inner_matcher), |
|
count_matcher_(std::move(count_matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "quantity of elements that match "; |
|
this->inner_matcher_.DescribeTo(os); |
|
*os << " "; |
|
count_matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "quantity of elements that match "; |
|
this->inner_matcher_.DescribeTo(os); |
|
*os << " "; |
|
count_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Container container, |
|
MatchResultListener* listener) const override { |
|
return this->MatchAndExplainImpl(count_matcher_, container, listener); |
|
} |
|
|
|
private: |
|
const Matcher<size_t> count_matcher_; |
|
}; |
|
|
|
// Implements polymorphic Contains(element_matcher).Times(n). |
|
template <typename M> |
|
class ContainsTimesMatcher { |
|
public: |
|
explicit ContainsTimesMatcher(M m, Matcher<size_t> count_matcher) |
|
: inner_matcher_(m), count_matcher_(std::move(count_matcher)) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { // NOLINT |
|
return Matcher<Container>(new ContainsTimesMatcherImpl<const Container&>( |
|
inner_matcher_, count_matcher_)); |
|
} |
|
|
|
private: |
|
const M inner_matcher_; |
|
const Matcher<size_t> count_matcher_; |
|
}; |
|
|
|
// Implements polymorphic Contains(element_matcher). |
|
template <typename M> |
|
class ContainsMatcher { |
|
public: |
|
explicit ContainsMatcher(M m) : inner_matcher_(m) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { // NOLINT |
|
return Matcher<Container>( |
|
new ContainsMatcherImpl<const Container&>(inner_matcher_)); |
|
} |
|
|
|
ContainsTimesMatcher<M> Times(Matcher<size_t> count_matcher) const { |
|
return ContainsTimesMatcher<M>(inner_matcher_, std::move(count_matcher)); |
|
} |
|
|
|
private: |
|
const M inner_matcher_; |
|
}; |
|
|
|
// Implements polymorphic Each(element_matcher). |
|
template <typename M> |
|
class EachMatcher { |
|
public: |
|
explicit EachMatcher(M m) : inner_matcher_(m) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { // NOLINT |
|
return Matcher<Container>( |
|
new EachMatcherImpl<const Container&>(inner_matcher_)); |
|
} |
|
|
|
private: |
|
const M inner_matcher_; |
|
}; |
|
|
|
struct Rank1 {}; |
|
struct Rank0 : Rank1 {}; |
|
|
|
namespace pair_getters { |
|
using std::get; |
|
template <typename T> |
|
auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT |
|
return get<0>(x); |
|
} |
|
template <typename T> |
|
auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT |
|
return x.first; |
|
} |
|
|
|
template <typename T> |
|
auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT |
|
return get<1>(x); |
|
} |
|
template <typename T> |
|
auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT |
|
return x.second; |
|
} |
|
} // namespace pair_getters |
|
|
|
// Implements Key(inner_matcher) for the given argument pair type. |
|
// Key(inner_matcher) matches an std::pair whose 'first' field matches |
|
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
|
// std::map that contains at least one element whose key is >= 5. |
|
template <typename PairType> |
|
class KeyMatcherImpl : public MatcherInterface<PairType> { |
|
public: |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
|
typedef typename RawPairType::first_type KeyType; |
|
|
|
template <typename InnerMatcher> |
|
explicit KeyMatcherImpl(InnerMatcher inner_matcher) |
|
: inner_matcher_( |
|
testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {} |
|
|
|
// Returns true if and only if 'key_value.first' (the key) matches the inner |
|
// matcher. |
|
bool MatchAndExplain(PairType key_value, |
|
MatchResultListener* listener) const override { |
|
StringMatchResultListener inner_listener; |
|
const bool match = inner_matcher_.MatchAndExplain( |
|
pair_getters::First(key_value, Rank0()), &inner_listener); |
|
const std::string explanation = inner_listener.str(); |
|
if (explanation != "") { |
|
*listener << "whose first field is a value " << explanation; |
|
} |
|
return match; |
|
} |
|
|
|
// Describes what this matcher does. |
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "has a key that "; |
|
inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
// Describes what the negation of this matcher does. |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "doesn't have a key that "; |
|
inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
private: |
|
const Matcher<const KeyType&> inner_matcher_; |
|
}; |
|
|
|
// Implements polymorphic Key(matcher_for_key). |
|
template <typename M> |
|
class KeyMatcher { |
|
public: |
|
explicit KeyMatcher(M m) : matcher_for_key_(m) {} |
|
|
|
template <typename PairType> |
|
operator Matcher<PairType>() const { |
|
return Matcher<PairType>( |
|
new KeyMatcherImpl<const PairType&>(matcher_for_key_)); |
|
} |
|
|
|
private: |
|
const M matcher_for_key_; |
|
}; |
|
|
|
// Implements polymorphic Address(matcher_for_address). |
|
template <typename InnerMatcher> |
|
class AddressMatcher { |
|
public: |
|
explicit AddressMatcher(InnerMatcher m) : matcher_(m) {} |
|
|
|
template <typename Type> |
|
operator Matcher<Type>() const { // NOLINT |
|
return Matcher<Type>(new Impl<const Type&>(matcher_)); |
|
} |
|
|
|
private: |
|
// The monomorphic implementation that works for a particular object type. |
|
template <typename Type> |
|
class Impl : public MatcherInterface<Type> { |
|
public: |
|
using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *; |
|
explicit Impl(const InnerMatcher& matcher) |
|
: matcher_(MatcherCast<Address>(matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "has address that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "does not have address that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Type object, |
|
MatchResultListener* listener) const override { |
|
*listener << "which has address "; |
|
Address address = std::addressof(object); |
|
return MatchPrintAndExplain(address, matcher_, listener); |
|
} |
|
|
|
private: |
|
const Matcher<Address> matcher_; |
|
}; |
|
const InnerMatcher matcher_; |
|
}; |
|
|
|
// Implements Pair(first_matcher, second_matcher) for the given argument pair |
|
// type with its two matchers. See Pair() function below. |
|
template <typename PairType> |
|
class PairMatcherImpl : public MatcherInterface<PairType> { |
|
public: |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
|
typedef typename RawPairType::first_type FirstType; |
|
typedef typename RawPairType::second_type SecondType; |
|
|
|
template <typename FirstMatcher, typename SecondMatcher> |
|
PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) |
|
: first_matcher_( |
|
testing::SafeMatcherCast<const FirstType&>(first_matcher)), |
|
second_matcher_( |
|
testing::SafeMatcherCast<const SecondType&>(second_matcher)) {} |
|
|
|
// Describes what this matcher does. |
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "has a first field that "; |
|
first_matcher_.DescribeTo(os); |
|
*os << ", and has a second field that "; |
|
second_matcher_.DescribeTo(os); |
|
} |
|
|
|
// Describes what the negation of this matcher does. |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "has a first field that "; |
|
first_matcher_.DescribeNegationTo(os); |
|
*os << ", or has a second field that "; |
|
second_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
// Returns true if and only if 'a_pair.first' matches first_matcher and |
|
// 'a_pair.second' matches second_matcher. |
|
bool MatchAndExplain(PairType a_pair, |
|
MatchResultListener* listener) const override { |
|
if (!listener->IsInterested()) { |
|
// If the listener is not interested, we don't need to construct the |
|
// explanation. |
|
return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && |
|
second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); |
|
} |
|
StringMatchResultListener first_inner_listener; |
|
if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), |
|
&first_inner_listener)) { |
|
*listener << "whose first field does not match"; |
|
PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); |
|
return false; |
|
} |
|
StringMatchResultListener second_inner_listener; |
|
if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), |
|
&second_inner_listener)) { |
|
*listener << "whose second field does not match"; |
|
PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); |
|
return false; |
|
} |
|
ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), |
|
listener); |
|
return true; |
|
} |
|
|
|
private: |
|
void ExplainSuccess(const std::string& first_explanation, |
|
const std::string& second_explanation, |
|
MatchResultListener* listener) const { |
|
*listener << "whose both fields match"; |
|
if (first_explanation != "") { |
|
*listener << ", where the first field is a value " << first_explanation; |
|
} |
|
if (second_explanation != "") { |
|
*listener << ", "; |
|
if (first_explanation != "") { |
|
*listener << "and "; |
|
} else { |
|
*listener << "where "; |
|
} |
|
*listener << "the second field is a value " << second_explanation; |
|
} |
|
} |
|
|
|
const Matcher<const FirstType&> first_matcher_; |
|
const Matcher<const SecondType&> second_matcher_; |
|
}; |
|
|
|
// Implements polymorphic Pair(first_matcher, second_matcher). |
|
template <typename FirstMatcher, typename SecondMatcher> |
|
class PairMatcher { |
|
public: |
|
PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) |
|
: first_matcher_(first_matcher), second_matcher_(second_matcher) {} |
|
|
|
template <typename PairType> |
|
operator Matcher<PairType>() const { |
|
return Matcher<PairType>( |
|
new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); |
|
} |
|
|
|
private: |
|
const FirstMatcher first_matcher_; |
|
const SecondMatcher second_matcher_; |
|
}; |
|
|
|
template <typename T, size_t... I> |
|
auto UnpackStructImpl(const T& t, IndexSequence<I...>, int) |
|
-> decltype(std::tie(get<I>(t)...)) { |
|
static_assert(std::tuple_size<T>::value == sizeof...(I), |
|
"Number of arguments doesn't match the number of fields."); |
|
return std::tie(get<I>(t)...); |
|
} |
|
|
|
#if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606 |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) { |
|
const auto& [a] = t; |
|
return std::tie(a); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) { |
|
const auto& [a, b] = t; |
|
return std::tie(a, b); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) { |
|
const auto& [a, b, c] = t; |
|
return std::tie(a, b, c); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) { |
|
const auto& [a, b, c, d] = t; |
|
return std::tie(a, b, c, d); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) { |
|
const auto& [a, b, c, d, e] = t; |
|
return std::tie(a, b, c, d, e); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) { |
|
const auto& [a, b, c, d, e, f] = t; |
|
return std::tie(a, b, c, d, e, f); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) { |
|
const auto& [a, b, c, d, e, f, g] = t; |
|
return std::tie(a, b, c, d, e, f, g); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) { |
|
const auto& [a, b, c, d, e, f, g, h] = t; |
|
return std::tie(a, b, c, d, e, f, g, h); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<17>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<18>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<19>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s); |
|
} |
|
#endif // defined(__cpp_structured_bindings) |
|
|
|
template <size_t I, typename T> |
|
auto UnpackStruct(const T& t) |
|
-> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) { |
|
return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0); |
|
} |
|
|
|
// Helper function to do comma folding in C++11. |
|
// The array ensures left-to-right order of evaluation. |
|
// Usage: VariadicExpand({expr...}); |
|
template <typename T, size_t N> |
|
void VariadicExpand(const T (&)[N]) {} |
|
|
|
template <typename Struct, typename StructSize> |
|
class FieldsAreMatcherImpl; |
|
|
|
template <typename Struct, size_t... I> |
|
class FieldsAreMatcherImpl<Struct, IndexSequence<I...>> |
|
: public MatcherInterface<Struct> { |
|
using UnpackedType = |
|
decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>())); |
|
using MatchersType = std::tuple< |
|
Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>; |
|
|
|
public: |
|
template <typename Inner> |
|
explicit FieldsAreMatcherImpl(const Inner& matchers) |
|
: matchers_(testing::SafeMatcherCast< |
|
const typename std::tuple_element<I, UnpackedType>::type&>( |
|
std::get<I>(matchers))...) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
const char* separator = ""; |
|
VariadicExpand( |
|
{(*os << separator << "has field #" << I << " that ", |
|
std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...}); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
const char* separator = ""; |
|
VariadicExpand({(*os << separator << "has field #" << I << " that ", |
|
std::get<I>(matchers_).DescribeNegationTo(os), |
|
separator = ", or ")...}); |
|
} |
|
|
|
bool MatchAndExplain(Struct t, MatchResultListener* listener) const override { |
|
return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener); |
|
} |
|
|
|
private: |
|
bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const { |
|
if (!listener->IsInterested()) { |
|
// If the listener is not interested, we don't need to construct the |
|
// explanation. |
|
bool good = true; |
|
VariadicExpand({good = good && std::get<I>(matchers_).Matches( |
|
std::get<I>(tuple))...}); |
|
return good; |
|
} |
|
|
|
size_t failed_pos = ~size_t{}; |
|
|
|
std::vector<StringMatchResultListener> inner_listener(sizeof...(I)); |
|
|
|
VariadicExpand( |
|
{failed_pos == ~size_t{}&& !std::get<I>(matchers_).MatchAndExplain( |
|
std::get<I>(tuple), &inner_listener[I]) |
|
? failed_pos = I |
|
: 0 ...}); |
|
if (failed_pos != ~size_t{}) { |
|
*listener << "whose field #" << failed_pos << " does not match"; |
|
PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream()); |
|
return false; |
|
} |
|
|
|
*listener << "whose all elements match"; |
|
const char* separator = ", where"; |
|
for (size_t index = 0; index < sizeof...(I); ++index) { |
|
const std::string str = inner_listener[index].str(); |
|
if (!str.empty()) { |
|
*listener << separator << " field #" << index << " is a value " << str; |
|
separator = ", and"; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
MatchersType matchers_; |
|
}; |
|
|
|
template <typename... Inner> |
|
class FieldsAreMatcher { |
|
public: |
|
explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {} |
|
|
|
template <typename Struct> |
|
operator Matcher<Struct>() const { // NOLINT |
|
return Matcher<Struct>( |
|
new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>( |
|
matchers_)); |
|
} |
|
|
|
private: |
|
std::tuple<Inner...> matchers_; |
|
}; |
|
|
|
// Implements ElementsAre() and ElementsAreArray(). |
|
template <typename Container> |
|
class ElementsAreMatcherImpl : public MatcherInterface<Container> { |
|
public: |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
|
typedef internal::StlContainerView<RawContainer> View; |
|
typedef typename View::type StlContainer; |
|
typedef typename View::const_reference StlContainerReference; |
|
typedef typename StlContainer::value_type Element; |
|
|
|
// Constructs the matcher from a sequence of element values or |
|
// element matchers. |
|
template <typename InputIter> |
|
ElementsAreMatcherImpl(InputIter first, InputIter last) { |
|
while (first != last) { |
|
matchers_.push_back(MatcherCast<const Element&>(*first++)); |
|
} |
|
} |
|
|
|
// Describes what this matcher does. |
|
void DescribeTo(::std::ostream* os) const override { |
|
if (count() == 0) { |
|
*os << "is empty"; |
|
} else if (count() == 1) { |
|
*os << "has 1 element that "; |
|
matchers_[0].DescribeTo(os); |
|
} else { |
|
*os << "has " << Elements(count()) << " where\n"; |
|
for (size_t i = 0; i != count(); ++i) { |
|
*os << "element #" << i << " "; |
|
matchers_[i].DescribeTo(os); |
|
if (i + 1 < count()) { |
|
*os << ",\n"; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Describes what the negation of this matcher does. |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
if (count() == 0) { |
|
*os << "isn't empty"; |
|
return; |
|
} |
|
|
|
*os << "doesn't have " << Elements(count()) << ", or\n"; |
|
for (size_t i = 0; i != count(); ++i) { |
|
*os << "element #" << i << " "; |
|
matchers_[i].DescribeNegationTo(os); |
|
if (i + 1 < count()) { |
|
*os << ", or\n"; |
|
} |
|
} |
|
} |
|
|
|
bool MatchAndExplain(Container container, |
|
MatchResultListener* listener) const override { |
|
// To work with stream-like "containers", we must only walk |
|
// through the elements in one pass. |
|
|
|
const bool listener_interested = listener->IsInterested(); |
|
|
|
// explanations[i] is the explanation of the element at index i. |
|
::std::vector<std::string> explanations(count()); |
|
StlContainerReference stl_container = View::ConstReference(container); |
|
auto it = stl_container.begin(); |
|
size_t exam_pos = 0; |
|
bool mismatch_found = false; // Have we found a mismatched element yet? |
|
|
|
// Go through the elements and matchers in pairs, until we reach |
|
// the end of either the elements or the matchers, or until we find a |
|
// mismatch. |
|
for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { |
|
bool match; // Does the current element match the current matcher? |
|
if (listener_interested) { |
|
StringMatchResultListener s; |
|
match = matchers_[exam_pos].MatchAndExplain(*it, &s); |
|
explanations[exam_pos] = s.str(); |
|
} else { |
|
match = matchers_[exam_pos].Matches(*it); |
|
} |
|
|
|
if (!match) { |
|
mismatch_found = true; |
|
break; |
|
} |
|
} |
|
// If mismatch_found is true, 'exam_pos' is the index of the mismatch. |
|
|
|
// Find how many elements the actual container has. We avoid |
|
// calling size() s.t. this code works for stream-like "containers" |
|
// that don't define size(). |
|
size_t actual_count = exam_pos; |
|
for (; it != stl_container.end(); ++it) { |
|
++actual_count; |
|
} |
|
|
|
if (actual_count != count()) { |
|
// The element count doesn't match. If the container is empty, |
|
// there's no need to explain anything as Google Mock already |
|
// prints the empty container. Otherwise we just need to show |
|
// how many elements there actually are. |
|
if (listener_interested && (actual_count != 0)) { |
|
*listener << "which has " << Elements(actual_count); |
|
} |
|
return false; |
|
} |
|
|
|
if (mismatch_found) { |
|
// The element count matches, but the exam_pos-th element doesn't match. |
|
if (listener_interested) { |
|
*listener << "whose element #" << exam_pos << " doesn't match"; |
|
PrintIfNotEmpty(explanations[exam_pos], listener->stream()); |
|
} |
|
return false; |
|
} |
|
|
|
// Every element matches its expectation. We need to explain why |
|
// (the obvious ones can be skipped). |
|
if (listener_interested) { |
|
bool reason_printed = false; |
|
for (size_t i = 0; i != count(); ++i) { |
|
const std::string& s = explanations[i]; |
|
if (!s.empty()) { |
|
if (reason_printed) { |
|
*listener << ",\nand "; |
|
} |
|
*listener << "whose element #" << i << " matches, " << s; |
|
reason_printed = true; |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
private: |
|
static Message Elements(size_t count) { |
|
return Message() << count << (count == 1 ? " element" : " elements"); |
|
} |
|
|
|
size_t count() const { return matchers_.size(); } |
|
|
|
::std::vector<Matcher<const Element&>> matchers_; |
|
}; |
|
|
|
// Connectivity matrix of (elements X matchers), in element-major order. |
|
// Initially, there are no edges. |
|
// Use NextGraph() to iterate over all possible edge configurations. |
|
// Use Randomize() to generate a random edge configuration. |
|
class GTEST_API_ MatchMatrix { |
|
public: |
|
MatchMatrix(size_t num_elements, size_t num_matchers) |
|
: num_elements_(num_elements), |
|
num_matchers_(num_matchers), |
|
matched_(num_elements_ * num_matchers_, 0) {} |
|
|
|
size_t LhsSize() const { return num_elements_; } |
|
size_t RhsSize() const { return num_matchers_; } |
|
bool HasEdge(size_t ilhs, size_t irhs) const { |
|
return matched_[SpaceIndex(ilhs, irhs)] == 1; |
|
} |
|
void SetEdge(size_t ilhs, size_t irhs, bool b) { |
|
matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; |
|
} |
|
|
|
// Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, |
|
// adds 1 to that number; returns false if incrementing the graph left it |
|
// empty. |
|
bool NextGraph(); |
|
|
|
void Randomize(); |
|
|
|
std::string DebugString() const; |
|
|
|
private: |
|
size_t SpaceIndex(size_t ilhs, size_t irhs) const { |
|
return ilhs * num_matchers_ + irhs; |
|
} |
|
|
|
size_t num_elements_; |
|
size_t num_matchers_; |
|
|
|
// Each element is a char interpreted as bool. They are stored as a |
|
// flattened array in lhs-major order, use 'SpaceIndex()' to translate |
|
// a (ilhs, irhs) matrix coordinate into an offset. |
|
::std::vector<char> matched_; |
|
}; |
|
|
|
typedef ::std::pair<size_t, size_t> ElementMatcherPair; |
|
typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; |
|
|
|
// Returns a maximum bipartite matching for the specified graph 'g'. |
|
// The matching is represented as a vector of {element, matcher} pairs. |
|
GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g); |
|
|
|
struct UnorderedMatcherRequire { |
|
enum Flags { |
|
Superset = 1 << 0, |
|
Subset = 1 << 1, |
|
ExactMatch = Superset | Subset, |
|
}; |
|
}; |
|
|
|
// Untyped base class for implementing UnorderedElementsAre. By |
|
// putting logic that's not specific to the element type here, we |
|
// reduce binary bloat and increase compilation speed. |
|
class GTEST_API_ UnorderedElementsAreMatcherImplBase { |
|
protected: |
|
explicit UnorderedElementsAreMatcherImplBase( |
|
UnorderedMatcherRequire::Flags matcher_flags) |
|
: match_flags_(matcher_flags) {} |
|
|
|
// A vector of matcher describers, one for each element matcher. |
|
// Does not own the describers (and thus can be used only when the |
|
// element matchers are alive). |
|
typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; |
|
|
|
// Describes this UnorderedElementsAre matcher. |
|
void DescribeToImpl(::std::ostream* os) const; |
|
|
|
// Describes the negation of this UnorderedElementsAre matcher. |
|
void DescribeNegationToImpl(::std::ostream* os) const; |
|
|
|
bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, |
|
const MatchMatrix& matrix, |
|
MatchResultListener* listener) const; |
|
|
|
bool FindPairing(const MatchMatrix& matrix, |
|
MatchResultListener* listener) const; |
|
|
|
MatcherDescriberVec& matcher_describers() { return matcher_describers_; } |
|
|
|
static Message Elements(size_t n) { |
|
return Message() << n << " element" << (n == 1 ? "" : "s"); |
|
} |
|
|
|
UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } |
|
|
|
private: |
|
UnorderedMatcherRequire::Flags match_flags_; |
|
MatcherDescriberVec matcher_describers_; |
|
}; |
|
|
|
// Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and |
|
// IsSupersetOf. |
|
template <typename Container> |
|
class UnorderedElementsAreMatcherImpl |
|
: public MatcherInterface<Container>, |
|
public UnorderedElementsAreMatcherImplBase { |
|
public: |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
|
typedef internal::StlContainerView<RawContainer> View; |
|
typedef typename View::type StlContainer; |
|
typedef typename View::const_reference StlContainerReference; |
|
typedef typename StlContainer::value_type Element; |
|
|
|
template <typename InputIter> |
|
UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, |
|
InputIter first, InputIter last) |
|
: UnorderedElementsAreMatcherImplBase(matcher_flags) { |
|
for (; first != last; ++first) { |
|
matchers_.push_back(MatcherCast<const Element&>(*first)); |
|
} |
|
for (const auto& m : matchers_) { |
|
matcher_describers().push_back(m.GetDescriber()); |
|
} |
|
} |
|
|
|
// Describes what this matcher does. |
|
void DescribeTo(::std::ostream* os) const override { |
|
return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); |
|
} |
|
|
|
// Describes what the negation of this matcher does. |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); |
|
} |
|
|
|
bool MatchAndExplain(Container container, |
|
MatchResultListener* listener) const override { |
|
StlContainerReference stl_container = View::ConstReference(container); |
|
::std::vector<std::string> element_printouts; |
|
MatchMatrix matrix = |
|
AnalyzeElements(stl_container.begin(), stl_container.end(), |
|
&element_printouts, listener); |
|
|
|
if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { |
|
return true; |
|
} |
|
|
|
if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
|
if (matrix.LhsSize() != matrix.RhsSize()) { |
|
// The element count doesn't match. If the container is empty, |
|
// there's no need to explain anything as Google Mock already |
|
// prints the empty container. Otherwise we just need to show |
|
// how many elements there actually are. |
|
if (matrix.LhsSize() != 0 && listener->IsInterested()) { |
|
*listener << "which has " << Elements(matrix.LhsSize()); |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
return VerifyMatchMatrix(element_printouts, matrix, listener) && |
|
FindPairing(matrix, listener); |
|
} |
|
|
|
private: |
|
template <typename ElementIter> |
|
MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, |
|
::std::vector<std::string>* element_printouts, |
|
MatchResultListener* listener) const { |
|
element_printouts->clear(); |
|
::std::vector<char> did_match; |
|
size_t num_elements = 0; |
|
DummyMatchResultListener dummy; |
|
for (; elem_first != elem_last; ++num_elements, ++elem_first) { |
|
if (listener->IsInterested()) { |
|
element_printouts->push_back(PrintToString(*elem_first)); |
|
} |
|
for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
|
did_match.push_back( |
|
matchers_[irhs].MatchAndExplain(*elem_first, &dummy)); |
|
} |
|
} |
|
|
|
MatchMatrix matrix(num_elements, matchers_.size()); |
|
::std::vector<char>::const_iterator did_match_iter = did_match.begin(); |
|
for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { |
|
for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
|
matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); |
|
} |
|
} |
|
return matrix; |
|
} |
|
|
|
::std::vector<Matcher<const Element&>> matchers_; |
|
}; |
|
|
|
// Functor for use in TransformTuple. |
|
// Performs MatcherCast<Target> on an input argument of any type. |
|
template <typename Target> |
|
struct CastAndAppendTransform { |
|
template <typename Arg> |
|
Matcher<Target> operator()(const Arg& a) const { |
|
return MatcherCast<Target>(a); |
|
} |
|
}; |
|
|
|
// Implements UnorderedElementsAre. |
|
template <typename MatcherTuple> |
|
class UnorderedElementsAreMatcher { |
|
public: |
|
explicit UnorderedElementsAreMatcher(const MatcherTuple& args) |
|
: matchers_(args) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
|
typedef typename internal::StlContainerView<RawContainer>::type View; |
|
typedef typename View::value_type Element; |
|
typedef ::std::vector<Matcher<const Element&>> MatcherVec; |
|
MatcherVec matchers; |
|
matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
|
TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
|
::std::back_inserter(matchers)); |
|
return Matcher<Container>( |
|
new UnorderedElementsAreMatcherImpl<const Container&>( |
|
UnorderedMatcherRequire::ExactMatch, matchers.begin(), |
|
matchers.end())); |
|
} |
|
|
|
private: |
|
const MatcherTuple matchers_; |
|
}; |
|
|
|
// Implements ElementsAre. |
|
template <typename MatcherTuple> |
|
class ElementsAreMatcher { |
|
public: |
|
explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
static_assert( |
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || |
|
::std::tuple_size<MatcherTuple>::value < 2, |
|
"use UnorderedElementsAre with hash tables"); |
|
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
|
typedef typename internal::StlContainerView<RawContainer>::type View; |
|
typedef typename View::value_type Element; |
|
typedef ::std::vector<Matcher<const Element&>> MatcherVec; |
|
MatcherVec matchers; |
|
matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
|
TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
|
::std::back_inserter(matchers)); |
|
return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
|
matchers.begin(), matchers.end())); |
|
} |
|
|
|
private: |
|
const MatcherTuple matchers_; |
|
}; |
|
|
|
// Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). |
|
template <typename T> |
|
class UnorderedElementsAreArrayMatcher { |
|
public: |
|
template <typename Iter> |
|
UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, |
|
Iter first, Iter last) |
|
: match_flags_(match_flags), matchers_(first, last) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
return Matcher<Container>( |
|
new UnorderedElementsAreMatcherImpl<const Container&>( |
|
match_flags_, matchers_.begin(), matchers_.end())); |
|
} |
|
|
|
private: |
|
UnorderedMatcherRequire::Flags match_flags_; |
|
::std::vector<T> matchers_; |
|
}; |
|
|
|
// Implements ElementsAreArray(). |
|
template <typename T> |
|
class ElementsAreArrayMatcher { |
|
public: |
|
template <typename Iter> |
|
ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
static_assert( |
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, |
|
"use UnorderedElementsAreArray with hash tables"); |
|
|
|
return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
|
matchers_.begin(), matchers_.end())); |
|
} |
|
|
|
private: |
|
const ::std::vector<T> matchers_; |
|
}; |
|
|
|
// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second |
|
// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, |
|
// second) is a polymorphic matcher that matches a value x if and only if |
|
// tm matches tuple (x, second). Useful for implementing |
|
// UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
|
// |
|
// BoundSecondMatcher is copyable and assignable, as we need to put |
|
// instances of this class in a vector when implementing |
|
// UnorderedPointwise(). |
|
template <typename Tuple2Matcher, typename Second> |
|
class BoundSecondMatcher { |
|
public: |
|
BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) |
|
: tuple2_matcher_(tm), second_value_(second) {} |
|
|
|
BoundSecondMatcher(const BoundSecondMatcher& other) = default; |
|
|
|
template <typename T> |
|
operator Matcher<T>() const { |
|
return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); |
|
} |
|
|
|
// We have to define this for UnorderedPointwise() to compile in |
|
// C++98 mode, as it puts BoundSecondMatcher instances in a vector, |
|
// which requires the elements to be assignable in C++98. The |
|
// compiler cannot generate the operator= for us, as Tuple2Matcher |
|
// and Second may not be assignable. |
|
// |
|
// However, this should never be called, so the implementation just |
|
// need to assert. |
|
void operator=(const BoundSecondMatcher& /*rhs*/) { |
|
GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned."; |
|
} |
|
|
|
private: |
|
template <typename T> |
|
class Impl : public MatcherInterface<T> { |
|
public: |
|
typedef ::std::tuple<T, Second> ArgTuple; |
|
|
|
Impl(const Tuple2Matcher& tm, const Second& second) |
|
: mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), |
|
second_value_(second) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "and "; |
|
UniversalPrint(second_value_, os); |
|
*os << " "; |
|
mono_tuple2_matcher_.DescribeTo(os); |
|
} |
|
|
|
bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
|
return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), |
|
listener); |
|
} |
|
|
|
private: |
|
const Matcher<const ArgTuple&> mono_tuple2_matcher_; |
|
const Second second_value_; |
|
}; |
|
|
|
const Tuple2Matcher tuple2_matcher_; |
|
const Second second_value_; |
|
}; |
|
|
|
// Given a 2-tuple matcher tm and a value second, |
|
// MatcherBindSecond(tm, second) returns a matcher that matches a |
|
// value x if and only if tm matches tuple (x, second). Useful for |
|
// implementing UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
|
template <typename Tuple2Matcher, typename Second> |
|
BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( |
|
const Tuple2Matcher& tm, const Second& second) { |
|
return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); |
|
} |
|
|
|
// Returns the description for a matcher defined using the MATCHER*() |
|
// macro where the user-supplied description string is "", if |
|
// 'negation' is false; otherwise returns the description of the |
|
// negation of the matcher. 'param_values' contains a list of strings |
|
// that are the print-out of the matcher's parameters. |
|
GTEST_API_ std::string FormatMatcherDescription( |
|
bool negation, const char* matcher_name, |
|
const std::vector<const char*>& param_names, const Strings& param_values); |
|
|
|
// Implements a matcher that checks the value of a optional<> type variable. |
|
template <typename ValueMatcher> |
|
class OptionalMatcher { |
|
public: |
|
explicit OptionalMatcher(const ValueMatcher& value_matcher) |
|
: value_matcher_(value_matcher) {} |
|
|
|
template <typename Optional> |
|
operator Matcher<Optional>() const { |
|
return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); |
|
} |
|
|
|
template <typename Optional> |
|
class Impl : public MatcherInterface<Optional> { |
|
public: |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; |
|
typedef typename OptionalView::value_type ValueType; |
|
explicit Impl(const ValueMatcher& value_matcher) |
|
: value_matcher_(MatcherCast<ValueType>(value_matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "value "; |
|
value_matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "value "; |
|
value_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Optional optional, |
|
MatchResultListener* listener) const override { |
|
if (!optional) { |
|
*listener << "which is not engaged"; |
|
return false; |
|
} |
|
const ValueType& value = *optional; |
|
StringMatchResultListener value_listener; |
|
const bool match = value_matcher_.MatchAndExplain(value, &value_listener); |
|
*listener << "whose value " << PrintToString(value) |
|
<< (match ? " matches" : " doesn't match"); |
|
PrintIfNotEmpty(value_listener.str(), listener->stream()); |
|
return match; |
|
} |
|
|
|
private: |
|
const Matcher<ValueType> value_matcher_; |
|
}; |
|
|
|
private: |
|
const ValueMatcher value_matcher_; |
|
}; |
|
|
|
namespace variant_matcher { |
|
// Overloads to allow VariantMatcher to do proper ADL lookup. |
|
template <typename T> |
|
void holds_alternative() {} |
|
template <typename T> |
|
void get() {} |
|
|
|
// Implements a matcher that checks the value of a variant<> type variable. |
|
template <typename T> |
|
class VariantMatcher { |
|
public: |
|
explicit VariantMatcher(::testing::Matcher<const T&> matcher) |
|
: matcher_(std::move(matcher)) {} |
|
|
|
template <typename Variant> |
|
bool MatchAndExplain(const Variant& value, |
|
::testing::MatchResultListener* listener) const { |
|
using std::get; |
|
if (!listener->IsInterested()) { |
|
return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); |
|
} |
|
|
|
if (!holds_alternative<T>(value)) { |
|
*listener << "whose value is not of type '" << GetTypeName() << "'"; |
|
return false; |
|
} |
|
|
|
const T& elem = get<T>(value); |
|
StringMatchResultListener elem_listener; |
|
const bool match = matcher_.MatchAndExplain(elem, &elem_listener); |
|
*listener << "whose value " << PrintToString(elem) |
|
<< (match ? " matches" : " doesn't match"); |
|
PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
|
return match; |
|
} |
|
|
|
void DescribeTo(std::ostream* os) const { |
|
*os << "is a variant<> with value of type '" << GetTypeName() |
|
<< "' and the value "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(std::ostream* os) const { |
|
*os << "is a variant<> with value of type other than '" << GetTypeName() |
|
<< "' or the value "; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
private: |
|
static std::string GetTypeName() { |
|
#if GTEST_HAS_RTTI |
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
|
return internal::GetTypeName<T>()); |
|
#endif |
|
return "the element type"; |
|
} |
|
|
|
const ::testing::Matcher<const T&> matcher_; |
|
}; |
|
|
|
} // namespace variant_matcher |
|
|
|
namespace any_cast_matcher { |
|
|
|
// Overloads to allow AnyCastMatcher to do proper ADL lookup. |
|
template <typename T> |
|
void any_cast() {} |
|
|
|
// Implements a matcher that any_casts the value. |
|
template <typename T> |
|
class AnyCastMatcher { |
|
public: |
|
explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) |
|
: matcher_(matcher) {} |
|
|
|
template <typename AnyType> |
|
bool MatchAndExplain(const AnyType& value, |
|
::testing::MatchResultListener* listener) const { |
|
if (!listener->IsInterested()) { |
|
const T* ptr = any_cast<T>(&value); |
|
return ptr != nullptr && matcher_.Matches(*ptr); |
|
} |
|
|
|
const T* elem = any_cast<T>(&value); |
|
if (elem == nullptr) { |
|
*listener << "whose value is not of type '" << GetTypeName() << "'"; |
|
return false; |
|
} |
|
|
|
StringMatchResultListener elem_listener; |
|
const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); |
|
*listener << "whose value " << PrintToString(*elem) |
|
<< (match ? " matches" : " doesn't match"); |
|
PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
|
return match; |
|
} |
|
|
|
void DescribeTo(std::ostream* os) const { |
|
*os << "is an 'any' type with value of type '" << GetTypeName() |
|
<< "' and the value "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(std::ostream* os) const { |
|
*os << "is an 'any' type with value of type other than '" << GetTypeName() |
|
<< "' or the value "; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
private: |
|
static std::string GetTypeName() { |
|
#if GTEST_HAS_RTTI |
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
|
return internal::GetTypeName<T>()); |
|
#endif |
|
return "the element type"; |
|
} |
|
|
|
const ::testing::Matcher<const T&> matcher_; |
|
}; |
|
|
|
} // namespace any_cast_matcher |
|
|
|
// Implements the Args() matcher. |
|
template <class ArgsTuple, size_t... k> |
|
class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { |
|
public: |
|
using RawArgsTuple = typename std::decay<ArgsTuple>::type; |
|
using SelectedArgs = |
|
std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; |
|
using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>; |
|
|
|
template <typename InnerMatcher> |
|
explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) |
|
: inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} |
|
|
|
bool MatchAndExplain(ArgsTuple args, |
|
MatchResultListener* listener) const override { |
|
// Workaround spurious C4100 on MSVC<=15.7 when k is empty. |
|
(void)args; |
|
const SelectedArgs& selected_args = |
|
std::forward_as_tuple(std::get<k>(args)...); |
|
if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); |
|
|
|
PrintIndices(listener->stream()); |
|
*listener << "are " << PrintToString(selected_args); |
|
|
|
StringMatchResultListener inner_listener; |
|
const bool match = |
|
inner_matcher_.MatchAndExplain(selected_args, &inner_listener); |
|
PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
|
return match; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "are a tuple "; |
|
PrintIndices(os); |
|
inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "are a tuple "; |
|
PrintIndices(os); |
|
inner_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
private: |
|
// Prints the indices of the selected fields. |
|
static void PrintIndices(::std::ostream* os) { |
|
*os << "whose fields ("; |
|
const char* sep = ""; |
|
// Workaround spurious C4189 on MSVC<=15.7 when k is empty. |
|
(void)sep; |
|
const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...}; |
|
(void)dummy; |
|
*os << ") "; |
|
} |
|
|
|
MonomorphicInnerMatcher inner_matcher_; |
|
}; |
|
|
|
template <class InnerMatcher, size_t... k> |
|
class ArgsMatcher { |
|
public: |
|
explicit ArgsMatcher(InnerMatcher inner_matcher) |
|
: inner_matcher_(std::move(inner_matcher)) {} |
|
|
|
template <typename ArgsTuple> |
|
operator Matcher<ArgsTuple>() const { // NOLINT |
|
return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); |
|
} |
|
|
|
private: |
|
InnerMatcher inner_matcher_; |
|
}; |
|
|
|
} // namespace internal |
|
|
|
// ElementsAreArray(iterator_first, iterator_last) |
|
// ElementsAreArray(pointer, count) |
|
// ElementsAreArray(array) |
|
// ElementsAreArray(container) |
|
// ElementsAreArray({ e1, e2, ..., en }) |
|
// |
|
// The ElementsAreArray() functions are like ElementsAre(...), except |
|
// that they are given a homogeneous sequence rather than taking each |
|
// element as a function argument. The sequence can be specified as an |
|
// array, a pointer and count, a vector, an initializer list, or an |
|
// STL iterator range. In each of these cases, the underlying sequence |
|
// can be either a sequence of values or a sequence of matchers. |
|
// |
|
// All forms of ElementsAreArray() make a copy of the input matcher sequence. |
|
|
|
template <typename Iter> |
|
inline internal::ElementsAreArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type> |
|
ElementsAreArray(Iter first, Iter last) { |
|
typedef typename ::std::iterator_traits<Iter>::value_type T; |
|
return internal::ElementsAreArrayMatcher<T>(first, last); |
|
} |
|
|
|
template <typename T> |
|
inline auto ElementsAreArray(const T* pointer, size_t count) |
|
-> decltype(ElementsAreArray(pointer, pointer + count)) { |
|
return ElementsAreArray(pointer, pointer + count); |
|
} |
|
|
|
template <typename T, size_t N> |
|
inline auto ElementsAreArray(const T (&array)[N]) |
|
-> decltype(ElementsAreArray(array, N)) { |
|
return ElementsAreArray(array, N); |
|
} |
|
|
|
template <typename Container> |
|
inline auto ElementsAreArray(const Container& container) |
|
-> decltype(ElementsAreArray(container.begin(), container.end())) { |
|
return ElementsAreArray(container.begin(), container.end()); |
|
} |
|
|
|
template <typename T> |
|
inline auto ElementsAreArray(::std::initializer_list<T> xs) |
|
-> decltype(ElementsAreArray(xs.begin(), xs.end())) { |
|
return ElementsAreArray(xs.begin(), xs.end()); |
|
} |
|
|
|
// UnorderedElementsAreArray(iterator_first, iterator_last) |
|
// UnorderedElementsAreArray(pointer, count) |
|
// UnorderedElementsAreArray(array) |
|
// UnorderedElementsAreArray(container) |
|
// UnorderedElementsAreArray({ e1, e2, ..., en }) |
|
// |
|
// UnorderedElementsAreArray() verifies that a bijective mapping onto a |
|
// collection of matchers exists. |
|
// |
|
// The matchers can be specified as an array, a pointer and count, a container, |
|
// an initializer list, or an STL iterator range. In each of these cases, the |
|
// underlying matchers can be either values or matchers. |
|
|
|
template <typename Iter> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type> |
|
UnorderedElementsAreArray(Iter first, Iter last) { |
|
typedef typename ::std::iterator_traits<Iter>::value_type T; |
|
return internal::UnorderedElementsAreArrayMatcher<T>( |
|
internal::UnorderedMatcherRequire::ExactMatch, first, last); |
|
} |
|
|
|
template <typename T> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( |
|
const T* pointer, size_t count) { |
|
return UnorderedElementsAreArray(pointer, pointer + count); |
|
} |
|
|
|
template <typename T, size_t N> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( |
|
const T (&array)[N]) { |
|
return UnorderedElementsAreArray(array, N); |
|
} |
|
|
|
template <typename Container> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename Container::value_type> |
|
UnorderedElementsAreArray(const Container& container) { |
|
return UnorderedElementsAreArray(container.begin(), container.end()); |
|
} |
|
|
|
template <typename T> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( |
|
::std::initializer_list<T> xs) { |
|
return UnorderedElementsAreArray(xs.begin(), xs.end()); |
|
} |
|
|
|
// _ is a matcher that matches anything of any type. |
|
// |
|
// This definition is fine as: |
|
// |
|
// 1. The C++ standard permits using the name _ in a namespace that |
|
// is not the global namespace or ::std. |
|
// 2. The AnythingMatcher class has no data member or constructor, |
|
// so it's OK to create global variables of this type. |
|
// 3. c-style has approved of using _ in this case. |
|
const internal::AnythingMatcher _ = {}; |
|
// Creates a matcher that matches any value of the given type T. |
|
template <typename T> |
|
inline Matcher<T> A() { |
|
return _; |
|
} |
|
|
|
// Creates a matcher that matches any value of the given type T. |
|
template <typename T> |
|
inline Matcher<T> An() { |
|
return _; |
|
} |
|
|
|
template <typename T, typename M> |
|
Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( |
|
const M& value, std::false_type /* convertible_to_matcher */, |
|
std::false_type /* convertible_to_T */) { |
|
return Eq(value); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches any NULL pointer. |
|
inline PolymorphicMatcher<internal::IsNullMatcher> IsNull() { |
|
return MakePolymorphicMatcher(internal::IsNullMatcher()); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches any non-NULL pointer. |
|
// This is convenient as Not(NULL) doesn't compile (the compiler |
|
// thinks that that expression is comparing a pointer with an integer). |
|
inline PolymorphicMatcher<internal::NotNullMatcher> NotNull() { |
|
return MakePolymorphicMatcher(internal::NotNullMatcher()); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches any argument that |
|
// references variable x. |
|
template <typename T> |
|
inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT |
|
return internal::RefMatcher<T&>(x); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches any NaN floating point. |
|
inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() { |
|
return MakePolymorphicMatcher(internal::IsNanMatcher()); |
|
} |
|
|
|
// Creates a matcher that matches any double argument approximately |
|
// equal to rhs, where two NANs are considered unequal. |
|
inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { |
|
return internal::FloatingEqMatcher<double>(rhs, false); |
|
} |
|
|
|
// Creates a matcher that matches any double argument approximately |
|
// equal to rhs, including NaN values when rhs is NaN. |
|
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { |
|
return internal::FloatingEqMatcher<double>(rhs, true); |
|
} |
|
|
|
// Creates a matcher that matches any double argument approximately equal to |
|
// rhs, up to the specified max absolute error bound, where two NANs are |
|
// considered unequal. The max absolute error bound must be non-negative. |
|
inline internal::FloatingEqMatcher<double> DoubleNear(double rhs, |
|
double max_abs_error) { |
|
return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); |
|
} |
|
|
|
// Creates a matcher that matches any double argument approximately equal to |
|
// rhs, up to the specified max absolute error bound, including NaN values when |
|
// rhs is NaN. The max absolute error bound must be non-negative. |
|
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( |
|
double rhs, double max_abs_error) { |
|
return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); |
|
} |
|
|
|
// Creates a matcher that matches any float argument approximately |
|
// equal to rhs, where two NANs are considered unequal. |
|
inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { |
|
return internal::FloatingEqMatcher<float>(rhs, false); |
|
} |
|
|
|
// Creates a matcher that matches any float argument approximately |
|
// equal to rhs, including NaN values when rhs is NaN. |
|
inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { |
|
return internal::FloatingEqMatcher<float>(rhs, true); |
|
} |
|
|
|
// Creates a matcher that matches any float argument approximately equal to |
|
// rhs, up to the specified max absolute error bound, where two NANs are |
|
// considered unequal. The max absolute error bound must be non-negative. |
|
inline internal::FloatingEqMatcher<float> FloatNear(float rhs, |
|
float max_abs_error) { |
|
return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); |
|
} |
|
|
|
// Creates a matcher that matches any float argument approximately equal to |
|
// rhs, up to the specified max absolute error bound, including NaN values when |
|
// rhs is NaN. The max absolute error bound must be non-negative. |
|
inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( |
|
float rhs, float max_abs_error) { |
|
return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); |
|
} |
|
|
|
// Creates a matcher that matches a pointer (raw or smart) that points |
|
// to a value that matches inner_matcher. |
|
template <typename InnerMatcher> |
|
inline internal::PointeeMatcher<InnerMatcher> Pointee( |
|
const InnerMatcher& inner_matcher) { |
|
return internal::PointeeMatcher<InnerMatcher>(inner_matcher); |
|
} |
|
|
|
#if GTEST_HAS_RTTI |
|
// Creates a matcher that matches a pointer or reference that matches |
|
// inner_matcher when dynamic_cast<To> is applied. |
|
// The result of dynamic_cast<To> is forwarded to the inner matcher. |
|
// If To is a pointer and the cast fails, the inner matcher will receive NULL. |
|
// If To is a reference and the cast fails, this matcher returns false |
|
// immediately. |
|
template <typename To> |
|
inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To>> |
|
WhenDynamicCastTo(const Matcher<To>& inner_matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::WhenDynamicCastToMatcher<To>(inner_matcher)); |
|
} |
|
#endif // GTEST_HAS_RTTI |
|
|
|
// Creates a matcher that matches an object whose given field matches |
|
// 'matcher'. For example, |
|
// Field(&Foo::number, Ge(5)) |
|
// matches a Foo object x if and only if x.number >= 5. |
|
template <typename Class, typename FieldType, typename FieldMatcher> |
|
inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field( |
|
FieldType Class::*field, const FieldMatcher& matcher) { |
|
return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
|
field, MatcherCast<const FieldType&>(matcher))); |
|
// The call to MatcherCast() is required for supporting inner |
|
// matchers of compatible types. For example, it allows |
|
// Field(&Foo::bar, m) |
|
// to compile where bar is an int32 and m is a matcher for int64. |
|
} |
|
|
|
// Same as Field() but also takes the name of the field to provide better error |
|
// messages. |
|
template <typename Class, typename FieldType, typename FieldMatcher> |
|
inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field( |
|
const std::string& field_name, FieldType Class::*field, |
|
const FieldMatcher& matcher) { |
|
return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
|
field_name, field, MatcherCast<const FieldType&>(matcher))); |
|
} |
|
|
|
// Creates a matcher that matches an object whose given property |
|
// matches 'matcher'. For example, |
|
// Property(&Foo::str, StartsWith("hi")) |
|
// matches a Foo object x if and only if x.str() starts with "hi". |
|
template <typename Class, typename PropertyType, typename PropertyMatcher> |
|
inline PolymorphicMatcher<internal::PropertyMatcher< |
|
Class, PropertyType, PropertyType (Class::*)() const>> |
|
Property(PropertyType (Class::*property)() const, |
|
const PropertyMatcher& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::PropertyMatcher<Class, PropertyType, |
|
PropertyType (Class::*)() const>( |
|
property, MatcherCast<const PropertyType&>(matcher))); |
|
// The call to MatcherCast() is required for supporting inner |
|
// matchers of compatible types. For example, it allows |
|
// Property(&Foo::bar, m) |
|
// to compile where bar() returns an int32 and m is a matcher for int64. |
|
} |
|
|
|
// Same as Property() above, but also takes the name of the property to provide |
|
// better error messages. |
|
template <typename Class, typename PropertyType, typename PropertyMatcher> |
|
inline PolymorphicMatcher<internal::PropertyMatcher< |
|
Class, PropertyType, PropertyType (Class::*)() const>> |
|
Property(const std::string& property_name, |
|
PropertyType (Class::*property)() const, |
|
const PropertyMatcher& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::PropertyMatcher<Class, PropertyType, |
|
PropertyType (Class::*)() const>( |
|
property_name, property, MatcherCast<const PropertyType&>(matcher))); |
|
} |
|
|
|
// The same as above but for reference-qualified member functions. |
|
template <typename Class, typename PropertyType, typename PropertyMatcher> |
|
inline PolymorphicMatcher<internal::PropertyMatcher< |
|
Class, PropertyType, PropertyType (Class::*)() const&>> |
|
Property(PropertyType (Class::*property)() const&, |
|
const PropertyMatcher& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::PropertyMatcher<Class, PropertyType, |
|
PropertyType (Class::*)() const&>( |
|
property, MatcherCast<const PropertyType&>(matcher))); |
|
} |
|
|
|
// Three-argument form for reference-qualified member functions. |
|
template <typename Class, typename PropertyType, typename PropertyMatcher> |
|
inline PolymorphicMatcher<internal::PropertyMatcher< |
|
Class, PropertyType, PropertyType (Class::*)() const&>> |
|
Property(const std::string& property_name, |
|
PropertyType (Class::*property)() const&, |
|
const PropertyMatcher& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::PropertyMatcher<Class, PropertyType, |
|
PropertyType (Class::*)() const&>( |
|
property_name, property, MatcherCast<const PropertyType&>(matcher))); |
|
} |
|
|
|
// Creates a matcher that matches an object if and only if the result of |
|
// applying a callable to x matches 'matcher'. For example, |
|
// ResultOf(f, StartsWith("hi")) |
|
// matches a Foo object x if and only if f(x) starts with "hi". |
|
// `callable` parameter can be a function, function pointer, or a functor. It is |
|
// required to keep no state affecting the results of the calls on it and make |
|
// no assumptions about how many calls will be made. Any state it keeps must be |
|
// protected from the concurrent access. |
|
template <typename Callable, typename InnerMatcher> |
|
internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
|
Callable callable, InnerMatcher matcher) { |
|
return internal::ResultOfMatcher<Callable, InnerMatcher>(std::move(callable), |
|
std::move(matcher)); |
|
} |
|
|
|
// Same as ResultOf() above, but also takes a description of the `callable` |
|
// result to provide better error messages. |
|
template <typename Callable, typename InnerMatcher> |
|
internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
|
const std::string& result_description, Callable callable, |
|
InnerMatcher matcher) { |
|
return internal::ResultOfMatcher<Callable, InnerMatcher>( |
|
result_description, std::move(callable), std::move(matcher)); |
|
} |
|
|
|
// String matchers. |
|
|
|
// Matches a string equal to str. |
|
template <typename T = std::string> |
|
PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrEq( |
|
const internal::StringLike<T>& str) { |
|
return MakePolymorphicMatcher( |
|
internal::StrEqualityMatcher<std::string>(std::string(str), true, true)); |
|
} |
|
|
|
// Matches a string not equal to str. |
|
template <typename T = std::string> |
|
PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrNe( |
|
const internal::StringLike<T>& str) { |
|
return MakePolymorphicMatcher( |
|
internal::StrEqualityMatcher<std::string>(std::string(str), false, true)); |
|
} |
|
|
|
// Matches a string equal to str, ignoring case. |
|
template <typename T = std::string> |
|
PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseEq( |
|
const internal::StringLike<T>& str) { |
|
return MakePolymorphicMatcher( |
|
internal::StrEqualityMatcher<std::string>(std::string(str), true, false)); |
|
} |
|
|
|
// Matches a string not equal to str, ignoring case. |
|
template <typename T = std::string> |
|
PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseNe( |
|
const internal::StringLike<T>& str) { |
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>( |
|
std::string(str), false, false)); |
|
} |
|
|
|
// Creates a matcher that matches any string, std::string, or C string |
|
// that contains the given substring. |
|
template <typename T = std::string> |
|
PolymorphicMatcher<internal::HasSubstrMatcher<std::string>> HasSubstr( |
|
const internal::StringLike<T>& substring) { |
|
return MakePolymorphicMatcher( |
|
internal::HasSubstrMatcher<std::string>(std::string(substring))); |
|
} |
|
|
|
// Matches a string that starts with 'prefix' (case-sensitive). |
|
template <typename T = std::string> |
|
PolymorphicMatcher<internal::StartsWithMatcher<std::string>> StartsWith( |
|
const internal::StringLike<T>& prefix) { |
|
return MakePolymorphicMatcher( |
|
internal::StartsWithMatcher<std::string>(std::string(prefix))); |
|
} |
|
|
|
// Matches a string that ends with 'suffix' (case-sensitive). |
|
template <typename T = std::string> |
|
PolymorphicMatcher<internal::EndsWithMatcher<std::string>> EndsWith( |
|
const internal::StringLike<T>& suffix) { |
|
return MakePolymorphicMatcher( |
|
internal::EndsWithMatcher<std::string>(std::string(suffix))); |
|
} |
|
|
|
#if GTEST_HAS_STD_WSTRING |
|
// Wide string matchers. |
|
|
|
// Matches a string equal to str. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrEq( |
|
const std::wstring& str) { |
|
return MakePolymorphicMatcher( |
|
internal::StrEqualityMatcher<std::wstring>(str, true, true)); |
|
} |
|
|
|
// Matches a string not equal to str. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrNe( |
|
const std::wstring& str) { |
|
return MakePolymorphicMatcher( |
|
internal::StrEqualityMatcher<std::wstring>(str, false, true)); |
|
} |
|
|
|
// Matches a string equal to str, ignoring case. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseEq( |
|
const std::wstring& str) { |
|
return MakePolymorphicMatcher( |
|
internal::StrEqualityMatcher<std::wstring>(str, true, false)); |
|
} |
|
|
|
// Matches a string not equal to str, ignoring case. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseNe( |
|
const std::wstring& str) { |
|
return MakePolymorphicMatcher( |
|
internal::StrEqualityMatcher<std::wstring>(str, false, false)); |
|
} |
|
|
|
// Creates a matcher that matches any ::wstring, std::wstring, or C wide string |
|
// that contains the given substring. |
|
inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring>> HasSubstr( |
|
const std::wstring& substring) { |
|
return MakePolymorphicMatcher( |
|
internal::HasSubstrMatcher<std::wstring>(substring)); |
|
} |
|
|
|
// Matches a string that starts with 'prefix' (case-sensitive). |
|
inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring>> StartsWith( |
|
const std::wstring& prefix) { |
|
return MakePolymorphicMatcher( |
|
internal::StartsWithMatcher<std::wstring>(prefix)); |
|
} |
|
|
|
// Matches a string that ends with 'suffix' (case-sensitive). |
|
inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring>> EndsWith( |
|
const std::wstring& suffix) { |
|
return MakePolymorphicMatcher( |
|
internal::EndsWithMatcher<std::wstring>(suffix)); |
|
} |
|
|
|
#endif // GTEST_HAS_STD_WSTRING |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field == the second field. |
|
inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field >= the second field. |
|
inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field > the second field. |
|
inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field <= the second field. |
|
inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field < the second field. |
|
inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field != the second field. |
|
inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// FloatEq(first field) matches the second field. |
|
inline internal::FloatingEq2Matcher<float> FloatEq() { |
|
return internal::FloatingEq2Matcher<float>(); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// DoubleEq(first field) matches the second field. |
|
inline internal::FloatingEq2Matcher<double> DoubleEq() { |
|
return internal::FloatingEq2Matcher<double>(); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// FloatEq(first field) matches the second field with NaN equality. |
|
inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { |
|
return internal::FloatingEq2Matcher<float>(true); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// DoubleEq(first field) matches the second field with NaN equality. |
|
inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { |
|
return internal::FloatingEq2Matcher<double>(true); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// FloatNear(first field, max_abs_error) matches the second field. |
|
inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { |
|
return internal::FloatingEq2Matcher<float>(max_abs_error); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// DoubleNear(first field, max_abs_error) matches the second field. |
|
inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { |
|
return internal::FloatingEq2Matcher<double>(max_abs_error); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// FloatNear(first field, max_abs_error) matches the second field with NaN |
|
// equality. |
|
inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( |
|
float max_abs_error) { |
|
return internal::FloatingEq2Matcher<float>(max_abs_error, true); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// DoubleNear(first field, max_abs_error) matches the second field with NaN |
|
// equality. |
|
inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( |
|
double max_abs_error) { |
|
return internal::FloatingEq2Matcher<double>(max_abs_error, true); |
|
} |
|
|
|
// Creates a matcher that matches any value of type T that m doesn't |
|
// match. |
|
template <typename InnerMatcher> |
|
inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { |
|
return internal::NotMatcher<InnerMatcher>(m); |
|
} |
|
|
|
// Returns a matcher that matches anything that satisfies the given |
|
// predicate. The predicate can be any unary function or functor |
|
// whose return type can be implicitly converted to bool. |
|
template <typename Predicate> |
|
inline PolymorphicMatcher<internal::TrulyMatcher<Predicate>> Truly( |
|
Predicate pred) { |
|
return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); |
|
} |
|
|
|
// Returns a matcher that matches the container size. The container must |
|
// support both size() and size_type which all STL-like containers provide. |
|
// Note that the parameter 'size' can be a value of type size_type as well as |
|
// matcher. For instance: |
|
// EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. |
|
// EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. |
|
template <typename SizeMatcher> |
|
inline internal::SizeIsMatcher<SizeMatcher> SizeIs( |
|
const SizeMatcher& size_matcher) { |
|
return internal::SizeIsMatcher<SizeMatcher>(size_matcher); |
|
} |
|
|
|
// Returns a matcher that matches the distance between the container's begin() |
|
// iterator and its end() iterator, i.e. the size of the container. This matcher |
|
// can be used instead of SizeIs with containers such as std::forward_list which |
|
// do not implement size(). The container must provide const_iterator (with |
|
// valid iterator_traits), begin() and end(). |
|
template <typename DistanceMatcher> |
|
inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs( |
|
const DistanceMatcher& distance_matcher) { |
|
return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); |
|
} |
|
|
|
// Returns a matcher that matches an equal container. |
|
// This matcher behaves like Eq(), but in the event of mismatch lists the |
|
// values that are included in one container but not the other. (Duplicate |
|
// values and order differences are not explained.) |
|
template <typename Container> |
|
inline PolymorphicMatcher< |
|
internal::ContainerEqMatcher<typename std::remove_const<Container>::type>> |
|
ContainerEq(const Container& rhs) { |
|
return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs)); |
|
} |
|
|
|
// Returns a matcher that matches a container that, when sorted using |
|
// the given comparator, matches container_matcher. |
|
template <typename Comparator, typename ContainerMatcher> |
|
inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy( |
|
const Comparator& comparator, const ContainerMatcher& container_matcher) { |
|
return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( |
|
comparator, container_matcher); |
|
} |
|
|
|
// Returns a matcher that matches a container that, when sorted using |
|
// the < operator, matches container_matcher. |
|
template <typename ContainerMatcher> |
|
inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> |
|
WhenSorted(const ContainerMatcher& container_matcher) { |
|
return internal::WhenSortedByMatcher<internal::LessComparator, |
|
ContainerMatcher>( |
|
internal::LessComparator(), container_matcher); |
|
} |
|
|
|
// Matches an STL-style container or a native array that contains the |
|
// same number of elements as in rhs, where its i-th element and rhs's |
|
// i-th element (as a pair) satisfy the given pair matcher, for all i. |
|
// TupleMatcher must be able to be safely cast to Matcher<std::tuple<const |
|
// T1&, const T2&> >, where T1 and T2 are the types of elements in the |
|
// LHS container and the RHS container respectively. |
|
template <typename TupleMatcher, typename Container> |
|
inline internal::PointwiseMatcher<TupleMatcher, |
|
typename std::remove_const<Container>::type> |
|
Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { |
|
return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher, |
|
rhs); |
|
} |
|
|
|
// Supports the Pointwise(m, {a, b, c}) syntax. |
|
template <typename TupleMatcher, typename T> |
|
inline internal::PointwiseMatcher<TupleMatcher, std::vector<T>> Pointwise( |
|
const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { |
|
return Pointwise(tuple_matcher, std::vector<T>(rhs)); |
|
} |
|
|
|
// UnorderedPointwise(pair_matcher, rhs) matches an STL-style |
|
// container or a native array that contains the same number of |
|
// elements as in rhs, where in some permutation of the container, its |
|
// i-th element and rhs's i-th element (as a pair) satisfy the given |
|
// pair matcher, for all i. Tuple2Matcher must be able to be safely |
|
// cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are |
|
// the types of elements in the LHS container and the RHS container |
|
// respectively. |
|
// |
|
// This is like Pointwise(pair_matcher, rhs), except that the element |
|
// order doesn't matter. |
|
template <typename Tuple2Matcher, typename RhsContainer> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename internal::BoundSecondMatcher< |
|
Tuple2Matcher, |
|
typename internal::StlContainerView< |
|
typename std::remove_const<RhsContainer>::type>::type::value_type>> |
|
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
|
const RhsContainer& rhs_container) { |
|
// RhsView allows the same code to handle RhsContainer being a |
|
// STL-style container and it being a native C-style array. |
|
typedef typename internal::StlContainerView<RhsContainer> RhsView; |
|
typedef typename RhsView::type RhsStlContainer; |
|
typedef typename RhsStlContainer::value_type Second; |
|
const RhsStlContainer& rhs_stl_container = |
|
RhsView::ConstReference(rhs_container); |
|
|
|
// Create a matcher for each element in rhs_container. |
|
::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second>> matchers; |
|
for (auto it = rhs_stl_container.begin(); it != rhs_stl_container.end(); |
|
++it) { |
|
matchers.push_back(internal::MatcherBindSecond(tuple2_matcher, *it)); |
|
} |
|
|
|
// Delegate the work to UnorderedElementsAreArray(). |
|
return UnorderedElementsAreArray(matchers); |
|
} |
|
|
|
// Supports the UnorderedPointwise(m, {a, b, c}) syntax. |
|
template <typename Tuple2Matcher, typename T> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename internal::BoundSecondMatcher<Tuple2Matcher, T>> |
|
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
|
std::initializer_list<T> rhs) { |
|
return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); |
|
} |
|
|
|
// Matches an STL-style container or a native array that contains at |
|
// least one element matching the given value or matcher. |
|
// |
|
// Examples: |
|
// ::std::set<int> page_ids; |
|
// page_ids.insert(3); |
|
// page_ids.insert(1); |
|
// EXPECT_THAT(page_ids, Contains(1)); |
|
// EXPECT_THAT(page_ids, Contains(Gt(2))); |
|
// EXPECT_THAT(page_ids, Not(Contains(4))); // See below for Times(0) |
|
// |
|
// ::std::map<int, size_t> page_lengths; |
|
// page_lengths[1] = 100; |
|
// EXPECT_THAT(page_lengths, |
|
// Contains(::std::pair<const int, size_t>(1, 100))); |
|
// |
|
// const char* user_ids[] = { "joe", "mike", "tom" }; |
|
// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); |
|
// |
|
// The matcher supports a modifier `Times` that allows to check for arbitrary |
|
// occurrences including testing for absence with Times(0). |
|
// |
|
// Examples: |
|
// ::std::vector<int> ids; |
|
// ids.insert(1); |
|
// ids.insert(1); |
|
// ids.insert(3); |
|
// EXPECT_THAT(ids, Contains(1).Times(2)); // 1 occurs 2 times |
|
// EXPECT_THAT(ids, Contains(2).Times(0)); // 2 is not present |
|
// EXPECT_THAT(ids, Contains(3).Times(Ge(1))); // 3 occurs at least once |
|
|
|
template <typename M> |
|
inline internal::ContainsMatcher<M> Contains(M matcher) { |
|
return internal::ContainsMatcher<M>(matcher); |
|
} |
|
|
|
// IsSupersetOf(iterator_first, iterator_last) |
|
// IsSupersetOf(pointer, count) |
|
// IsSupersetOf(array) |
|
// IsSupersetOf(container) |
|
// IsSupersetOf({e1, e2, ..., en}) |
|
// |
|
// IsSupersetOf() verifies that a surjective partial mapping onto a collection |
|
// of matchers exists. In other words, a container matches |
|
// IsSupersetOf({e1, ..., en}) if and only if there is a permutation |
|
// {y1, ..., yn} of some of the container's elements where y1 matches e1, |
|
// ..., and yn matches en. Obviously, the size of the container must be >= n |
|
// in order to have a match. Examples: |
|
// |
|
// - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and |
|
// 1 matches Ne(0). |
|
// - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches |
|
// both Eq(1) and Lt(2). The reason is that different matchers must be used |
|
// for elements in different slots of the container. |
|
// - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches |
|
// Eq(1) and (the second) 1 matches Lt(2). |
|
// - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) |
|
// Gt(1) and 3 matches (the second) Gt(1). |
|
// |
|
// The matchers can be specified as an array, a pointer and count, a container, |
|
// an initializer list, or an STL iterator range. In each of these cases, the |
|
// underlying matchers can be either values or matchers. |
|
|
|
template <typename Iter> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type> |
|
IsSupersetOf(Iter first, Iter last) { |
|
typedef typename ::std::iterator_traits<Iter>::value_type T; |
|
return internal::UnorderedElementsAreArrayMatcher<T>( |
|
internal::UnorderedMatcherRequire::Superset, first, last); |
|
} |
|
|
|
template <typename T> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
|
const T* pointer, size_t count) { |
|
return IsSupersetOf(pointer, pointer + count); |
|
} |
|
|
|
template <typename T, size_t N> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
|
const T (&array)[N]) { |
|
return IsSupersetOf(array, N); |
|
} |
|
|
|
template <typename Container> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename Container::value_type> |
|
IsSupersetOf(const Container& container) { |
|
return IsSupersetOf(container.begin(), container.end()); |
|
} |
|
|
|
template <typename T> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
|
::std::initializer_list<T> xs) { |
|
return IsSupersetOf(xs.begin(), xs.end()); |
|
} |
|
|
|
// IsSubsetOf(iterator_first, iterator_last) |
|
// IsSubsetOf(pointer, count) |
|
// IsSubsetOf(array) |
|
// IsSubsetOf(container) |
|
// IsSubsetOf({e1, e2, ..., en}) |
|
// |
|
// IsSubsetOf() verifies that an injective mapping onto a collection of matchers |
|
// exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and |
|
// only if there is a subset of matchers {m1, ..., mk} which would match the |
|
// container using UnorderedElementsAre. Obviously, the size of the container |
|
// must be <= n in order to have a match. Examples: |
|
// |
|
// - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). |
|
// - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 |
|
// matches Lt(0). |
|
// - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both |
|
// match Gt(0). The reason is that different matchers must be used for |
|
// elements in different slots of the container. |
|
// |
|
// The matchers can be specified as an array, a pointer and count, a container, |
|
// an initializer list, or an STL iterator range. In each of these cases, the |
|
// underlying matchers can be either values or matchers. |
|
|
|
template <typename Iter> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type> |
|
IsSubsetOf(Iter first, Iter last) { |
|
typedef typename ::std::iterator_traits<Iter>::value_type T; |
|
return internal::UnorderedElementsAreArrayMatcher<T>( |
|
internal::UnorderedMatcherRequire::Subset, first, last); |
|
} |
|
|
|
template <typename T> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
|
const T* pointer, size_t count) { |
|
return IsSubsetOf(pointer, pointer + count); |
|
} |
|
|
|
template <typename T, size_t N> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
|
const T (&array)[N]) { |
|
return IsSubsetOf(array, N); |
|
} |
|
|
|
template <typename Container> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename Container::value_type> |
|
IsSubsetOf(const Container& container) { |
|
return IsSubsetOf(container.begin(), container.end()); |
|
} |
|
|
|
template <typename T> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
|
::std::initializer_list<T> xs) { |
|
return IsSubsetOf(xs.begin(), xs.end()); |
|
} |
|
|
|
// Matches an STL-style container or a native array that contains only |
|
// elements matching the given value or matcher. |
|
// |
|
// Each(m) is semantically equivalent to `Not(Contains(Not(m)))`. Only |
|
// the messages are different. |
|
// |
|
// Examples: |
|
// ::std::set<int> page_ids; |
|
// // Each(m) matches an empty container, regardless of what m is. |
|
// EXPECT_THAT(page_ids, Each(Eq(1))); |
|
// EXPECT_THAT(page_ids, Each(Eq(77))); |
|
// |
|
// page_ids.insert(3); |
|
// EXPECT_THAT(page_ids, Each(Gt(0))); |
|
// EXPECT_THAT(page_ids, Not(Each(Gt(4)))); |
|
// page_ids.insert(1); |
|
// EXPECT_THAT(page_ids, Not(Each(Lt(2)))); |
|
// |
|
// ::std::map<int, size_t> page_lengths; |
|
// page_lengths[1] = 100; |
|
// page_lengths[2] = 200; |
|
// page_lengths[3] = 300; |
|
// EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); |
|
// EXPECT_THAT(page_lengths, Each(Key(Le(3)))); |
|
// |
|
// const char* user_ids[] = { "joe", "mike", "tom" }; |
|
// EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); |
|
template <typename M> |
|
inline internal::EachMatcher<M> Each(M matcher) { |
|
return internal::EachMatcher<M>(matcher); |
|
} |
|
|
|
// Key(inner_matcher) matches an std::pair whose 'first' field matches |
|
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
|
// std::map that contains at least one element whose key is >= 5. |
|
template <typename M> |
|
inline internal::KeyMatcher<M> Key(M inner_matcher) { |
|
return internal::KeyMatcher<M>(inner_matcher); |
|
} |
|
|
|
// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field |
|
// matches first_matcher and whose 'second' field matches second_matcher. For |
|
// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used |
|
// to match a std::map<int, string> that contains exactly one element whose key |
|
// is >= 5 and whose value equals "foo". |
|
template <typename FirstMatcher, typename SecondMatcher> |
|
inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair( |
|
FirstMatcher first_matcher, SecondMatcher second_matcher) { |
|
return internal::PairMatcher<FirstMatcher, SecondMatcher>(first_matcher, |
|
second_matcher); |
|
} |
|
|
|
namespace no_adl { |
|
// Conditional() creates a matcher that conditionally uses either the first or |
|
// second matcher provided. For example, we could create an `equal if, and only |
|
// if' matcher using the Conditional wrapper as follows: |
|
// |
|
// EXPECT_THAT(result, Conditional(condition, Eq(expected), Ne(expected))); |
|
template <typename MatcherTrue, typename MatcherFalse> |
|
internal::ConditionalMatcher<MatcherTrue, MatcherFalse> Conditional( |
|
bool condition, MatcherTrue matcher_true, MatcherFalse matcher_false) { |
|
return internal::ConditionalMatcher<MatcherTrue, MatcherFalse>( |
|
condition, std::move(matcher_true), std::move(matcher_false)); |
|
} |
|
|
|
// FieldsAre(matchers...) matches piecewise the fields of compatible structs. |
|
// These include those that support `get<I>(obj)`, and when structured bindings |
|
// are enabled any class that supports them. |
|
// In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types. |
|
template <typename... M> |
|
internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre( |
|
M&&... matchers) { |
|
return internal::FieldsAreMatcher<typename std::decay<M>::type...>( |
|
std::forward<M>(matchers)...); |
|
} |
|
|
|
// Creates a matcher that matches a pointer (raw or smart) that matches |
|
// inner_matcher. |
|
template <typename InnerMatcher> |
|
inline internal::PointerMatcher<InnerMatcher> Pointer( |
|
const InnerMatcher& inner_matcher) { |
|
return internal::PointerMatcher<InnerMatcher>(inner_matcher); |
|
} |
|
|
|
// Creates a matcher that matches an object that has an address that matches |
|
// inner_matcher. |
|
template <typename InnerMatcher> |
|
inline internal::AddressMatcher<InnerMatcher> Address( |
|
const InnerMatcher& inner_matcher) { |
|
return internal::AddressMatcher<InnerMatcher>(inner_matcher); |
|
} |
|
|
|
// Matches a base64 escaped string, when the unescaped string matches the |
|
// internal matcher. |
|
template <typename MatcherType> |
|
internal::WhenBase64UnescapedMatcher WhenBase64Unescaped( |
|
const MatcherType& internal_matcher) { |
|
return internal::WhenBase64UnescapedMatcher(internal_matcher); |
|
} |
|
} // namespace no_adl |
|
|
|
// Returns a predicate that is satisfied by anything that matches the |
|
// given matcher. |
|
template <typename M> |
|
inline internal::MatcherAsPredicate<M> Matches(M matcher) { |
|
return internal::MatcherAsPredicate<M>(matcher); |
|
} |
|
|
|
// Returns true if and only if the value matches the matcher. |
|
template <typename T, typename M> |
|
inline bool Value(const T& value, M matcher) { |
|
return testing::Matches(matcher)(value); |
|
} |
|
|
|
// Matches the value against the given matcher and explains the match |
|
// result to listener. |
|
template <typename T, typename M> |
|
inline bool ExplainMatchResult(M matcher, const T& value, |
|
MatchResultListener* listener) { |
|
return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); |
|
} |
|
|
|
// Returns a string representation of the given matcher. Useful for description |
|
// strings of matchers defined using MATCHER_P* macros that accept matchers as |
|
// their arguments. For example: |
|
// |
|
// MATCHER_P(XAndYThat, matcher, |
|
// "X that " + DescribeMatcher<int>(matcher, negation) + |
|
// (negation ? " or" : " and") + " Y that " + |
|
// DescribeMatcher<double>(matcher, negation)) { |
|
// return ExplainMatchResult(matcher, arg.x(), result_listener) && |
|
// ExplainMatchResult(matcher, arg.y(), result_listener); |
|
// } |
|
template <typename T, typename M> |
|
std::string DescribeMatcher(const M& matcher, bool negation = false) { |
|
::std::stringstream ss; |
|
Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); |
|
if (negation) { |
|
monomorphic_matcher.DescribeNegationTo(&ss); |
|
} else { |
|
monomorphic_matcher.DescribeTo(&ss); |
|
} |
|
return ss.str(); |
|
} |
|
|
|
template <typename... Args> |
|
internal::ElementsAreMatcher< |
|
std::tuple<typename std::decay<const Args&>::type...>> |
|
ElementsAre(const Args&... matchers) { |
|
return internal::ElementsAreMatcher< |
|
std::tuple<typename std::decay<const Args&>::type...>>( |
|
std::make_tuple(matchers...)); |
|
} |
|
|
|
template <typename... Args> |
|
internal::UnorderedElementsAreMatcher< |
|
std::tuple<typename std::decay<const Args&>::type...>> |
|
UnorderedElementsAre(const Args&... matchers) { |
|
return internal::UnorderedElementsAreMatcher< |
|
std::tuple<typename std::decay<const Args&>::type...>>( |
|
std::make_tuple(matchers...)); |
|
} |
|
|
|
// Define variadic matcher versions. |
|
template <typename... Args> |
|
internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( |
|
const Args&... matchers) { |
|
return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( |
|
matchers...); |
|
} |
|
|
|
template <typename... Args> |
|
internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( |
|
const Args&... matchers) { |
|
return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( |
|
matchers...); |
|
} |
|
|
|
// AnyOfArray(array) |
|
// AnyOfArray(pointer, count) |
|
// AnyOfArray(container) |
|
// AnyOfArray({ e1, e2, ..., en }) |
|
// AnyOfArray(iterator_first, iterator_last) |
|
// |
|
// AnyOfArray() verifies whether a given value matches any member of a |
|
// collection of matchers. |
|
// |
|
// AllOfArray(array) |
|
// AllOfArray(pointer, count) |
|
// AllOfArray(container) |
|
// AllOfArray({ e1, e2, ..., en }) |
|
// AllOfArray(iterator_first, iterator_last) |
|
// |
|
// AllOfArray() verifies whether a given value matches all members of a |
|
// collection of matchers. |
|
// |
|
// The matchers can be specified as an array, a pointer and count, a container, |
|
// an initializer list, or an STL iterator range. In each of these cases, the |
|
// underlying matchers can be either values or matchers. |
|
|
|
template <typename Iter> |
|
inline internal::AnyOfArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type> |
|
AnyOfArray(Iter first, Iter last) { |
|
return internal::AnyOfArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type>(first, last); |
|
} |
|
|
|
template <typename Iter> |
|
inline internal::AllOfArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type> |
|
AllOfArray(Iter first, Iter last) { |
|
return internal::AllOfArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type>(first, last); |
|
} |
|
|
|
template <typename T> |
|
inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { |
|
return AnyOfArray(ptr, ptr + count); |
|
} |
|
|
|
template <typename T> |
|
inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { |
|
return AllOfArray(ptr, ptr + count); |
|
} |
|
|
|
template <typename T, size_t N> |
|
inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { |
|
return AnyOfArray(array, N); |
|
} |
|
|
|
template <typename T, size_t N> |
|
inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { |
|
return AllOfArray(array, N); |
|
} |
|
|
|
template <typename Container> |
|
inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( |
|
const Container& container) { |
|
return AnyOfArray(container.begin(), container.end()); |
|
} |
|
|
|
template <typename Container> |
|
inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( |
|
const Container& container) { |
|
return AllOfArray(container.begin(), container.end()); |
|
} |
|
|
|
template <typename T> |
|
inline internal::AnyOfArrayMatcher<T> AnyOfArray( |
|
::std::initializer_list<T> xs) { |
|
return AnyOfArray(xs.begin(), xs.end()); |
|
} |
|
|
|
template <typename T> |
|
inline internal::AllOfArrayMatcher<T> AllOfArray( |
|
::std::initializer_list<T> xs) { |
|
return AllOfArray(xs.begin(), xs.end()); |
|
} |
|
|
|
// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected |
|
// fields of it matches a_matcher. C++ doesn't support default |
|
// arguments for function templates, so we have to overload it. |
|
template <size_t... k, typename InnerMatcher> |
|
internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( |
|
InnerMatcher&& matcher) { |
|
return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( |
|
std::forward<InnerMatcher>(matcher)); |
|
} |
|
|
|
// AllArgs(m) is a synonym of m. This is useful in |
|
// |
|
// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); |
|
// |
|
// which is easier to read than |
|
// |
|
// EXPECT_CALL(foo, Bar(_, _)).With(Eq()); |
|
template <typename InnerMatcher> |
|
inline InnerMatcher AllArgs(const InnerMatcher& matcher) { |
|
return matcher; |
|
} |
|
|
|
// Returns a matcher that matches the value of an optional<> type variable. |
|
// The matcher implementation only uses '!arg' and requires that the optional<> |
|
// type has a 'value_type' member type and that '*arg' is of type 'value_type' |
|
// and is printable using 'PrintToString'. It is compatible with |
|
// std::optional/std::experimental::optional. |
|
// Note that to compare an optional type variable against nullopt you should |
|
// use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the |
|
// optional value contains an optional itself. |
|
template <typename ValueMatcher> |
|
inline internal::OptionalMatcher<ValueMatcher> Optional( |
|
const ValueMatcher& value_matcher) { |
|
return internal::OptionalMatcher<ValueMatcher>(value_matcher); |
|
} |
|
|
|
// Returns a matcher that matches the value of a absl::any type variable. |
|
template <typename T> |
|
PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T>> AnyWith( |
|
const Matcher<const T&>& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); |
|
} |
|
|
|
// Returns a matcher that matches the value of a variant<> type variable. |
|
// The matcher implementation uses ADL to find the holds_alternative and get |
|
// functions. |
|
// It is compatible with std::variant. |
|
template <typename T> |
|
PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T>> VariantWith( |
|
const Matcher<const T&>& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::variant_matcher::VariantMatcher<T>(matcher)); |
|
} |
|
|
|
#if GTEST_HAS_EXCEPTIONS |
|
|
|
// Anything inside the `internal` namespace is internal to the implementation |
|
// and must not be used in user code! |
|
namespace internal { |
|
|
|
class WithWhatMatcherImpl { |
|
public: |
|
WithWhatMatcherImpl(Matcher<std::string> matcher) |
|
: matcher_(std::move(matcher)) {} |
|
|
|
void DescribeTo(std::ostream* os) const { |
|
*os << "contains .what() that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(std::ostream* os) const { |
|
*os << "contains .what() that does not "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
template <typename Err> |
|
bool MatchAndExplain(const Err& err, MatchResultListener* listener) const { |
|
*listener << "which contains .what() (of value = " << err.what() |
|
<< ") that "; |
|
return matcher_.MatchAndExplain(err.what(), listener); |
|
} |
|
|
|
private: |
|
const Matcher<std::string> matcher_; |
|
}; |
|
|
|
inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat( |
|
Matcher<std::string> m) { |
|
return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m))); |
|
} |
|
|
|
template <typename Err> |
|
class ExceptionMatcherImpl { |
|
class NeverThrown { |
|
public: |
|
const char* what() const noexcept { |
|
return "this exception should never be thrown"; |
|
} |
|
}; |
|
|
|
// If the matchee raises an exception of a wrong type, we'd like to |
|
// catch it and print its message and type. To do that, we add an additional |
|
// catch clause: |
|
// |
|
// try { ... } |
|
// catch (const Err&) { /* an expected exception */ } |
|
// catch (const std::exception&) { /* exception of a wrong type */ } |
|
// |
|
// However, if the `Err` itself is `std::exception`, we'd end up with two |
|
// identical `catch` clauses: |
|
// |
|
// try { ... } |
|
// catch (const std::exception&) { /* an expected exception */ } |
|
// catch (const std::exception&) { /* exception of a wrong type */ } |
|
// |
|
// This can cause a warning or an error in some compilers. To resolve |
|
// the issue, we use a fake error type whenever `Err` is `std::exception`: |
|
// |
|
// try { ... } |
|
// catch (const std::exception&) { /* an expected exception */ } |
|
// catch (const NeverThrown&) { /* exception of a wrong type */ } |
|
using DefaultExceptionType = typename std::conditional< |
|
std::is_same<typename std::remove_cv< |
|
typename std::remove_reference<Err>::type>::type, |
|
std::exception>::value, |
|
const NeverThrown&, const std::exception&>::type; |
|
|
|
public: |
|
ExceptionMatcherImpl(Matcher<const Err&> matcher) |
|
: matcher_(std::move(matcher)) {} |
|
|
|
void DescribeTo(std::ostream* os) const { |
|
*os << "throws an exception which is a " << GetTypeName<Err>(); |
|
*os << " which "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(std::ostream* os) const { |
|
*os << "throws an exception which is not a " << GetTypeName<Err>(); |
|
*os << " which "; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
template <typename T> |
|
bool MatchAndExplain(T&& x, MatchResultListener* listener) const { |
|
try { |
|
(void)(std::forward<T>(x)()); |
|
} catch (const Err& err) { |
|
*listener << "throws an exception which is a " << GetTypeName<Err>(); |
|
*listener << " "; |
|
return matcher_.MatchAndExplain(err, listener); |
|
} catch (DefaultExceptionType err) { |
|
#if GTEST_HAS_RTTI |
|
*listener << "throws an exception of type " << GetTypeName(typeid(err)); |
|
*listener << " "; |
|
#else |
|
*listener << "throws an std::exception-derived type "; |
|
#endif |
|
*listener << "with description \"" << err.what() << "\""; |
|
return false; |
|
} catch (...) { |
|
*listener << "throws an exception of an unknown type"; |
|
return false; |
|
} |
|
|
|
*listener << "does not throw any exception"; |
|
return false; |
|
} |
|
|
|
private: |
|
const Matcher<const Err&> matcher_; |
|
}; |
|
|
|
} // namespace internal |
|
|
|
// Throws() |
|
// Throws(exceptionMatcher) |
|
// ThrowsMessage(messageMatcher) |
|
// |
|
// This matcher accepts a callable and verifies that when invoked, it throws |
|
// an exception with the given type and properties. |
|
// |
|
// Examples: |
|
// |
|
// EXPECT_THAT( |
|
// []() { throw std::runtime_error("message"); }, |
|
// Throws<std::runtime_error>()); |
|
// |
|
// EXPECT_THAT( |
|
// []() { throw std::runtime_error("message"); }, |
|
// ThrowsMessage<std::runtime_error>(HasSubstr("message"))); |
|
// |
|
// EXPECT_THAT( |
|
// []() { throw std::runtime_error("message"); }, |
|
// Throws<std::runtime_error>( |
|
// Property(&std::runtime_error::what, HasSubstr("message")))); |
|
|
|
template <typename Err> |
|
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() { |
|
return MakePolymorphicMatcher( |
|
internal::ExceptionMatcherImpl<Err>(A<const Err&>())); |
|
} |
|
|
|
template <typename Err, typename ExceptionMatcher> |
|
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws( |
|
const ExceptionMatcher& exception_matcher) { |
|
// Using matcher cast allows users to pass a matcher of a more broad type. |
|
// For example user may want to pass Matcher<std::exception> |
|
// to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>. |
|
return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>( |
|
SafeMatcherCast<const Err&>(exception_matcher))); |
|
} |
|
|
|
template <typename Err, typename MessageMatcher> |
|
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage( |
|
MessageMatcher&& message_matcher) { |
|
static_assert(std::is_base_of<std::exception, Err>::value, |
|
"expected an std::exception-derived type"); |
|
return Throws<Err>(internal::WithWhat( |
|
MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher)))); |
|
} |
|
|
|
#endif // GTEST_HAS_EXCEPTIONS |
|
|
|
// These macros allow using matchers to check values in Google Test |
|
// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) |
|
// succeed if and only if the value matches the matcher. If the assertion |
|
// fails, the value and the description of the matcher will be printed. |
|
#define ASSERT_THAT(value, matcher) \ |
|
ASSERT_PRED_FORMAT1( \ |
|
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
|
#define EXPECT_THAT(value, matcher) \ |
|
EXPECT_PRED_FORMAT1( \ |
|
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
|
|
|
// MATCHER* macros itself are listed below. |
|
#define MATCHER(name, description) \ |
|
class name##Matcher \ |
|
: public ::testing::internal::MatcherBaseImpl<name##Matcher> { \ |
|
public: \ |
|
template <typename arg_type> \ |
|
class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ |
|
public: \ |
|
gmock_Impl() {} \ |
|
bool MatchAndExplain( \ |
|
const arg_type& arg, \ |
|
::testing::MatchResultListener* result_listener) const override; \ |
|
void DescribeTo(::std::ostream* gmock_os) const override { \ |
|
*gmock_os << FormatDescription(false); \ |
|
} \ |
|
void DescribeNegationTo(::std::ostream* gmock_os) const override { \ |
|
*gmock_os << FormatDescription(true); \ |
|
} \ |
|
\ |
|
private: \ |
|
::std::string FormatDescription(bool negation) const { \ |
|
/* NOLINTNEXTLINE readability-redundant-string-init */ \ |
|
::std::string gmock_description = (description); \ |
|
if (!gmock_description.empty()) { \ |
|
return gmock_description; \ |
|
} \ |
|
return ::testing::internal::FormatMatcherDescription(negation, #name, \ |
|
{}, {}); \ |
|
} \ |
|
}; \ |
|
}; \ |
|
inline name##Matcher GMOCK_INTERNAL_WARNING_PUSH() \ |
|
GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-function") \ |
|
GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-member-function") \ |
|
name \ |
|
GMOCK_INTERNAL_WARNING_POP()() { \ |
|
return {}; \ |
|
} \ |
|
template <typename arg_type> \ |
|
bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \ |
|
const arg_type& arg, \ |
|
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \ |
|
const |
|
|
|
#define MATCHER_P(name, p0, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (#p0), (p0)) |
|
#define MATCHER_P2(name, p0, p1, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (#p0, #p1), \ |
|
(p0, p1)) |
|
#define MATCHER_P3(name, p0, p1, p2, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (#p0, #p1, #p2), \ |
|
(p0, p1, p2)) |
|
#define MATCHER_P4(name, p0, p1, p2, p3, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, \ |
|
(#p0, #p1, #p2, #p3), (p0, p1, p2, p3)) |
|
#define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \ |
|
(#p0, #p1, #p2, #p3, #p4), (p0, p1, p2, p3, p4)) |
|
#define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \ |
|
(#p0, #p1, #p2, #p3, #p4, #p5), \ |
|
(p0, p1, p2, p3, p4, p5)) |
|
#define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \ |
|
(#p0, #p1, #p2, #p3, #p4, #p5, #p6), \ |
|
(p0, p1, p2, p3, p4, p5, p6)) |
|
#define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \ |
|
(#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7), \ |
|
(p0, p1, p2, p3, p4, p5, p6, p7)) |
|
#define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \ |
|
(#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8), \ |
|
(p0, p1, p2, p3, p4, p5, p6, p7, p8)) |
|
#define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \ |
|
(#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8, #p9), \ |
|
(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) |
|
|
|
#define GMOCK_INTERNAL_MATCHER(name, full_name, description, arg_names, args) \ |
|
template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
|
class full_name : public ::testing::internal::MatcherBaseImpl< \ |
|
full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \ |
|
public: \ |
|
using full_name::MatcherBaseImpl::MatcherBaseImpl; \ |
|
template <typename arg_type> \ |
|
class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ |
|
public: \ |
|
explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \ |
|
: GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \ |
|
bool MatchAndExplain( \ |
|
const arg_type& arg, \ |
|
::testing::MatchResultListener* result_listener) const override; \ |
|
void DescribeTo(::std::ostream* gmock_os) const override { \ |
|
*gmock_os << FormatDescription(false); \ |
|
} \ |
|
void DescribeNegationTo(::std::ostream* gmock_os) const override { \ |
|
*gmock_os << FormatDescription(true); \ |
|
} \ |
|
GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ |
|
\ |
|
private: \ |
|
::std::string FormatDescription(bool negation) const { \ |
|
::std::string gmock_description = (description); \ |
|
if (!gmock_description.empty()) { \ |
|
return gmock_description; \ |
|
} \ |
|
return ::testing::internal::FormatMatcherDescription( \ |
|
negation, #name, {GMOCK_PP_REMOVE_PARENS(arg_names)}, \ |
|
::testing::internal::UniversalTersePrintTupleFieldsToStrings( \ |
|
::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ |
|
GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \ |
|
} \ |
|
}; \ |
|
}; \ |
|
template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
|
inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \ |
|
GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \ |
|
return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ |
|
GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \ |
|
} \ |
|
template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
|
template <typename arg_type> \ |
|
bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \ |
|
arg_type>::MatchAndExplain(const arg_type& arg, \ |
|
::testing::MatchResultListener* \ |
|
result_listener GTEST_ATTRIBUTE_UNUSED_) \ |
|
const |
|
|
|
#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \ |
|
GMOCK_PP_TAIL( \ |
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args)) |
|
#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \ |
|
, typename arg##_type |
|
|
|
#define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \ |
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args)) |
|
#define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \ |
|
, arg##_type |
|
|
|
#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \ |
|
GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \ |
|
GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args)) |
|
#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \ |
|
, arg##_type gmock_p##i |
|
|
|
#define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \ |
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args)) |
|
#define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \ |
|
, arg(::std::forward<arg##_type>(gmock_p##i)) |
|
|
|
#define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ |
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args) |
|
#define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \ |
|
const arg##_type arg; |
|
|
|
#define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \ |
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args)) |
|
#define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg |
|
|
|
#define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \ |
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args)) |
|
#define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \ |
|
, gmock_p##i |
|
|
|
// To prevent ADL on certain functions we put them on a separate namespace. |
|
using namespace no_adl; // NOLINT |
|
|
|
} // namespace testing |
|
|
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 |
|
|
|
// Include any custom callback matchers added by the local installation. |
|
// We must include this header at the end to make sure it can use the |
|
// declarations from this file. |
|
#include "gmock/internal/custom/gmock-matchers.h" |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
|
|
|