GoogleTest - Google Testing and Mocking Framework (grpc protobuff依赖)
https://google.github.io/googletest/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1034 lines
32 KiB
1034 lines
32 KiB
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
// Author: wan@google.com (Zhanyong Wan) |
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file tests the built-in actions. |
|
|
|
#include <gmock/gmock-actions.h> |
|
#include <algorithm> |
|
#include <iterator> |
|
#include <string> |
|
#include <gmock/gmock.h> |
|
#include <gmock/internal/gmock-port.h> |
|
#include <gtest/gtest.h> |
|
#include <gtest/gtest-spi.h> |
|
|
|
namespace { |
|
|
|
using ::std::tr1::get; |
|
using ::std::tr1::make_tuple; |
|
using ::std::tr1::tuple; |
|
using ::std::tr1::tuple_element; |
|
using testing::internal::BuiltInDefaultValue; |
|
using testing::internal::Int64; |
|
using testing::internal::UInt64; |
|
// This list should be kept sorted. |
|
using testing::_; |
|
using testing::Action; |
|
using testing::ActionInterface; |
|
using testing::Assign; |
|
using testing::DefaultValue; |
|
using testing::DoDefault; |
|
using testing::IgnoreResult; |
|
using testing::Invoke; |
|
using testing::InvokeWithoutArgs; |
|
using testing::MakePolymorphicAction; |
|
using testing::Ne; |
|
using testing::PolymorphicAction; |
|
using testing::Return; |
|
using testing::ReturnNull; |
|
using testing::ReturnRef; |
|
using testing::SetArgumentPointee; |
|
using testing::SetArrayArgument; |
|
|
|
#ifndef _WIN32_WCE |
|
using testing::SetErrnoAndReturn; |
|
#endif // _WIN32_WCE |
|
|
|
#if GMOCK_HAS_PROTOBUF_ |
|
using testing::internal::TestMessage; |
|
#endif // GMOCK_HAS_PROTOBUF_ |
|
|
|
// Tests that BuiltInDefaultValue<T*>::Get() returns NULL. |
|
TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) { |
|
EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == NULL); |
|
EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == NULL); |
|
EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == NULL); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<T*>::Exists() return true. |
|
TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) { |
|
EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists()); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a |
|
// built-in numeric type. |
|
TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) { |
|
EXPECT_EQ(0, BuiltInDefaultValue<unsigned char>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<char>::Get()); |
|
#if !GTEST_OS_WINDOWS |
|
EXPECT_EQ(0, BuiltInDefaultValue<unsigned wchar_t>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<signed wchar_t>::Get()); |
|
#endif // !GTEST_OS_WINDOWS |
|
EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT |
|
EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT |
|
EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT |
|
EXPECT_EQ(0, BuiltInDefaultValue<unsigned int>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<int>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<unsigned long>::Get()); // NOLINT |
|
EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get()); // NOLINT |
|
EXPECT_EQ(0, BuiltInDefaultValue<long>::Get()); // NOLINT |
|
EXPECT_EQ(0, BuiltInDefaultValue<UInt64>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<Int64>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<float>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<double>::Get()); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a |
|
// built-in numeric type. |
|
TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) { |
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<char>::Exists()); |
|
#if !GTEST_OS_WINDOWS |
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned wchar_t>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<signed wchar_t>::Exists()); |
|
#endif // !GTEST_OS_WINDOWS |
|
EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<int>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<long>::Exists()); // NOLINT |
|
EXPECT_TRUE(BuiltInDefaultValue<UInt64>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<Int64>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<float>::Exists()); |
|
EXPECT_TRUE(BuiltInDefaultValue<double>::Exists()); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<bool>::Get() returns false. |
|
TEST(BuiltInDefaultValueTest, IsFalseForBool) { |
|
EXPECT_FALSE(BuiltInDefaultValue<bool>::Get()); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<bool>::Exists() returns true. |
|
TEST(BuiltInDefaultValueTest, BoolExists) { |
|
EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists()); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a |
|
// string type. |
|
TEST(BuiltInDefaultValueTest, IsEmptyStringForString) { |
|
#if GTEST_HAS_GLOBAL_STRING |
|
EXPECT_EQ("", BuiltInDefaultValue< ::string>::Get()); |
|
#endif // GTEST_HAS_GLOBAL_STRING |
|
|
|
#if GTEST_HAS_STD_STRING |
|
EXPECT_EQ("", BuiltInDefaultValue< ::std::string>::Get()); |
|
#endif // GTEST_HAS_STD_STRING |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a |
|
// string type. |
|
TEST(BuiltInDefaultValueTest, ExistsForString) { |
|
#if GTEST_HAS_GLOBAL_STRING |
|
EXPECT_TRUE(BuiltInDefaultValue< ::string>::Exists()); |
|
#endif // GTEST_HAS_GLOBAL_STRING |
|
|
|
#if GTEST_HAS_STD_STRING |
|
EXPECT_TRUE(BuiltInDefaultValue< ::std::string>::Exists()); |
|
#endif // GTEST_HAS_STD_STRING |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<const T>::Get() returns the same |
|
// value as BuiltInDefaultValue<T>::Get() does. |
|
TEST(BuiltInDefaultValueTest, WorksForConstTypes) { |
|
EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get()); |
|
EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get()); |
|
EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == NULL); |
|
EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get()); |
|
} |
|
|
|
// Tests that BuiltInDefaultValue<T>::Get() aborts the program with |
|
// the correct error message when T is a user-defined type. |
|
struct UserType { |
|
UserType() : value(0) {} |
|
|
|
int value; |
|
}; |
|
|
|
TEST(BuiltInDefaultValueTest, UserTypeHasNoDefault) { |
|
EXPECT_FALSE(BuiltInDefaultValue<UserType>::Exists()); |
|
} |
|
|
|
#if GTEST_HAS_DEATH_TEST |
|
|
|
// Tests that BuiltInDefaultValue<T&>::Get() aborts the program. |
|
TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) { |
|
EXPECT_DEATH({ // NOLINT |
|
BuiltInDefaultValue<int&>::Get(); |
|
}, ""); |
|
EXPECT_DEATH({ // NOLINT |
|
BuiltInDefaultValue<const char&>::Get(); |
|
}, ""); |
|
} |
|
|
|
TEST(BuiltInDefaultValueDeathTest, IsUndefinedForUserTypes) { |
|
EXPECT_DEATH({ // NOLINT |
|
BuiltInDefaultValue<UserType>::Get(); |
|
}, ""); |
|
} |
|
|
|
#endif // GTEST_HAS_DEATH_TEST |
|
|
|
// Tests that DefaultValue<T>::IsSet() is false initially. |
|
TEST(DefaultValueTest, IsInitiallyUnset) { |
|
EXPECT_FALSE(DefaultValue<int>::IsSet()); |
|
EXPECT_FALSE(DefaultValue<const UserType>::IsSet()); |
|
} |
|
|
|
// Tests that DefaultValue<T> can be set and then unset. |
|
TEST(DefaultValueTest, CanBeSetAndUnset) { |
|
EXPECT_TRUE(DefaultValue<int>::Exists()); |
|
EXPECT_FALSE(DefaultValue<const UserType>::Exists()); |
|
|
|
DefaultValue<int>::Set(1); |
|
DefaultValue<const UserType>::Set(UserType()); |
|
|
|
EXPECT_EQ(1, DefaultValue<int>::Get()); |
|
EXPECT_EQ(0, DefaultValue<const UserType>::Get().value); |
|
|
|
EXPECT_TRUE(DefaultValue<int>::Exists()); |
|
EXPECT_TRUE(DefaultValue<const UserType>::Exists()); |
|
|
|
DefaultValue<int>::Clear(); |
|
DefaultValue<const UserType>::Clear(); |
|
|
|
EXPECT_FALSE(DefaultValue<int>::IsSet()); |
|
EXPECT_FALSE(DefaultValue<const UserType>::IsSet()); |
|
|
|
EXPECT_TRUE(DefaultValue<int>::Exists()); |
|
EXPECT_FALSE(DefaultValue<const UserType>::Exists()); |
|
} |
|
|
|
// Tests that DefaultValue<T>::Get() returns the |
|
// BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is |
|
// false. |
|
TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) { |
|
EXPECT_FALSE(DefaultValue<int>::IsSet()); |
|
EXPECT_TRUE(DefaultValue<int>::Exists()); |
|
EXPECT_FALSE(DefaultValue<UserType>::IsSet()); |
|
EXPECT_FALSE(DefaultValue<UserType>::Exists()); |
|
|
|
EXPECT_EQ(0, DefaultValue<int>::Get()); |
|
|
|
#if GTEST_HAS_DEATH_TEST |
|
EXPECT_DEATH({ // NOLINT |
|
DefaultValue<UserType>::Get(); |
|
}, ""); |
|
#endif // GTEST_HAS_DEATH_TEST |
|
} |
|
|
|
// Tests that DefaultValue<void>::Get() returns void. |
|
TEST(DefaultValueTest, GetWorksForVoid) { |
|
return DefaultValue<void>::Get(); |
|
} |
|
|
|
// Tests using DefaultValue with a reference type. |
|
|
|
// Tests that DefaultValue<T&>::IsSet() is false initially. |
|
TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) { |
|
EXPECT_FALSE(DefaultValue<int&>::IsSet()); |
|
EXPECT_FALSE(DefaultValue<UserType&>::IsSet()); |
|
} |
|
|
|
// Tests that DefaultValue<T&>::Exists is false initiallly. |
|
TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) { |
|
EXPECT_FALSE(DefaultValue<int&>::Exists()); |
|
EXPECT_FALSE(DefaultValue<UserType&>::Exists()); |
|
} |
|
|
|
// Tests that DefaultValue<T&> can be set and then unset. |
|
TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) { |
|
int n = 1; |
|
DefaultValue<const int&>::Set(n); |
|
UserType u; |
|
DefaultValue<UserType&>::Set(u); |
|
|
|
EXPECT_TRUE(DefaultValue<const int&>::Exists()); |
|
EXPECT_TRUE(DefaultValue<UserType&>::Exists()); |
|
|
|
EXPECT_EQ(&n, &(DefaultValue<const int&>::Get())); |
|
EXPECT_EQ(&u, &(DefaultValue<UserType&>::Get())); |
|
|
|
DefaultValue<const int&>::Clear(); |
|
DefaultValue<UserType&>::Clear(); |
|
|
|
EXPECT_FALSE(DefaultValue<const int&>::Exists()); |
|
EXPECT_FALSE(DefaultValue<UserType&>::Exists()); |
|
|
|
EXPECT_FALSE(DefaultValue<const int&>::IsSet()); |
|
EXPECT_FALSE(DefaultValue<UserType&>::IsSet()); |
|
} |
|
|
|
// Tests that DefaultValue<T&>::Get() returns the |
|
// BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is |
|
// false. |
|
TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) { |
|
EXPECT_FALSE(DefaultValue<int&>::IsSet()); |
|
EXPECT_FALSE(DefaultValue<UserType&>::IsSet()); |
|
|
|
#if GTEST_HAS_DEATH_TEST |
|
EXPECT_DEATH({ // NOLINT |
|
DefaultValue<int&>::Get(); |
|
}, ""); |
|
EXPECT_DEATH({ // NOLINT |
|
DefaultValue<UserType>::Get(); |
|
}, ""); |
|
#endif // GTEST_HAS_DEATH_TEST |
|
} |
|
|
|
// Tests that ActionInterface can be implemented by defining the |
|
// Perform method. |
|
|
|
typedef int MyFunction(bool, int); |
|
|
|
class MyActionImpl : public ActionInterface<MyFunction> { |
|
public: |
|
virtual int Perform(const tuple<bool, int>& args) { |
|
return get<0>(args) ? get<1>(args) : 0; |
|
} |
|
}; |
|
|
|
TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) { |
|
MyActionImpl my_action_impl; |
|
|
|
EXPECT_FALSE(my_action_impl.IsDoDefault()); |
|
} |
|
|
|
TEST(ActionInterfaceTest, MakeAction) { |
|
Action<MyFunction> action = MakeAction(new MyActionImpl); |
|
|
|
// When exercising the Perform() method of Action<F>, we must pass |
|
// it a tuple whose size and type are compatible with F's argument |
|
// types. For example, if F is int(), then Perform() takes a |
|
// 0-tuple; if F is void(bool, int), then Perform() takes a |
|
// tuple<bool, int>, and so on. |
|
EXPECT_EQ(5, action.Perform(make_tuple(true, 5))); |
|
} |
|
|
|
// Tests that Action<F> can be contructed from a pointer to |
|
// ActionInterface<F>. |
|
TEST(ActionTest, CanBeConstructedFromActionInterface) { |
|
Action<MyFunction> action(new MyActionImpl); |
|
} |
|
|
|
// Tests that Action<F> delegates actual work to ActionInterface<F>. |
|
TEST(ActionTest, DelegatesWorkToActionInterface) { |
|
const Action<MyFunction> action(new MyActionImpl); |
|
|
|
EXPECT_EQ(5, action.Perform(make_tuple(true, 5))); |
|
EXPECT_EQ(0, action.Perform(make_tuple(false, 1))); |
|
} |
|
|
|
// Tests that Action<F> can be copied. |
|
TEST(ActionTest, IsCopyable) { |
|
Action<MyFunction> a1(new MyActionImpl); |
|
Action<MyFunction> a2(a1); // Tests the copy constructor. |
|
|
|
// a1 should continue to work after being copied from. |
|
EXPECT_EQ(5, a1.Perform(make_tuple(true, 5))); |
|
EXPECT_EQ(0, a1.Perform(make_tuple(false, 1))); |
|
|
|
// a2 should work like the action it was copied from. |
|
EXPECT_EQ(5, a2.Perform(make_tuple(true, 5))); |
|
EXPECT_EQ(0, a2.Perform(make_tuple(false, 1))); |
|
|
|
a2 = a1; // Tests the assignment operator. |
|
|
|
// a1 should continue to work after being copied from. |
|
EXPECT_EQ(5, a1.Perform(make_tuple(true, 5))); |
|
EXPECT_EQ(0, a1.Perform(make_tuple(false, 1))); |
|
|
|
// a2 should work like the action it was copied from. |
|
EXPECT_EQ(5, a2.Perform(make_tuple(true, 5))); |
|
EXPECT_EQ(0, a2.Perform(make_tuple(false, 1))); |
|
} |
|
|
|
// Tests that an Action<From> object can be converted to a |
|
// compatible Action<To> object. |
|
|
|
class IsNotZero : public ActionInterface<bool(int)> { // NOLINT |
|
public: |
|
virtual bool Perform(const tuple<int>& arg) { |
|
return get<0>(arg) != 0; |
|
} |
|
}; |
|
|
|
TEST(ActionTest, CanBeConvertedToOtherActionType) { |
|
const Action<bool(int)> a1(new IsNotZero); // NOLINT |
|
const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT |
|
EXPECT_EQ(1, a2.Perform(make_tuple('a'))); |
|
EXPECT_EQ(0, a2.Perform(make_tuple('\0'))); |
|
} |
|
|
|
// The following two classes are for testing MakePolymorphicAction(). |
|
|
|
// Implements a polymorphic action that returns the second of the |
|
// arguments it receives. |
|
class ReturnSecondArgumentAction { |
|
public: |
|
// We want to verify that MakePolymorphicAction() can work with a |
|
// polymorphic action whose Perform() method template is either |
|
// const or not. This lets us verify the non-const case. |
|
template <typename Result, typename ArgumentTuple> |
|
Result Perform(const ArgumentTuple& args) { return get<1>(args); } |
|
}; |
|
|
|
// Implements a polymorphic action that can be used in a nullary |
|
// function to return 0. |
|
class ReturnZeroFromNullaryFunctionAction { |
|
public: |
|
// For testing that MakePolymorphicAction() works when the |
|
// implementation class' Perform() method template takes only one |
|
// template parameter. |
|
// |
|
// We want to verify that MakePolymorphicAction() can work with a |
|
// polymorphic action whose Perform() method template is either |
|
// const or not. This lets us verify the const case. |
|
template <typename Result> |
|
Result Perform(const tuple<>&) const { return 0; } |
|
}; |
|
|
|
// These functions verify that MakePolymorphicAction() returns a |
|
// PolymorphicAction<T> where T is the argument's type. |
|
|
|
PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() { |
|
return MakePolymorphicAction(ReturnSecondArgumentAction()); |
|
} |
|
|
|
PolymorphicAction<ReturnZeroFromNullaryFunctionAction> |
|
ReturnZeroFromNullaryFunction() { |
|
return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction()); |
|
} |
|
|
|
// Tests that MakePolymorphicAction() turns a polymorphic action |
|
// implementation class into a polymorphic action. |
|
TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) { |
|
Action<int(bool, int, double)> a1 = ReturnSecondArgument(); // NOLINT |
|
EXPECT_EQ(5, a1.Perform(make_tuple(false, 5, 2.0))); |
|
} |
|
|
|
// Tests that MakePolymorphicAction() works when the implementation |
|
// class' Perform() method template has only one template parameter. |
|
TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) { |
|
Action<int()> a1 = ReturnZeroFromNullaryFunction(); |
|
EXPECT_EQ(0, a1.Perform(make_tuple())); |
|
|
|
Action<void*()> a2 = ReturnZeroFromNullaryFunction(); |
|
EXPECT_TRUE(a2.Perform(make_tuple()) == NULL); |
|
} |
|
|
|
// Tests that Return() works as an action for void-returning |
|
// functions. |
|
TEST(ReturnTest, WorksForVoid) { |
|
const Action<void(int)> ret = Return(); // NOLINT |
|
return ret.Perform(make_tuple(1)); |
|
} |
|
|
|
// Tests that Return(v) returns v. |
|
TEST(ReturnTest, ReturnsGivenValue) { |
|
Action<int()> ret = Return(1); // NOLINT |
|
EXPECT_EQ(1, ret.Perform(make_tuple())); |
|
|
|
ret = Return(-5); |
|
EXPECT_EQ(-5, ret.Perform(make_tuple())); |
|
} |
|
|
|
// Tests that Return("string literal") works. |
|
TEST(ReturnTest, AcceptsStringLiteral) { |
|
Action<const char*()> a1 = Return("Hello"); |
|
EXPECT_STREQ("Hello", a1.Perform(make_tuple())); |
|
|
|
Action<std::string()> a2 = Return("world"); |
|
EXPECT_EQ("world", a2.Perform(make_tuple())); |
|
} |
|
|
|
// Tests that Return(v) is covaraint. |
|
|
|
struct Base { |
|
bool operator==(const Base&) { return true; } |
|
}; |
|
|
|
struct Derived : public Base { |
|
bool operator==(const Derived&) { return true; } |
|
}; |
|
|
|
TEST(ReturnTest, IsCovariant) { |
|
Base base; |
|
Derived derived; |
|
Action<Base*()> ret = Return(&base); |
|
EXPECT_EQ(&base, ret.Perform(make_tuple())); |
|
|
|
ret = Return(&derived); |
|
EXPECT_EQ(&derived, ret.Perform(make_tuple())); |
|
} |
|
|
|
// Tests that ReturnNull() returns NULL in a pointer-returning function. |
|
TEST(ReturnNullTest, WorksInPointerReturningFunction) { |
|
const Action<int*()> a1 = ReturnNull(); |
|
EXPECT_TRUE(a1.Perform(make_tuple()) == NULL); |
|
|
|
const Action<const char*(bool)> a2 = ReturnNull(); // NOLINT |
|
EXPECT_TRUE(a2.Perform(make_tuple(true)) == NULL); |
|
} |
|
|
|
// Tests that ReturnRef(v) works for reference types. |
|
TEST(ReturnRefTest, WorksForReference) { |
|
const int n = 0; |
|
const Action<const int&(bool)> ret = ReturnRef(n); // NOLINT |
|
|
|
EXPECT_EQ(&n, &ret.Perform(make_tuple(true))); |
|
} |
|
|
|
// Tests that ReturnRef(v) is covariant. |
|
TEST(ReturnRefTest, IsCovariant) { |
|
Base base; |
|
Derived derived; |
|
Action<Base&()> a = ReturnRef(base); |
|
EXPECT_EQ(&base, &a.Perform(make_tuple())); |
|
|
|
a = ReturnRef(derived); |
|
EXPECT_EQ(&derived, &a.Perform(make_tuple())); |
|
} |
|
|
|
// Tests that DoDefault() does the default action for the mock method. |
|
|
|
class MyClass {}; |
|
|
|
class MockClass { |
|
public: |
|
MOCK_METHOD1(IntFunc, int(bool flag)); // NOLINT |
|
MOCK_METHOD0(Foo, MyClass()); |
|
}; |
|
|
|
// Tests that DoDefault() returns the built-in default value for the |
|
// return type by default. |
|
TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) { |
|
MockClass mock; |
|
EXPECT_CALL(mock, IntFunc(_)) |
|
.WillOnce(DoDefault()); |
|
EXPECT_EQ(0, mock.IntFunc(true)); |
|
} |
|
|
|
#if GTEST_HAS_DEATH_TEST |
|
|
|
// Tests that DoDefault() aborts the process when there is no built-in |
|
// default value for the return type. |
|
TEST(DoDefaultDeathTest, DiesForUnknowType) { |
|
MockClass mock; |
|
EXPECT_CALL(mock, Foo()) |
|
.WillRepeatedly(DoDefault()); |
|
EXPECT_DEATH({ // NOLINT |
|
mock.Foo(); |
|
}, ""); |
|
} |
|
|
|
// Tests that using DoDefault() inside a composite action leads to a |
|
// run-time error. |
|
|
|
void VoidFunc(bool flag) {} |
|
|
|
TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) { |
|
MockClass mock; |
|
EXPECT_CALL(mock, IntFunc(_)) |
|
.WillRepeatedly(DoAll(Invoke(VoidFunc), |
|
DoDefault())); |
|
|
|
// Ideally we should verify the error message as well. Sadly, |
|
// EXPECT_DEATH() can only capture stderr, while Google Mock's |
|
// errors are printed on stdout. Therefore we have to settle for |
|
// not verifying the message. |
|
EXPECT_DEATH({ // NOLINT |
|
mock.IntFunc(true); |
|
}, ""); |
|
} |
|
|
|
#endif // GTEST_HAS_DEATH_TEST |
|
|
|
// Tests that DoDefault() returns the default value set by |
|
// DefaultValue<T>::Set() when it's not overriden by an ON_CALL(). |
|
TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) { |
|
DefaultValue<int>::Set(1); |
|
MockClass mock; |
|
EXPECT_CALL(mock, IntFunc(_)) |
|
.WillOnce(DoDefault()); |
|
EXPECT_EQ(1, mock.IntFunc(false)); |
|
DefaultValue<int>::Clear(); |
|
} |
|
|
|
// Tests that DoDefault() does the action specified by ON_CALL(). |
|
TEST(DoDefaultTest, DoesWhatOnCallSpecifies) { |
|
MockClass mock; |
|
ON_CALL(mock, IntFunc(_)) |
|
.WillByDefault(Return(2)); |
|
EXPECT_CALL(mock, IntFunc(_)) |
|
.WillOnce(DoDefault()); |
|
EXPECT_EQ(2, mock.IntFunc(false)); |
|
} |
|
|
|
// Tests that using DoDefault() in ON_CALL() leads to a run-time failure. |
|
TEST(DoDefaultTest, CannotBeUsedInOnCall) { |
|
MockClass mock; |
|
EXPECT_NONFATAL_FAILURE({ // NOLINT |
|
ON_CALL(mock, IntFunc(_)) |
|
.WillByDefault(DoDefault()); |
|
}, "DoDefault() cannot be used in ON_CALL()"); |
|
} |
|
|
|
// Tests that SetArgumentPointee<N>(v) sets the variable pointed to by |
|
// the N-th (0-based) argument to v. |
|
TEST(SetArgumentPointeeTest, SetsTheNthPointee) { |
|
typedef void MyFunction(bool, int*, char*); |
|
Action<MyFunction> a = SetArgumentPointee<1>(2); |
|
|
|
int n = 0; |
|
char ch = '\0'; |
|
a.Perform(make_tuple(true, &n, &ch)); |
|
EXPECT_EQ(2, n); |
|
EXPECT_EQ('\0', ch); |
|
|
|
a = SetArgumentPointee<2>('a'); |
|
n = 0; |
|
ch = '\0'; |
|
a.Perform(make_tuple(true, &n, &ch)); |
|
EXPECT_EQ(0, n); |
|
EXPECT_EQ('a', ch); |
|
} |
|
|
|
#if GMOCK_HAS_PROTOBUF_ |
|
|
|
// Tests that SetArgumentPointee<N>(proto_buffer) sets the v1 protobuf |
|
// variable pointed to by the N-th (0-based) argument to proto_buffer. |
|
TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProtoBufferType) { |
|
TestMessage* const msg = new TestMessage; |
|
msg->set_member("yes"); |
|
TestMessage orig_msg; |
|
orig_msg.CopyFrom(*msg); |
|
|
|
Action<void(bool, TestMessage*)> a = SetArgumentPointee<1>(*msg); |
|
// SetArgumentPointee<N>(proto_buffer) makes a copy of proto_buffer |
|
// s.t. the action works even when the original proto_buffer has |
|
// died. We ensure this behavior by deleting msg before using the |
|
// action. |
|
delete msg; |
|
|
|
TestMessage dest; |
|
EXPECT_FALSE(orig_msg.Equals(dest)); |
|
a.Perform(make_tuple(true, &dest)); |
|
EXPECT_TRUE(orig_msg.Equals(dest)); |
|
} |
|
|
|
// Tests that SetArgumentPointee<N>(proto_buffer) sets the |
|
// ::ProtocolMessage variable pointed to by the N-th (0-based) |
|
// argument to proto_buffer. |
|
TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProtoBufferBaseType) { |
|
TestMessage* const msg = new TestMessage; |
|
msg->set_member("yes"); |
|
TestMessage orig_msg; |
|
orig_msg.CopyFrom(*msg); |
|
|
|
Action<void(bool, ::ProtocolMessage*)> a = SetArgumentPointee<1>(*msg); |
|
// SetArgumentPointee<N>(proto_buffer) makes a copy of proto_buffer |
|
// s.t. the action works even when the original proto_buffer has |
|
// died. We ensure this behavior by deleting msg before using the |
|
// action. |
|
delete msg; |
|
|
|
TestMessage dest; |
|
::ProtocolMessage* const dest_base = &dest; |
|
EXPECT_FALSE(orig_msg.Equals(dest)); |
|
a.Perform(make_tuple(true, dest_base)); |
|
EXPECT_TRUE(orig_msg.Equals(dest)); |
|
} |
|
|
|
// Tests that SetArgumentPointee<N>(proto2_buffer) sets the v2 |
|
// protobuf variable pointed to by the N-th (0-based) argument to |
|
// proto2_buffer. |
|
TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProto2BufferType) { |
|
using testing::internal::FooMessage; |
|
FooMessage* const msg = new FooMessage; |
|
msg->set_int_field(2); |
|
msg->set_string_field("hi"); |
|
FooMessage orig_msg; |
|
orig_msg.CopyFrom(*msg); |
|
|
|
Action<void(bool, FooMessage*)> a = SetArgumentPointee<1>(*msg); |
|
// SetArgumentPointee<N>(proto2_buffer) makes a copy of |
|
// proto2_buffer s.t. the action works even when the original |
|
// proto2_buffer has died. We ensure this behavior by deleting msg |
|
// before using the action. |
|
delete msg; |
|
|
|
FooMessage dest; |
|
dest.set_int_field(0); |
|
a.Perform(make_tuple(true, &dest)); |
|
EXPECT_EQ(2, dest.int_field()); |
|
EXPECT_EQ("hi", dest.string_field()); |
|
} |
|
|
|
// Tests that SetArgumentPointee<N>(proto2_buffer) sets the |
|
// proto2::Message variable pointed to by the N-th (0-based) argument |
|
// to proto2_buffer. |
|
TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProto2BufferBaseType) { |
|
using testing::internal::FooMessage; |
|
FooMessage* const msg = new FooMessage; |
|
msg->set_int_field(2); |
|
msg->set_string_field("hi"); |
|
FooMessage orig_msg; |
|
orig_msg.CopyFrom(*msg); |
|
|
|
Action<void(bool, ::proto2::Message*)> a = SetArgumentPointee<1>(*msg); |
|
// SetArgumentPointee<N>(proto2_buffer) makes a copy of |
|
// proto2_buffer s.t. the action works even when the original |
|
// proto2_buffer has died. We ensure this behavior by deleting msg |
|
// before using the action. |
|
delete msg; |
|
|
|
FooMessage dest; |
|
dest.set_int_field(0); |
|
::proto2::Message* const dest_base = &dest; |
|
a.Perform(make_tuple(true, dest_base)); |
|
EXPECT_EQ(2, dest.int_field()); |
|
EXPECT_EQ("hi", dest.string_field()); |
|
} |
|
|
|
#endif // GMOCK_HAS_PROTOBUF_ |
|
|
|
// Tests that SetArrayArgument<N>(first, last) sets the elements of the array |
|
// pointed to by the N-th (0-based) argument to values in range [first, last). |
|
TEST(SetArrayArgumentTest, SetsTheNthArray) { |
|
typedef void MyFunction(bool, int*, char*); |
|
int numbers[] = { 1, 2, 3 }; |
|
Action<MyFunction> a = SetArrayArgument<1>(numbers, numbers + 3); |
|
|
|
int n[4] = {}; |
|
int* pn = n; |
|
char ch[4] = {}; |
|
char* pch = ch; |
|
a.Perform(make_tuple(true, pn, pch)); |
|
EXPECT_EQ(1, n[0]); |
|
EXPECT_EQ(2, n[1]); |
|
EXPECT_EQ(3, n[2]); |
|
EXPECT_EQ(0, n[3]); |
|
EXPECT_EQ('\0', ch[0]); |
|
EXPECT_EQ('\0', ch[1]); |
|
EXPECT_EQ('\0', ch[2]); |
|
EXPECT_EQ('\0', ch[3]); |
|
|
|
// Tests first and last are iterators. |
|
std::string letters = "abc"; |
|
a = SetArrayArgument<2>(letters.begin(), letters.end()); |
|
std::fill_n(n, 4, 0); |
|
std::fill_n(ch, 4, '\0'); |
|
a.Perform(make_tuple(true, pn, pch)); |
|
EXPECT_EQ(0, n[0]); |
|
EXPECT_EQ(0, n[1]); |
|
EXPECT_EQ(0, n[2]); |
|
EXPECT_EQ(0, n[3]); |
|
EXPECT_EQ('a', ch[0]); |
|
EXPECT_EQ('b', ch[1]); |
|
EXPECT_EQ('c', ch[2]); |
|
EXPECT_EQ('\0', ch[3]); |
|
} |
|
|
|
// Tests SetArrayArgument<N>(first, last) where first == last. |
|
TEST(SetArrayArgumentTest, SetsTheNthArrayWithEmptyRange) { |
|
typedef void MyFunction(bool, int*); |
|
int numbers[] = { 1, 2, 3 }; |
|
Action<MyFunction> a = SetArrayArgument<1>(numbers, numbers); |
|
|
|
int n[4] = {}; |
|
int* pn = n; |
|
a.Perform(make_tuple(true, pn)); |
|
EXPECT_EQ(0, n[0]); |
|
EXPECT_EQ(0, n[1]); |
|
EXPECT_EQ(0, n[2]); |
|
EXPECT_EQ(0, n[3]); |
|
} |
|
|
|
// Tests SetArrayArgument<N>(first, last) where *first is convertible |
|
// (but not equal) to the argument type. |
|
TEST(SetArrayArgumentTest, SetsTheNthArrayWithConvertibleType) { |
|
typedef void MyFunction(bool, char*); |
|
int codes[] = { 97, 98, 99 }; |
|
Action<MyFunction> a = SetArrayArgument<1>(codes, codes + 3); |
|
|
|
char ch[4] = {}; |
|
char* pch = ch; |
|
a.Perform(make_tuple(true, pch)); |
|
EXPECT_EQ('a', ch[0]); |
|
EXPECT_EQ('b', ch[1]); |
|
EXPECT_EQ('c', ch[2]); |
|
EXPECT_EQ('\0', ch[3]); |
|
} |
|
|
|
// Test SetArrayArgument<N>(first, last) with iterator as argument. |
|
TEST(SetArrayArgumentTest, SetsTheNthArrayWithIteratorArgument) { |
|
typedef void MyFunction(bool, std::back_insert_iterator<std::string>); |
|
std::string letters = "abc"; |
|
Action<MyFunction> a = SetArrayArgument<1>(letters.begin(), letters.end()); |
|
|
|
std::string s; |
|
a.Perform(make_tuple(true, back_inserter(s))); |
|
EXPECT_EQ(letters, s); |
|
} |
|
|
|
// Sample functions and functors for testing Invoke() and etc. |
|
int Nullary() { return 1; } |
|
|
|
class NullaryFunctor { |
|
public: |
|
int operator()() { return 2; } |
|
}; |
|
|
|
bool g_done = false; |
|
void VoidNullary() { g_done = true; } |
|
|
|
class VoidNullaryFunctor { |
|
public: |
|
void operator()() { g_done = true; } |
|
}; |
|
|
|
bool Unary(int x) { return x < 0; } |
|
|
|
const char* Plus1(const char* s) { return s + 1; } |
|
|
|
void VoidUnary(int n) { g_done = true; } |
|
|
|
bool ByConstRef(const std::string& s) { return s == "Hi"; } |
|
|
|
const double g_double = 0; |
|
bool ReferencesGlobalDouble(const double& x) { return &x == &g_double; } |
|
|
|
std::string ByNonConstRef(std::string& s) { return s += "+"; } // NOLINT |
|
|
|
struct UnaryFunctor { |
|
int operator()(bool x) { return x ? 1 : -1; } |
|
}; |
|
|
|
const char* Binary(const char* input, short n) { return input + n; } // NOLINT |
|
|
|
void VoidBinary(int, char) { g_done = true; } |
|
|
|
int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT |
|
|
|
void VoidTernary(int, char, bool) { g_done = true; } |
|
|
|
int SumOf4(int a, int b, int c, int d) { return a + b + c + d; } |
|
|
|
void VoidFunctionWithFourArguments(char, int, float, double) { g_done = true; } |
|
|
|
int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; } |
|
|
|
struct SumOf5Functor { |
|
int operator()(int a, int b, int c, int d, int e) { |
|
return a + b + c + d + e; |
|
} |
|
}; |
|
|
|
int SumOf6(int a, int b, int c, int d, int e, int f) { |
|
return a + b + c + d + e + f; |
|
} |
|
|
|
struct SumOf6Functor { |
|
int operator()(int a, int b, int c, int d, int e, int f) { |
|
return a + b + c + d + e + f; |
|
} |
|
}; |
|
|
|
class Foo { |
|
public: |
|
Foo() : value_(123) {} |
|
|
|
int Nullary() const { return value_; } |
|
short Unary(long x) { return static_cast<short>(value_ + x); } // NOLINT |
|
std::string Binary(const std::string& str, char c) const { return str + c; } |
|
int Ternary(int x, bool y, char z) { return value_ + x + y*z; } |
|
int SumOf4(int a, int b, int c, int d) const { |
|
return a + b + c + d + value_; |
|
} |
|
int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; } |
|
int SumOf6(int a, int b, int c, int d, int e, int f) { |
|
return a + b + c + d + e + f; |
|
} |
|
private: |
|
int value_; |
|
}; |
|
|
|
// Tests InvokeWithoutArgs(function). |
|
TEST(InvokeWithoutArgsTest, Function) { |
|
// As an action that takes one argument. |
|
Action<int(int)> a = InvokeWithoutArgs(Nullary); // NOLINT |
|
EXPECT_EQ(1, a.Perform(make_tuple(2))); |
|
|
|
// As an action that takes two arguments. |
|
Action<short(int, double)> a2 = InvokeWithoutArgs(Nullary); // NOLINT |
|
EXPECT_EQ(1, a2.Perform(make_tuple(2, 3.5))); |
|
|
|
// As an action that returns void. |
|
Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary); // NOLINT |
|
g_done = false; |
|
a3.Perform(make_tuple(1)); |
|
EXPECT_TRUE(g_done); |
|
} |
|
|
|
// Tests InvokeWithoutArgs(functor). |
|
TEST(InvokeWithoutArgsTest, Functor) { |
|
// As an action that takes no argument. |
|
Action<int()> a = InvokeWithoutArgs(NullaryFunctor()); // NOLINT |
|
EXPECT_EQ(2, a.Perform(make_tuple())); |
|
|
|
// As an action that takes three arguments. |
|
Action<short(int, double, char)> a2 = // NOLINT |
|
InvokeWithoutArgs(NullaryFunctor()); |
|
EXPECT_EQ(2, a2.Perform(make_tuple(3, 3.5, 'a'))); |
|
|
|
// As an action that returns void. |
|
Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor()); |
|
g_done = false; |
|
a3.Perform(make_tuple()); |
|
EXPECT_TRUE(g_done); |
|
} |
|
|
|
// Tests InvokeWithoutArgs(obj_ptr, method). |
|
TEST(InvokeWithoutArgsTest, Method) { |
|
Foo foo; |
|
Action<int(bool, char)> a = // NOLINT |
|
InvokeWithoutArgs(&foo, &Foo::Nullary); |
|
EXPECT_EQ(123, a.Perform(make_tuple(true, 'a'))); |
|
} |
|
|
|
// Tests using IgnoreResult() on a polymorphic action. |
|
TEST(IgnoreResultTest, PolymorphicAction) { |
|
Action<void(int)> a = IgnoreResult(Return(5)); // NOLINT |
|
a.Perform(make_tuple(1)); |
|
} |
|
|
|
// Tests using IgnoreResult() on a monomorphic action. |
|
|
|
int ReturnOne() { |
|
g_done = true; |
|
return 1; |
|
} |
|
|
|
TEST(IgnoreResultTest, MonomorphicAction) { |
|
g_done = false; |
|
Action<void()> a = IgnoreResult(Invoke(ReturnOne)); |
|
a.Perform(make_tuple()); |
|
EXPECT_TRUE(g_done); |
|
} |
|
|
|
// Tests using IgnoreResult() on an action that returns a class type. |
|
|
|
MyClass ReturnMyClass(double x) { |
|
g_done = true; |
|
return MyClass(); |
|
} |
|
|
|
TEST(IgnoreResultTest, ActionReturningClass) { |
|
g_done = false; |
|
Action<void(int)> a = IgnoreResult(Invoke(ReturnMyClass)); // NOLINT |
|
a.Perform(make_tuple(2)); |
|
EXPECT_TRUE(g_done); |
|
} |
|
|
|
TEST(AssignTest, Int) { |
|
int x = 0; |
|
Action<void(int)> a = Assign(&x, 5); |
|
a.Perform(make_tuple(0)); |
|
EXPECT_EQ(5, x); |
|
} |
|
|
|
TEST(AssignTest, String) { |
|
::std::string x; |
|
Action<void(void)> a = Assign(&x, "Hello, world"); |
|
a.Perform(make_tuple()); |
|
EXPECT_EQ("Hello, world", x); |
|
} |
|
|
|
TEST(AssignTest, CompatibleTypes) { |
|
double x = 0; |
|
Action<void(int)> a = Assign(&x, 5); |
|
a.Perform(make_tuple(0)); |
|
EXPECT_DOUBLE_EQ(5, x); |
|
} |
|
|
|
#ifndef _WIN32_WCE |
|
|
|
class SetErrnoAndReturnTest : public testing::Test { |
|
protected: |
|
virtual void SetUp() { errno = 0; } |
|
virtual void TearDown() { errno = 0; } |
|
}; |
|
|
|
TEST_F(SetErrnoAndReturnTest, Int) { |
|
Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5); |
|
EXPECT_EQ(-5, a.Perform(make_tuple())); |
|
EXPECT_EQ(ENOTTY, errno); |
|
} |
|
|
|
TEST_F(SetErrnoAndReturnTest, Ptr) { |
|
int x; |
|
Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x); |
|
EXPECT_EQ(&x, a.Perform(make_tuple())); |
|
EXPECT_EQ(ENOTTY, errno); |
|
} |
|
|
|
TEST_F(SetErrnoAndReturnTest, CompatibleTypes) { |
|
Action<double()> a = SetErrnoAndReturn(EINVAL, 5); |
|
EXPECT_DOUBLE_EQ(5.0, a.Perform(make_tuple())); |
|
EXPECT_EQ(EINVAL, errno); |
|
} |
|
|
|
#endif // _WIN32_WCE |
|
|
|
} // Unnamed namespace
|
|
|