GoogleTest - Google Testing and Mocking Framework (grpc protobuff依赖)
https://google.github.io/googletest/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
772 lines
37 KiB
772 lines
37 KiB
# gMock Cheat Sheet |
|
|
|
## Defining a Mock Class |
|
|
|
### Mocking a Normal Class {#MockClass} |
|
|
|
Given |
|
|
|
```cpp |
|
class Foo { |
|
... |
|
virtual ~Foo(); |
|
virtual int GetSize() const = 0; |
|
virtual string Describe(const char* name) = 0; |
|
virtual string Describe(int type) = 0; |
|
virtual bool Process(Bar elem, int count) = 0; |
|
}; |
|
``` |
|
|
|
(note that `~Foo()` **must** be virtual) we can define its mock as |
|
|
|
```cpp |
|
#include "gmock/gmock.h" |
|
|
|
class MockFoo : public Foo { |
|
... |
|
MOCK_METHOD(int, GetSize, (), (const, override)); |
|
MOCK_METHOD(string, Describe, (const char* name), (override)); |
|
MOCK_METHOD(string, Describe, (int type), (override)); |
|
MOCK_METHOD(bool, Process, (Bar elem, int count), (override)); |
|
}; |
|
``` |
|
|
|
To create a "nice" mock, which ignores all uninteresting calls, a "naggy" mock, |
|
which warns on all uninteresting calls, or a "strict" mock, which treats them as |
|
failures: |
|
|
|
```cpp |
|
using ::testing::NiceMock; |
|
using ::testing::NaggyMock; |
|
using ::testing::StrictMock; |
|
|
|
NiceMock<MockFoo> nice_foo; // The type is a subclass of MockFoo. |
|
NaggyMock<MockFoo> naggy_foo; // The type is a subclass of MockFoo. |
|
StrictMock<MockFoo> strict_foo; // The type is a subclass of MockFoo. |
|
``` |
|
|
|
**Note:** A mock object is currently naggy by default. We may make it nice by |
|
default in the future. |
|
|
|
### Mocking a Class Template {#MockTemplate} |
|
|
|
Class templates can be mocked just like any class. |
|
|
|
To mock |
|
|
|
```cpp |
|
template <typename Elem> |
|
class StackInterface { |
|
... |
|
virtual ~StackInterface(); |
|
virtual int GetSize() const = 0; |
|
virtual void Push(const Elem& x) = 0; |
|
}; |
|
``` |
|
|
|
(note that all member functions that are mocked, including `~StackInterface()` |
|
**must** be virtual). |
|
|
|
```cpp |
|
template <typename Elem> |
|
class MockStack : public StackInterface<Elem> { |
|
... |
|
MOCK_METHOD(int, GetSize, (), (const, override)); |
|
MOCK_METHOD(void, Push, (const Elem& x), (override)); |
|
}; |
|
``` |
|
|
|
### Specifying Calling Conventions for Mock Functions |
|
|
|
If your mock function doesn't use the default calling convention, you can |
|
specify it by adding `Calltype(convention)` to `MOCK_METHOD`'s 4th parameter. |
|
For example, |
|
|
|
```cpp |
|
MOCK_METHOD(bool, Foo, (int n), (Calltype(STDMETHODCALLTYPE))); |
|
MOCK_METHOD(int, Bar, (double x, double y), |
|
(const, Calltype(STDMETHODCALLTYPE))); |
|
``` |
|
|
|
where `STDMETHODCALLTYPE` is defined by `<objbase.h>` on Windows. |
|
|
|
## Using Mocks in Tests {#UsingMocks} |
|
|
|
The typical work flow is: |
|
|
|
1. Import the gMock names you need to use. All gMock symbols are in the |
|
`testing` namespace unless they are macros or otherwise noted. |
|
2. Create the mock objects. |
|
3. Optionally, set the default actions of the mock objects. |
|
4. Set your expectations on the mock objects (How will they be called? What |
|
will they do?). |
|
5. Exercise code that uses the mock objects; if necessary, check the result |
|
using googletest assertions. |
|
6. When a mock object is destructed, gMock automatically verifies that all |
|
expectations on it have been satisfied. |
|
|
|
Here's an example: |
|
|
|
```cpp |
|
using ::testing::Return; // #1 |
|
|
|
TEST(BarTest, DoesThis) { |
|
MockFoo foo; // #2 |
|
|
|
ON_CALL(foo, GetSize()) // #3 |
|
.WillByDefault(Return(1)); |
|
// ... other default actions ... |
|
|
|
EXPECT_CALL(foo, Describe(5)) // #4 |
|
.Times(3) |
|
.WillRepeatedly(Return("Category 5")); |
|
// ... other expectations ... |
|
|
|
EXPECT_EQ("good", MyProductionFunction(&foo)); // #5 |
|
} // #6 |
|
``` |
|
|
|
## Setting Default Actions {#OnCall} |
|
|
|
gMock has a **built-in default action** for any function that returns `void`, |
|
`bool`, a numeric value, or a pointer. In C++11, it will additionally returns |
|
the default-constructed value, if one exists for the given type. |
|
|
|
To customize the default action for functions with return type *`T`*: |
|
|
|
```cpp |
|
using ::testing::DefaultValue; |
|
|
|
// Sets the default value to be returned. T must be CopyConstructible. |
|
DefaultValue<T>::Set(value); |
|
// Sets a factory. Will be invoked on demand. T must be MoveConstructible. |
|
// T MakeT(); |
|
DefaultValue<T>::SetFactory(&MakeT); |
|
// ... use the mocks ... |
|
// Resets the default value. |
|
DefaultValue<T>::Clear(); |
|
``` |
|
|
|
Example usage: |
|
|
|
```cpp |
|
// Sets the default action for return type std::unique_ptr<Buzz> to |
|
// creating a new Buzz every time. |
|
DefaultValue<std::unique_ptr<Buzz>>::SetFactory( |
|
[] { return MakeUnique<Buzz>(AccessLevel::kInternal); }); |
|
|
|
// When this fires, the default action of MakeBuzz() will run, which |
|
// will return a new Buzz object. |
|
EXPECT_CALL(mock_buzzer_, MakeBuzz("hello")).Times(AnyNumber()); |
|
|
|
auto buzz1 = mock_buzzer_.MakeBuzz("hello"); |
|
auto buzz2 = mock_buzzer_.MakeBuzz("hello"); |
|
EXPECT_NE(nullptr, buzz1); |
|
EXPECT_NE(nullptr, buzz2); |
|
EXPECT_NE(buzz1, buzz2); |
|
|
|
// Resets the default action for return type std::unique_ptr<Buzz>, |
|
// to avoid interfere with other tests. |
|
DefaultValue<std::unique_ptr<Buzz>>::Clear(); |
|
``` |
|
|
|
To customize the default action for a particular method of a specific mock |
|
object, use `ON_CALL()`. `ON_CALL()` has a similar syntax to `EXPECT_CALL()`, |
|
but it is used for setting default behaviors (when you do not require that the |
|
mock method is called). See [here](gmock_cook_book.md#UseOnCall) for a more |
|
detailed discussion. |
|
|
|
```cpp |
|
ON_CALL(mock-object, method(matchers)) |
|
.With(multi-argument-matcher) ? |
|
.WillByDefault(action); |
|
``` |
|
|
|
## Setting Expectations {#ExpectCall} |
|
|
|
`EXPECT_CALL()` sets **expectations** on a mock method (How will it be called? |
|
What will it do?): |
|
|
|
```cpp |
|
EXPECT_CALL(mock-object, method (matchers)?) |
|
.With(multi-argument-matcher) ? |
|
.Times(cardinality) ? |
|
.InSequence(sequences) * |
|
.After(expectations) * |
|
.WillOnce(action) * |
|
.WillRepeatedly(action) ? |
|
.RetiresOnSaturation(); ? |
|
``` |
|
|
|
For each item above, `?` means it can be used at most once, while `*` means it |
|
can be used any number of times. |
|
|
|
In order to pass, `EXPECT_CALL` must be used before the calls are actually made. |
|
|
|
The `(matchers)` is a comma-separated list of matchers that correspond to each |
|
of the arguments of `method`, and sets the expectation only for calls of |
|
`method` that matches all of the matchers. |
|
|
|
If `(matchers)` is omitted, the expectation is the same as if the matchers were |
|
set to anything matchers (for example, `(_, _, _, _)` for a four-arg method). |
|
|
|
If `Times()` is omitted, the cardinality is assumed to be: |
|
|
|
* `Times(1)` when there is neither `WillOnce()` nor `WillRepeatedly()`; |
|
* `Times(n)` when there are `n` `WillOnce()`s but no `WillRepeatedly()`, where |
|
`n` >= 1; or |
|
* `Times(AtLeast(n))` when there are `n` `WillOnce()`s and a |
|
`WillRepeatedly()`, where `n` >= 0. |
|
|
|
A method with no `EXPECT_CALL()` is free to be invoked *any number of times*, |
|
and the default action will be taken each time. |
|
|
|
## Matchers {#MatcherList} |
|
|
|
A **matcher** matches a *single* argument. You can use it inside `ON_CALL()` or |
|
`EXPECT_CALL()`, or use it to validate a value directly using two macros: |
|
|
|
<!-- mdformat off(github rendering does not support multiline tables) --> |
|
| Macro | Description | |
|
| :----------------------------------- | :------------------------------------ | |
|
| `EXPECT_THAT(actual_value, matcher)` | Asserts that `actual_value` matches `matcher`. | |
|
| `ASSERT_THAT(actual_value, matcher)` | The same as `EXPECT_THAT(actual_value, matcher)`, except that it generates a **fatal** failure. | |
|
<!-- mdformat on --> |
|
|
|
**Note:** Although equality matching via `EXPECT_THAT(actual_value, |
|
expected_value)` is supported, prefer to make the comparison explicit via |
|
`EXPECT_THAT(actual_value, Eq(expected_value))` or `EXPECT_EQ(actual_value, |
|
expected_value)`. |
|
|
|
Built-in matchers (where `argument` is the function argument, e.g. |
|
`actual_value` in the example above, or when used in the context of |
|
`EXPECT_CALL(mock_object, method(matchers))`, the arguments of `method`) are |
|
divided into several categories: |
|
|
|
### Wildcard |
|
|
|
Matcher | Description |
|
:-------------------------- | :----------------------------------------------- |
|
`_` | `argument` can be any value of the correct type. |
|
`A<type>()` or `An<type>()` | `argument` can be any value of type `type`. |
|
|
|
### Generic Comparison |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Matcher | Description | |
|
| :--------------------- | :-------------------------------------------------- | |
|
| `Eq(value)` or `value` | `argument == value` | |
|
| `Ge(value)` | `argument >= value` | |
|
| `Gt(value)` | `argument > value` | |
|
| `Le(value)` | `argument <= value` | |
|
| `Lt(value)` | `argument < value` | |
|
| `Ne(value)` | `argument != value` | |
|
| `IsFalse()` | `argument` evaluates to `false` in a Boolean context. | |
|
| `IsTrue()` | `argument` evaluates to `true` in a Boolean context. | |
|
| `IsNull()` | `argument` is a `NULL` pointer (raw or smart). | |
|
| `NotNull()` | `argument` is a non-null pointer (raw or smart). | |
|
| `Optional(m)` | `argument` is `optional<>` that contains a value matching `m`. (For testing whether an `optional<>` is set, check for equality with `nullopt`. You may need to use `Eq(nullopt)` if the inner type doesn't have `==`.)| |
|
| `VariantWith<T>(m)` | `argument` is `variant<>` that holds the alternative of type T with a value matching `m`. | |
|
| `Ref(variable)` | `argument` is a reference to `variable`. | |
|
| `TypedEq<type>(value)` | `argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded. | |
|
<!-- mdformat on --> |
|
|
|
Except `Ref()`, these matchers make a *copy* of `value` in case it's modified or |
|
destructed later. If the compiler complains that `value` doesn't have a public |
|
copy constructor, try wrap it in `std::ref()`, e.g. |
|
`Eq(std::ref(non_copyable_value))`. If you do that, make sure |
|
`non_copyable_value` is not changed afterwards, or the meaning of your matcher |
|
will be changed. |
|
|
|
`IsTrue` and `IsFalse` are useful when you need to use a matcher, or for types |
|
that can be explicitly converted to Boolean, but are not implicitly converted to |
|
Boolean. In other cases, you can use the basic |
|
[`EXPECT_TRUE` and `EXPECT_FALSE`](primer.md#basic-assertions) assertions. |
|
|
|
### Floating-Point Matchers {#FpMatchers} |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Matcher | Description | |
|
| :------------------------------- | :--------------------------------- | |
|
| `DoubleEq(a_double)` | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal. | |
|
| `FloatEq(a_float)` | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as unequal. | |
|
| `NanSensitiveDoubleEq(a_double)` | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as equal. | |
|
| `NanSensitiveFloatEq(a_float)` | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as equal. | |
|
| `IsNan()` | `argument` is any floating-point type with a NaN value. | |
|
<!-- mdformat on --> |
|
|
|
The above matchers use ULP-based comparison (the same as used in googletest). |
|
They automatically pick a reasonable error bound based on the absolute value of |
|
the expected value. `DoubleEq()` and `FloatEq()` conform to the IEEE standard, |
|
which requires comparing two NaNs for equality to return false. The |
|
`NanSensitive*` version instead treats two NaNs as equal, which is often what a |
|
user wants. |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Matcher | Description | |
|
| :------------------------------------------------ | :----------------------- | |
|
| `DoubleNear(a_double, max_abs_error)` | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal. | |
|
| `FloatNear(a_float, max_abs_error)` | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal. | |
|
| `NanSensitiveDoubleNear(a_double, max_abs_error)` | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal. | |
|
| `NanSensitiveFloatNear(a_float, max_abs_error)` | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal. | |
|
<!-- mdformat on --> |
|
|
|
### String Matchers |
|
|
|
The `argument` can be either a C string or a C++ string object: |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Matcher | Description | |
|
| :---------------------- | :------------------------------------------------- | |
|
| `ContainsRegex(string)` | `argument` matches the given regular expression. | |
|
| `EndsWith(suffix)` | `argument` ends with string `suffix`. | |
|
| `HasSubstr(string)` | `argument` contains `string` as a sub-string. | |
|
| `IsEmpty()` | `argument` is an empty string. | |
|
| `MatchesRegex(string)` | `argument` matches the given regular expression with the match starting at the first character and ending at the last character. | |
|
| `StartsWith(prefix)` | `argument` starts with string `prefix`. | |
|
| `StrCaseEq(string)` | `argument` is equal to `string`, ignoring case. | |
|
| `StrCaseNe(string)` | `argument` is not equal to `string`, ignoring case. | |
|
| `StrEq(string)` | `argument` is equal to `string`. | |
|
| `StrNe(string)` | `argument` is not equal to `string`. | |
|
<!-- mdformat on --> |
|
|
|
`ContainsRegex()` and `MatchesRegex()` take ownership of the `RE` object. They |
|
use the regular expression syntax defined |
|
[here](advanced.md#regular-expression-syntax). All of these matchers, except |
|
`ContainsRegex()` and `MatchesRegex()` work for wide strings as well. |
|
|
|
### Container Matchers |
|
|
|
Most STL-style containers support `==`, so you can use `Eq(expected_container)` |
|
or simply `expected_container` to match a container exactly. If you want to |
|
write the elements in-line, match them more flexibly, or get more informative |
|
messages, you can use: |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Matcher | Description | |
|
| :---------------------------------------- | :------------------------------- | |
|
| `BeginEndDistanceIs(m)` | `argument` is a container whose `begin()` and `end()` iterators are separated by a number of increments matching `m`. E.g. `BeginEndDistanceIs(2)` or `BeginEndDistanceIs(Lt(2))`. For containers that define a `size()` method, `SizeIs(m)` may be more efficient. | |
|
| `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. | |
|
| `Contains(e)` | `argument` contains an element that matches `e`, which can be either a value or a matcher. | |
|
| `Each(e)` | `argument` is a container where *every* element matches `e`, which can be either a value or a matcher. | |
|
| `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the *i*-th element matches `ei`, which can be a value or a matcher. | |
|
| `ElementsAreArray({e0, e1, ..., en})`, `ElementsAreArray(a_container)`, `ElementsAreArray(begin, end)`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. | |
|
| `IsEmpty()` | `argument` is an empty container (`container.empty()`). | |
|
| `IsSubsetOf({e0, e1, ..., en})`, `IsSubsetOf(a_container)`, `IsSubsetOf(begin, end)`, `IsSubsetOf(array)`, or `IsSubsetOf(array, count)` | `argument` matches `UnorderedElementsAre(x0, x1, ..., xk)` for some subset `{x0, x1, ..., xk}` of the expected matchers. | |
|
| `IsSupersetOf({e0, e1, ..., en})`, `IsSupersetOf(a_container)`, `IsSupersetOf(begin, end)`, `IsSupersetOf(array)`, or `IsSupersetOf(array, count)` | Some subset of `argument` matches `UnorderedElementsAre(`expected matchers`)`. | |
|
| `Pointwise(m, container)`, `Pointwise(m, {e0, e1, ..., en})` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. | |
|
| `SizeIs(m)` | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`. | |
|
| `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under *some* permutation of the elements, each element matches an `ei` (for a different `i`), which can be a value or a matcher. | |
|
| `UnorderedElementsAreArray({e0, e1, ..., en})`, `UnorderedElementsAreArray(a_container)`, `UnorderedElementsAreArray(begin, end)`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. | |
|
| `UnorderedPointwise(m, container)`, `UnorderedPointwise(m, {e0, e1, ..., en})` | Like `Pointwise(m, container)`, but ignores the order of elements. | |
|
| `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(ElementsAre(1, 2, 3))` verifies that `argument` contains elements 1, 2, and 3, ignoring order. | |
|
| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater(), ElementsAre(3, 2, 1))`. | |
|
<!-- mdformat on --> |
|
|
|
**Notes:** |
|
|
|
* These matchers can also match: |
|
1. a native array passed by reference (e.g. in `Foo(const int (&a)[5])`), |
|
and |
|
2. an array passed as a pointer and a count (e.g. in `Bar(const T* buffer, |
|
int len)` -- see [Multi-argument Matchers](#MultiArgMatchers)). |
|
* The array being matched may be multi-dimensional (i.e. its elements can be |
|
arrays). |
|
* `m` in `Pointwise(m, ...)` should be a matcher for `::std::tuple<T, U>` |
|
where `T` and `U` are the element type of the actual container and the |
|
expected container, respectively. For example, to compare two `Foo` |
|
containers where `Foo` doesn't support `operator==`, one might write: |
|
|
|
```cpp |
|
using ::std::get; |
|
MATCHER(FooEq, "") { |
|
return std::get<0>(arg).Equals(std::get<1>(arg)); |
|
} |
|
... |
|
EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos)); |
|
``` |
|
|
|
### Member Matchers |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Matcher | Description | |
|
| :------------------------------ | :----------------------------------------- | |
|
| `Field(&class::field, m)` | `argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. | |
|
| `Field(field_name, &class::field, m)` | The same as the two-parameter version, but provides a better error message. | |
|
| `Key(e)` | `argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`. | |
|
| `Pair(m1, m2)` | `argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`. | |
|
| `FieldsAre(m...)` | `argument` is a compatible object where each field matches piecewise with `m...`. A compatible object is any that supports the `std::tuple_size<Obj>`+`get<I>(obj)` protocol. In C++17 and up this also supports types compatible with structured bindings, like aggregates. | |
|
| `Property(&class::property, m)` | `argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. The method `property()` must take no argument and be declared as `const`. | |
|
| `Property(property_name, &class::property, m)` | The same as the two-parameter version, but provides a better error message. |
|
<!-- mdformat on --> |
|
|
|
### Matching the Result of a Function, Functor, or Callback |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Matcher | Description | |
|
| :--------------- | :------------------------------------------------ | |
|
| `ResultOf(f, m)` | `f(argument)` matches matcher `m`, where `f` is a function or functor. | |
|
<!-- mdformat on --> |
|
|
|
### Pointer Matchers |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Matcher | Description | |
|
| :------------------------ | :---------------------------------------------- | |
|
| `Address(m)` | the result of `std::addressof(argument)` matches `m`. | |
|
| `Pointee(m)` | `argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`. | |
|
| `Pointer(m)` | `argument` (either a smart pointer or a raw pointer) contains a pointer that matches `m`. `m` will match against the raw pointer regardless of the type of `argument`. | |
|
| `WhenDynamicCastTo<T>(m)` | when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`. | |
|
<!-- mdformat on --> |
|
|
|
### Multi-argument Matchers {#MultiArgMatchers} |
|
|
|
Technically, all matchers match a *single* value. A "multi-argument" matcher is |
|
just one that matches a *tuple*. The following matchers can be used to match a |
|
tuple `(x, y)`: |
|
|
|
Matcher | Description |
|
:------ | :---------- |
|
`Eq()` | `x == y` |
|
`Ge()` | `x >= y` |
|
`Gt()` | `x > y` |
|
`Le()` | `x <= y` |
|
`Lt()` | `x < y` |
|
`Ne()` | `x != y` |
|
|
|
You can use the following selectors to pick a subset of the arguments (or |
|
reorder them) to participate in the matching: |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Matcher | Description | |
|
| :------------------------- | :---------------------------------------------- | |
|
| `AllArgs(m)` | Equivalent to `m`. Useful as syntactic sugar in `.With(AllArgs(m))`. | |
|
| `Args<N1, N2, ..., Nk>(m)` | The tuple of the `k` selected (using 0-based indices) arguments matches `m`, e.g. `Args<1, 2>(Eq())`. | |
|
<!-- mdformat on --> |
|
|
|
### Composite Matchers |
|
|
|
You can make a matcher from one or more other matchers: |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Matcher | Description | |
|
| :------------------------------- | :-------------------------------------- | |
|
| `AllOf(m1, m2, ..., mn)` | `argument` matches all of the matchers `m1` to `mn`. | |
|
| `AllOfArray({m0, m1, ..., mn})`, `AllOfArray(a_container)`, `AllOfArray(begin, end)`, `AllOfArray(array)`, or `AllOfArray(array, count)` | The same as `AllOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. | |
|
| `AnyOf(m1, m2, ..., mn)` | `argument` matches at least one of the matchers `m1` to `mn`. | |
|
| `AnyOfArray({m0, m1, ..., mn})`, `AnyOfArray(a_container)`, `AnyOfArray(begin, end)`, `AnyOfArray(array)`, or `AnyOfArray(array, count)` | The same as `AnyOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. | |
|
| `Not(m)` | `argument` doesn't match matcher `m`. | |
|
<!-- mdformat on --> |
|
|
|
### Adapters for Matchers |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Matcher | Description | |
|
| :---------------------- | :------------------------------------ | |
|
| `MatcherCast<T>(m)` | casts matcher `m` to type `Matcher<T>`. | |
|
| `SafeMatcherCast<T>(m)` | [safely casts](gmock_cook_book.md#casting-matchers) matcher `m` to type `Matcher<T>`. | |
|
| `Truly(predicate)` | `predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor. | |
|
<!-- mdformat on --> |
|
|
|
`AddressSatisfies(callback)` and `Truly(callback)` take ownership of `callback`, |
|
which must be a permanent callback. |
|
|
|
### Using Matchers as Predicates {#MatchersAsPredicatesCheat} |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Matcher | Description | |
|
| :---------------------------- | :------------------------------------------ | |
|
| `Matches(m)(value)` | evaluates to `true` if `value` matches `m`. You can use `Matches(m)` alone as a unary functor. | |
|
| `ExplainMatchResult(m, value, result_listener)` | evaluates to `true` if `value` matches `m`, explaining the result to `result_listener`. | |
|
| `Value(value, m)` | evaluates to `true` if `value` matches `m`. | |
|
<!-- mdformat on --> |
|
|
|
### Defining Matchers |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Matcher | Description | |
|
| :----------------------------------- | :------------------------------------ | |
|
| `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. | |
|
| `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a matcher `IsDivisibleBy(n)` to match a number divisible by `n`. | |
|
| `MATCHER_P2(IsBetween, a, b, absl::StrCat(negation ? "isn't" : "is", " between ", PrintToString(a), " and ", PrintToString(b))) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. | |
|
<!-- mdformat on --> |
|
|
|
**Notes:** |
|
|
|
1. The `MATCHER*` macros cannot be used inside a function or class. |
|
2. The matcher body must be *purely functional* (i.e. it cannot have any side |
|
effect, and the result must not depend on anything other than the value |
|
being matched and the matcher parameters). |
|
3. You can use `PrintToString(x)` to convert a value `x` of any type to a |
|
string. |
|
|
|
## Actions {#ActionList} |
|
|
|
**Actions** specify what a mock function should do when invoked. |
|
|
|
### Returning a Value |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| | | |
|
| :-------------------------------- | :-------------------------------------------- | |
|
| `Return()` | Return from a `void` mock function. | |
|
| `Return(value)` | Return `value`. If the type of `value` is different to the mock function's return type, `value` is converted to the latter type <i>at the time the expectation is set</i>, not when the action is executed. | |
|
| `ReturnArg<N>()` | Return the `N`-th (0-based) argument. | |
|
| `ReturnNew<T>(a1, ..., ak)` | Return `new T(a1, ..., ak)`; a different object is created each time. | |
|
| `ReturnNull()` | Return a null pointer. | |
|
| `ReturnPointee(ptr)` | Return the value pointed to by `ptr`. | |
|
| `ReturnRef(variable)` | Return a reference to `variable`. | |
|
| `ReturnRefOfCopy(value)` | Return a reference to a copy of `value`; the copy lives as long as the action. | |
|
| `ReturnRoundRobin({a1, ..., ak})` | Each call will return the next `ai` in the list, starting at the beginning when the end of the list is reached. | |
|
<!-- mdformat on --> |
|
|
|
### Side Effects |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| | | |
|
| :--------------------------------- | :-------------------------------------- | |
|
| `Assign(&variable, value)` | Assign `value` to variable. | |
|
| `DeleteArg<N>()` | Delete the `N`-th (0-based) argument, which must be a pointer. | |
|
| `SaveArg<N>(pointer)` | Save the `N`-th (0-based) argument to `*pointer`. | |
|
| `SaveArgPointee<N>(pointer)` | Save the value pointed to by the `N`-th (0-based) argument to `*pointer`. | |
|
| `SetArgReferee<N>(value)` | Assign `value` to the variable referenced by the `N`-th (0-based) argument. | |
|
| `SetArgPointee<N>(value)` | Assign `value` to the variable pointed by the `N`-th (0-based) argument. | |
|
| `SetArgumentPointee<N>(value)` | Same as `SetArgPointee<N>(value)`. Deprecated. Will be removed in v1.7.0. | |
|
| `SetArrayArgument<N>(first, last)` | Copies the elements in source range [`first`, `last`) to the array pointed to by the `N`-th (0-based) argument, which can be either a pointer or an iterator. The action does not take ownership of the elements in the source range. | |
|
| `SetErrnoAndReturn(error, value)` | Set `errno` to `error` and return `value`. | |
|
| `Throw(exception)` | Throws the given exception, which can be any copyable value. Available since v1.1.0. | |
|
<!-- mdformat on --> |
|
|
|
### Using a Function, Functor, or Lambda as an Action |
|
|
|
In the following, by "callable" we mean a free function, `std::function`, |
|
functor, or lambda. |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| | | |
|
| :---------------------------------- | :------------------------------------- | |
|
| `f` | Invoke f with the arguments passed to the mock function, where f is a callable. | |
|
| `Invoke(f)` | Invoke `f` with the arguments passed to the mock function, where `f` can be a global/static function or a functor. | |
|
| `Invoke(object_pointer, &class::method)` | Invoke the method on the object with the arguments passed to the mock function. | |
|
| `InvokeWithoutArgs(f)` | Invoke `f`, which can be a global/static function or a functor. `f` must take no arguments. | |
|
| `InvokeWithoutArgs(object_pointer, &class::method)` | Invoke the method on the object, which takes no arguments. | |
|
| `InvokeArgument<N>(arg1, arg2, ..., argk)` | Invoke the mock function's `N`-th (0-based) argument, which must be a function or a functor, with the `k` arguments. | |
|
<!-- mdformat on --> |
|
|
|
The return value of the invoked function is used as the return value of the |
|
action. |
|
|
|
When defining a callable to be used with `Invoke*()`, you can declare any unused |
|
parameters as `Unused`: |
|
|
|
```cpp |
|
using ::testing::Invoke; |
|
double Distance(Unused, double x, double y) { return sqrt(x*x + y*y); } |
|
... |
|
EXPECT_CALL(mock, Foo("Hi", _, _)).WillOnce(Invoke(Distance)); |
|
``` |
|
|
|
`Invoke(callback)` and `InvokeWithoutArgs(callback)` take ownership of |
|
`callback`, which must be permanent. The type of `callback` must be a base |
|
callback type instead of a derived one, e.g. |
|
|
|
```cpp |
|
BlockingClosure* done = new BlockingClosure; |
|
... Invoke(done) ...; // This won't compile! |
|
|
|
Closure* done2 = new BlockingClosure; |
|
... Invoke(done2) ...; // This works. |
|
``` |
|
|
|
In `InvokeArgument<N>(...)`, if an argument needs to be passed by reference, |
|
wrap it inside `std::ref()`. For example, |
|
|
|
```cpp |
|
using ::testing::InvokeArgument; |
|
... |
|
InvokeArgument<2>(5, string("Hi"), std::ref(foo)) |
|
``` |
|
|
|
calls the mock function's #2 argument, passing to it `5` and `string("Hi")` by |
|
value, and `foo` by reference. |
|
|
|
### Default Action |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Matcher | Description | |
|
| :------------ | :----------------------------------------------------- | |
|
| `DoDefault()` | Do the default action (specified by `ON_CALL()` or the built-in one). | |
|
<!-- mdformat on --> |
|
|
|
**Note:** due to technical reasons, `DoDefault()` cannot be used inside a |
|
composite action - trying to do so will result in a run-time error. |
|
|
|
### Composite Actions |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| | | |
|
| :----------------------------- | :------------------------------------------ | |
|
| `DoAll(a1, a2, ..., an)` | Do all actions `a1` to `an` and return the result of `an` in each invocation. The first `n - 1` sub-actions must return void and will receive a readonly view of the arguments. | |
|
| `IgnoreResult(a)` | Perform action `a` and ignore its result. `a` must not return void. | |
|
| `WithArg<N>(a)` | Pass the `N`-th (0-based) argument of the mock function to action `a` and perform it. | |
|
| `WithArgs<N1, N2, ..., Nk>(a)` | Pass the selected (0-based) arguments of the mock function to action `a` and perform it. | |
|
| `WithoutArgs(a)` | Perform action `a` without any arguments. | |
|
<!-- mdformat on --> |
|
|
|
### Defining Actions |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| | | |
|
| :--------------------------------- | :-------------------------------------- | |
|
| `ACTION(Sum) { return arg0 + arg1; }` | Defines an action `Sum()` to return the sum of the mock function's argument #0 and #1. | |
|
| `ACTION_P(Plus, n) { return arg0 + n; }` | Defines an action `Plus(n)` to return the sum of the mock function's argument #0 and `n`. | |
|
| `ACTION_Pk(Foo, p1, ..., pk) { statements; }` | Defines a parameterized action `Foo(p1, ..., pk)` to execute the given `statements`. | |
|
<!-- mdformat on --> |
|
|
|
The `ACTION*` macros cannot be used inside a function or class. |
|
|
|
## Cardinalities {#CardinalityList} |
|
|
|
These are used in `Times()` to specify how many times a mock function will be |
|
called: |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| | | |
|
| :---------------- | :----------------------------------------------------- | |
|
| `AnyNumber()` | The function can be called any number of times. | |
|
| `AtLeast(n)` | The call is expected at least `n` times. | |
|
| `AtMost(n)` | The call is expected at most `n` times. | |
|
| `Between(m, n)` | The call is expected between `m` and `n` (inclusive) times. | |
|
| `Exactly(n) or n` | The call is expected exactly `n` times. In particular, the call should never happen when `n` is 0. | |
|
<!-- mdformat on --> |
|
|
|
## Expectation Order |
|
|
|
By default, the expectations can be matched in *any* order. If some or all |
|
expectations must be matched in a given order, there are two ways to specify it. |
|
They can be used either independently or together. |
|
|
|
### The After Clause {#AfterClause} |
|
|
|
```cpp |
|
using ::testing::Expectation; |
|
... |
|
Expectation init_x = EXPECT_CALL(foo, InitX()); |
|
Expectation init_y = EXPECT_CALL(foo, InitY()); |
|
EXPECT_CALL(foo, Bar()) |
|
.After(init_x, init_y); |
|
``` |
|
|
|
says that `Bar()` can be called only after both `InitX()` and `InitY()` have |
|
been called. |
|
|
|
If you don't know how many pre-requisites an expectation has when you write it, |
|
you can use an `ExpectationSet` to collect them: |
|
|
|
```cpp |
|
using ::testing::ExpectationSet; |
|
... |
|
ExpectationSet all_inits; |
|
for (int i = 0; i < element_count; i++) { |
|
all_inits += EXPECT_CALL(foo, InitElement(i)); |
|
} |
|
EXPECT_CALL(foo, Bar()) |
|
.After(all_inits); |
|
``` |
|
|
|
says that `Bar()` can be called only after all elements have been initialized |
|
(but we don't care about which elements get initialized before the others). |
|
|
|
Modifying an `ExpectationSet` after using it in an `.After()` doesn't affect the |
|
meaning of the `.After()`. |
|
|
|
### Sequences {#UsingSequences} |
|
|
|
When you have a long chain of sequential expectations, it's easier to specify |
|
the order using **sequences**, which don't require you to given each expectation |
|
in the chain a different name. *All expected calls* in the same sequence must |
|
occur in the order they are specified. |
|
|
|
```cpp |
|
using ::testing::Return; |
|
using ::testing::Sequence; |
|
Sequence s1, s2; |
|
... |
|
EXPECT_CALL(foo, Reset()) |
|
.InSequence(s1, s2) |
|
.WillOnce(Return(true)); |
|
EXPECT_CALL(foo, GetSize()) |
|
.InSequence(s1) |
|
.WillOnce(Return(1)); |
|
EXPECT_CALL(foo, Describe(A<const char*>())) |
|
.InSequence(s2) |
|
.WillOnce(Return("dummy")); |
|
``` |
|
|
|
says that `Reset()` must be called before *both* `GetSize()` *and* `Describe()`, |
|
and the latter two can occur in any order. |
|
|
|
To put many expectations in a sequence conveniently: |
|
|
|
```cpp |
|
using ::testing::InSequence; |
|
{ |
|
InSequence seq; |
|
|
|
EXPECT_CALL(...)...; |
|
EXPECT_CALL(...)...; |
|
... |
|
EXPECT_CALL(...)...; |
|
} |
|
``` |
|
|
|
says that all expected calls in the scope of `seq` must occur in strict order. |
|
The name `seq` is irrelevant. |
|
|
|
## Verifying and Resetting a Mock |
|
|
|
gMock will verify the expectations on a mock object when it is destructed, or |
|
you can do it earlier: |
|
|
|
```cpp |
|
using ::testing::Mock; |
|
... |
|
// Verifies and removes the expectations on mock_obj; |
|
// returns true if and only if successful. |
|
Mock::VerifyAndClearExpectations(&mock_obj); |
|
... |
|
// Verifies and removes the expectations on mock_obj; |
|
// also removes the default actions set by ON_CALL(); |
|
// returns true if and only if successful. |
|
Mock::VerifyAndClear(&mock_obj); |
|
``` |
|
|
|
You can also tell gMock that a mock object can be leaked and doesn't need to be |
|
verified: |
|
|
|
```cpp |
|
Mock::AllowLeak(&mock_obj); |
|
``` |
|
|
|
## Mock Classes |
|
|
|
gMock defines a convenient mock class template |
|
|
|
```cpp |
|
class MockFunction<R(A1, ..., An)> { |
|
public: |
|
MOCK_METHOD(R, Call, (A1, ..., An)); |
|
}; |
|
``` |
|
|
|
See this [recipe](gmock_cook_book.md#using-check-points) for one application of |
|
it. |
|
|
|
## Flags |
|
|
|
<!-- mdformat off(no multiline tables) --> |
|
| Flag | Description | |
|
| :----------------------------- | :---------------------------------------- | |
|
| `--gmock_catch_leaked_mocks=0` | Don't report leaked mock objects as failures. | |
|
| `--gmock_verbose=LEVEL` | Sets the default verbosity level (`info`, `warning`, or `error`) of Google Mock messages. | |
|
<!-- mdformat on -->
|
|
|