GoogleTest - Google Testing and Mocking Framework (grpc protobuff依赖)
https://google.github.io/googletest/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
775 lines
26 KiB
775 lines
26 KiB
$$ -*- mode: c++; -*- |
|
$$ This is a Pump source file. Please use Pump to convert it to |
|
$$ gmock-generated-variadic-actions.h. |
|
$$ |
|
$var n = 10 $$ The maximum arity we support. |
|
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
// Author: wan@google.com (Zhanyong Wan) |
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file implements some commonly used variadic actions. |
|
|
|
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ |
|
#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ |
|
|
|
#include <gmock/gmock-actions.h> |
|
#include <gmock/internal/gmock-port.h> |
|
|
|
namespace testing { |
|
namespace internal { |
|
|
|
// InvokeHelper<F> knows how to unpack an N-tuple and invoke an N-ary |
|
// function or method with the unpacked values, where F is a function |
|
// type that takes N arguments. |
|
template <typename Result, typename ArgumentTuple> |
|
class InvokeHelper; |
|
|
|
|
|
$range i 0..n |
|
$for i [[ |
|
$range j 1..i |
|
$var types = [[$for j [[, typename A$j]]]] |
|
$var as = [[$for j, [[A$j]]]] |
|
$var args = [[$if i==0 [[]] $else [[ args]]]] |
|
$var import = [[$if i==0 [[]] $else [[ |
|
using ::std::tr1::get; |
|
|
|
]]]] |
|
$var gets = [[$for j, [[get<$(j - 1)>(args)]]]] |
|
template <typename R$types> |
|
class InvokeHelper<R, ::std::tr1::tuple<$as> > { |
|
public: |
|
template <typename Function> |
|
static R Invoke(Function function, const ::std::tr1::tuple<$as>&$args) { |
|
$import return function($gets); |
|
} |
|
|
|
template <class Class, typename MethodPtr> |
|
static R InvokeMethod(Class* obj_ptr, |
|
MethodPtr method_ptr, |
|
const ::std::tr1::tuple<$as>&$args) { |
|
$import return (obj_ptr->*method_ptr)($gets); |
|
} |
|
}; |
|
|
|
|
|
]] |
|
|
|
// Implements the Invoke(f) action. The template argument |
|
// FunctionImpl is the implementation type of f, which can be either a |
|
// function pointer or a functor. Invoke(f) can be used as an |
|
// Action<F> as long as f's type is compatible with F (i.e. f can be |
|
// assigned to a tr1::function<F>). |
|
template <typename FunctionImpl> |
|
class InvokeAction { |
|
public: |
|
// The c'tor makes a copy of function_impl (either a function |
|
// pointer or a functor). |
|
explicit InvokeAction(FunctionImpl function_impl) |
|
: function_impl_(function_impl) {} |
|
|
|
template <typename Result, typename ArgumentTuple> |
|
Result Perform(const ArgumentTuple& args) { |
|
return InvokeHelper<Result, ArgumentTuple>::Invoke(function_impl_, args); |
|
} |
|
private: |
|
FunctionImpl function_impl_; |
|
}; |
|
|
|
// Implements the Invoke(object_ptr, &Class::Method) action. |
|
template <class Class, typename MethodPtr> |
|
class InvokeMethodAction { |
|
public: |
|
InvokeMethodAction(Class* obj_ptr, MethodPtr method_ptr) |
|
: obj_ptr_(obj_ptr), method_ptr_(method_ptr) {} |
|
|
|
template <typename Result, typename ArgumentTuple> |
|
Result Perform(const ArgumentTuple& args) const { |
|
return InvokeHelper<Result, ArgumentTuple>::InvokeMethod( |
|
obj_ptr_, method_ptr_, args); |
|
} |
|
private: |
|
Class* const obj_ptr_; |
|
const MethodPtr method_ptr_; |
|
}; |
|
|
|
// A ReferenceWrapper<T> object represents a reference to type T, |
|
// which can be either const or not. It can be explicitly converted |
|
// from, and implicitly converted to, a T&. Unlike a reference, |
|
// ReferenceWrapper<T> can be copied and can survive template type |
|
// inference. This is used to support by-reference arguments in the |
|
// InvokeArgument<N>(...) action. The idea was from "reference |
|
// wrappers" in tr1, which we don't have in our source tree yet. |
|
template <typename T> |
|
class ReferenceWrapper { |
|
public: |
|
// Constructs a ReferenceWrapper<T> object from a T&. |
|
explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT |
|
|
|
// Allows a ReferenceWrapper<T> object to be implicitly converted to |
|
// a T&. |
|
operator T&() const { return *pointer_; } |
|
private: |
|
T* pointer_; |
|
}; |
|
|
|
// CallableHelper has static methods for invoking "callables", |
|
// i.e. function pointers and functors. It uses overloading to |
|
// provide a uniform interface for invoking different kinds of |
|
// callables. In particular, you can use: |
|
// |
|
// CallableHelper<R>::Call(callable, a1, a2, ..., an) |
|
// |
|
// to invoke an n-ary callable, where R is its return type. If an |
|
// argument, say a2, needs to be passed by reference, you should write |
|
// ByRef(a2) instead of a2 in the above expression. |
|
template <typename R> |
|
class CallableHelper { |
|
public: |
|
// Calls a nullary callable. |
|
template <typename Function> |
|
static R Call(Function function) { return function(); } |
|
|
|
// Calls a unary callable. |
|
|
|
// We deliberately pass a1 by value instead of const reference here |
|
// in case it is a C-string literal. If we had declared the |
|
// parameter as 'const A1& a1' and write Call(function, "Hi"), the |
|
// compiler would've thought A1 is 'char[3]', which causes trouble |
|
// when you need to copy a value of type A1. By declaring the |
|
// parameter as 'A1 a1', the compiler will correctly infer that A1 |
|
// is 'const char*' when it sees Call(function, "Hi"). |
|
// |
|
// Since this function is defined inline, the compiler can get rid |
|
// of the copying of the arguments. Therefore the performance won't |
|
// be hurt. |
|
template <typename Function, typename A1> |
|
static R Call(Function function, A1 a1) { return function(a1); } |
|
|
|
$range i 2..n |
|
$for i |
|
[[ |
|
$var arity = [[$if i==2 [[binary]] $elif i==3 [[ternary]] $else [[$i-ary]]]] |
|
|
|
// Calls a $arity callable. |
|
|
|
$range j 1..i |
|
$var typename_As = [[$for j, [[typename A$j]]]] |
|
$var Aas = [[$for j, [[A$j a$j]]]] |
|
$var as = [[$for j, [[a$j]]]] |
|
$var typename_Ts = [[$for j, [[typename T$j]]]] |
|
$var Ts = [[$for j, [[T$j]]]] |
|
template <typename Function, $typename_As> |
|
static R Call(Function function, $Aas) { |
|
return function($as); |
|
} |
|
|
|
]] |
|
|
|
}; // class CallableHelper |
|
|
|
// Invokes a nullary callable argument. |
|
template <size_t N> |
|
class InvokeArgumentAction0 { |
|
public: |
|
template <typename Result, typename ArgumentTuple> |
|
static Result Perform(const ArgumentTuple& args) { |
|
return CallableHelper<Result>::Call(::std::tr1::get<N>(args)); |
|
} |
|
}; |
|
|
|
// Invokes a unary callable argument with the given argument. |
|
template <size_t N, typename A1> |
|
class InvokeArgumentAction1 { |
|
public: |
|
// We deliberately pass a1 by value instead of const reference here |
|
// in case it is a C-string literal. |
|
// |
|
// Since this function is defined inline, the compiler can get rid |
|
// of the copying of the arguments. Therefore the performance won't |
|
// be hurt. |
|
explicit InvokeArgumentAction1(A1 a1) : arg1_(a1) {} |
|
|
|
template <typename Result, typename ArgumentTuple> |
|
Result Perform(const ArgumentTuple& args) { |
|
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), arg1_); |
|
} |
|
private: |
|
const A1 arg1_; |
|
}; |
|
|
|
$range i 2..n |
|
$for i [[ |
|
$var arity = [[$if i==2 [[binary]] $elif i==3 [[ternary]] $else [[$i-ary]]]] |
|
$range j 1..i |
|
$var typename_As = [[$for j, [[typename A$j]]]] |
|
$var args_ = [[$for j, [[arg$j[[]]_]]]] |
|
|
|
// Invokes a $arity callable argument with the given arguments. |
|
template <size_t N, $typename_As> |
|
class InvokeArgumentAction$i { |
|
public: |
|
InvokeArgumentAction$i($for j, [[A$j a$j]]) : |
|
$for j, [[arg$j[[]]_(a$j)]] {} |
|
|
|
template <typename Result, typename ArgumentTuple> |
|
Result Perform(const ArgumentTuple& args) { |
|
$if i <= 4 [[ |
|
|
|
return CallableHelper<Result>::Call(::std::tr1::get<N>(args), $args_); |
|
|
|
]] $else [[ |
|
|
|
// We extract the callable to a variable before invoking it, in |
|
// case it is a functor passed by value and its operator() is not |
|
// const. |
|
typename ::std::tr1::tuple_element<N, ArgumentTuple>::type function = |
|
::std::tr1::get<N>(args); |
|
return function($args_); |
|
|
|
]] |
|
} |
|
private: |
|
$for j [[ |
|
|
|
const A$j arg$j[[]]_; |
|
]] |
|
|
|
}; |
|
|
|
]] |
|
|
|
// An INTERNAL macro for extracting the type of a tuple field. It's |
|
// subject to change without notice - DO NOT USE IN USER CODE! |
|
#define GMOCK_FIELD(Tuple, N) \ |
|
typename ::std::tr1::tuple_element<N, Tuple>::type |
|
|
|
$range i 1..n |
|
|
|
// SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::type is the |
|
// type of an n-ary function whose i-th (1-based) argument type is the |
|
// k{i}-th (0-based) field of ArgumentTuple, which must be a tuple |
|
// type, and whose return type is Result. For example, |
|
// SelectArgs<int, ::std::tr1::tuple<bool, char, double, long>, 0, 3>::type |
|
// is int(bool, long). |
|
// |
|
// SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::Select(args) |
|
// returns the selected fields (k1, k2, ..., k_n) of args as a tuple. |
|
// For example, |
|
// SelectArgs<int, ::std::tr1::tuple<bool, char, double>, 2, 0>::Select( |
|
// ::std::tr1::make_tuple(true, 'a', 2.5)) |
|
// returns ::std::tr1::tuple (2.5, true). |
|
// |
|
// The numbers in list k1, k2, ..., k_n must be >= 0, where n can be |
|
// in the range [0, $n]. Duplicates are allowed and they don't have |
|
// to be in an ascending or descending order. |
|
|
|
template <typename Result, typename ArgumentTuple, $for i, [[int k$i]]> |
|
class SelectArgs { |
|
public: |
|
typedef Result type($for i, [[GMOCK_FIELD(ArgumentTuple, k$i)]]); |
|
typedef typename Function<type>::ArgumentTuple SelectedArgs; |
|
static SelectedArgs Select(const ArgumentTuple& args) { |
|
using ::std::tr1::get; |
|
return SelectedArgs($for i, [[get<k$i>(args)]]); |
|
} |
|
}; |
|
|
|
|
|
$for i [[ |
|
$range j 1..n |
|
$range j1 1..i-1 |
|
template <typename Result, typename ArgumentTuple$for j1[[, int k$j1]]> |
|
class SelectArgs<Result, ArgumentTuple, |
|
$for j, [[$if j <= i-1 [[k$j]] $else [[-1]]]]> { |
|
public: |
|
typedef Result type($for j1, [[GMOCK_FIELD(ArgumentTuple, k$j1)]]); |
|
typedef typename Function<type>::ArgumentTuple SelectedArgs; |
|
static SelectedArgs Select(const ArgumentTuple& args) { |
|
using ::std::tr1::get; |
|
return SelectedArgs($for j1, [[get<k$j1>(args)]]); |
|
} |
|
}; |
|
|
|
|
|
]] |
|
#undef GMOCK_FIELD |
|
|
|
$var ks = [[$for i, [[k$i]]]] |
|
|
|
// Implements the WithArgs action. |
|
template <typename InnerAction, $for i, [[int k$i = -1]]> |
|
class WithArgsAction { |
|
public: |
|
explicit WithArgsAction(const InnerAction& action) : action_(action) {} |
|
|
|
template <typename F> |
|
operator Action<F>() const { |
|
typedef typename Function<F>::Result Result; |
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
|
typedef typename SelectArgs<Result, ArgumentTuple, |
|
$ks>::type |
|
InnerFunctionType; |
|
|
|
class Impl : public ActionInterface<F> { |
|
public: |
|
explicit Impl(const InnerAction& action) : action_(action) {} |
|
|
|
virtual Result Perform(const ArgumentTuple& args) { |
|
return action_.Perform(SelectArgs<Result, ArgumentTuple, $ks>::Select(args)); |
|
} |
|
private: |
|
Action<InnerFunctionType> action_; |
|
}; |
|
|
|
return MakeAction(new Impl(action_)); |
|
} |
|
private: |
|
const InnerAction action_; |
|
}; |
|
|
|
// Does two actions sequentially. Used for implementing the DoAll(a1, |
|
// a2, ...) action. |
|
template <typename Action1, typename Action2> |
|
class DoBothAction { |
|
public: |
|
DoBothAction(Action1 action1, Action2 action2) |
|
: action1_(action1), action2_(action2) {} |
|
|
|
// This template type conversion operator allows DoAll(a1, ..., a_n) |
|
// to be used in ANY function of compatible type. |
|
template <typename F> |
|
operator Action<F>() const { |
|
typedef typename Function<F>::Result Result; |
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
|
typedef typename Function<F>::MakeResultVoid VoidResult; |
|
|
|
// Implements the DoAll(...) action for a particular function type F. |
|
class Impl : public ActionInterface<F> { |
|
public: |
|
Impl(const Action<VoidResult>& action1, const Action<F>& action2) |
|
: action1_(action1), action2_(action2) {} |
|
|
|
virtual Result Perform(const ArgumentTuple& args) { |
|
action1_.Perform(args); |
|
return action2_.Perform(args); |
|
} |
|
private: |
|
const Action<VoidResult> action1_; |
|
const Action<F> action2_; |
|
}; |
|
|
|
return Action<F>(new Impl(action1_, action2_)); |
|
} |
|
private: |
|
Action1 action1_; |
|
Action2 action2_; |
|
}; |
|
|
|
// A macro from the ACTION* family (defined later in this file) |
|
// defines an action that can be used in a mock function. Typically, |
|
// these actions only care about a subset of the arguments of the mock |
|
// function. For example, if such an action only uses the second |
|
// argument, it can be used in any mock function that takes >= 2 |
|
// arguments where the type of the second argument is compatible. |
|
// |
|
// Therefore, the action implementation must be prepared to take more |
|
// arguments than it needs. The ExcessiveArg type is used to |
|
// represent those excessive arguments. In order to keep the compiler |
|
// error messages tractable, we define it in the testing namespace |
|
// instead of testing::internal. However, this is an INTERNAL TYPE |
|
// and subject to change without notice, so a user MUST NOT USE THIS |
|
// TYPE DIRECTLY. |
|
struct ExcessiveArg {}; |
|
|
|
// A helper class needed for implementing the ACTION* macros. |
|
template <typename Result, class Impl> |
|
class ActionHelper { |
|
public: |
|
$range i 0..n |
|
$for i |
|
|
|
[[ |
|
$var template = [[$if i==0 [[]] $else [[ |
|
$range j 0..i-1 |
|
template <$for j, [[typename A$j]]> |
|
]]]] |
|
$range j 0..i-1 |
|
$var As = [[$for j, [[A$j]]]] |
|
$var as = [[$for j, [[get<$j>(args)]]]] |
|
$range k 1..n-i |
|
$var eas = [[$for k, [[ExcessiveArg()]]]] |
|
$var arg_list = [[$if (i==0) | (i==n) [[$as$eas]] $else [[$as, $eas]]]] |
|
$template |
|
static Result Perform(Impl* impl, const ::std::tr1::tuple<$As>& args) { |
|
using ::std::tr1::get; |
|
return impl->gmock_PerformImpl(args, $arg_list); |
|
} |
|
|
|
]] |
|
}; |
|
|
|
} // namespace internal |
|
|
|
// Various overloads for Invoke(). |
|
|
|
// Creates an action that invokes 'function_impl' with the mock |
|
// function's arguments. |
|
template <typename FunctionImpl> |
|
PolymorphicAction<internal::InvokeAction<FunctionImpl> > Invoke( |
|
FunctionImpl function_impl) { |
|
return MakePolymorphicAction( |
|
internal::InvokeAction<FunctionImpl>(function_impl)); |
|
} |
|
|
|
// Creates an action that invokes the given method on the given object |
|
// with the mock function's arguments. |
|
template <class Class, typename MethodPtr> |
|
PolymorphicAction<internal::InvokeMethodAction<Class, MethodPtr> > Invoke( |
|
Class* obj_ptr, MethodPtr method_ptr) { |
|
return MakePolymorphicAction( |
|
internal::InvokeMethodAction<Class, MethodPtr>(obj_ptr, method_ptr)); |
|
} |
|
|
|
// Creates a reference wrapper for the given L-value. If necessary, |
|
// you can explicitly specify the type of the reference. For example, |
|
// suppose 'derived' is an object of type Derived, ByRef(derived) |
|
// would wrap a Derived&. If you want to wrap a const Base& instead, |
|
// where Base is a base class of Derived, just write: |
|
// |
|
// ByRef<const Base>(derived) |
|
template <typename T> |
|
inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT |
|
return internal::ReferenceWrapper<T>(l_value); |
|
} |
|
|
|
// Various overloads for InvokeArgument<N>(). |
|
// |
|
// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th |
|
// (0-based) argument, which must be a k-ary callable, of the mock |
|
// function, with arguments a1, a2, ..., a_k. |
|
// |
|
// Notes: |
|
// |
|
// 1. The arguments are passed by value by default. If you need to |
|
// pass an argument by reference, wrap it inside ByRef(). For |
|
// example, |
|
// |
|
// InvokeArgument<1>(5, string("Hello"), ByRef(foo)) |
|
// |
|
// passes 5 and string("Hello") by value, and passes foo by |
|
// reference. |
|
// |
|
// 2. If the callable takes an argument by reference but ByRef() is |
|
// not used, it will receive the reference to a copy of the value, |
|
// instead of the original value. For example, when the 0-th |
|
// argument of the mock function takes a const string&, the action |
|
// |
|
// InvokeArgument<0>(string("Hello")) |
|
// |
|
// makes a copy of the temporary string("Hello") object and passes a |
|
// reference of the copy, instead of the original temporary object, |
|
// to the callable. This makes it easy for a user to define an |
|
// InvokeArgument action from temporary values and have it performed |
|
// later. |
|
template <size_t N> |
|
inline PolymorphicAction<internal::InvokeArgumentAction0<N> > InvokeArgument() { |
|
return MakePolymorphicAction(internal::InvokeArgumentAction0<N>()); |
|
} |
|
|
|
// We deliberately pass a1 by value instead of const reference here in |
|
// case it is a C-string literal. If we had declared the parameter as |
|
// 'const A1& a1' and write InvokeArgument<0>("Hi"), the compiler |
|
// would've thought A1 is 'char[3]', which causes trouble as the |
|
// implementation needs to copy a value of type A1. By declaring the |
|
// parameter as 'A1 a1', the compiler will correctly infer that A1 is |
|
// 'const char*' when it sees InvokeArgument<0>("Hi"). |
|
// |
|
// Since this function is defined inline, the compiler can get rid of |
|
// the copying of the arguments. Therefore the performance won't be |
|
// hurt. |
|
template <size_t N, typename A1> |
|
inline PolymorphicAction<internal::InvokeArgumentAction1<N, A1> > |
|
InvokeArgument(A1 a1) { |
|
return MakePolymorphicAction(internal::InvokeArgumentAction1<N, A1>(a1)); |
|
} |
|
|
|
$range i 2..n |
|
$for i [[ |
|
$range j 1..i |
|
$var typename_As = [[$for j, [[typename A$j]]]] |
|
$var As = [[$for j, [[A$j]]]] |
|
$var Aas = [[$for j, [[A$j a$j]]]] |
|
$var as = [[$for j, [[a$j]]]] |
|
|
|
template <size_t N, $typename_As> |
|
inline PolymorphicAction<internal::InvokeArgumentAction$i<N, $As> > |
|
InvokeArgument($Aas) { |
|
return MakePolymorphicAction( |
|
internal::InvokeArgumentAction$i<N, $As>($as)); |
|
} |
|
|
|
]] |
|
|
|
// WithoutArgs(inner_action) can be used in a mock function with a |
|
// non-empty argument list to perform inner_action, which takes no |
|
// argument. In other words, it adapts an action accepting no |
|
// argument to one that accepts (and ignores) arguments. |
|
template <typename InnerAction> |
|
inline internal::WithArgsAction<InnerAction> |
|
WithoutArgs(const InnerAction& action) { |
|
return internal::WithArgsAction<InnerAction>(action); |
|
} |
|
|
|
// WithArg<k>(an_action) creates an action that passes the k-th |
|
// (0-based) argument of the mock function to an_action and performs |
|
// it. It adapts an action accepting one argument to one that accepts |
|
// multiple arguments. For convenience, we also provide |
|
// WithArgs<k>(an_action) (defined below) as a synonym. |
|
template <int k, typename InnerAction> |
|
inline internal::WithArgsAction<InnerAction, k> |
|
WithArg(const InnerAction& action) { |
|
return internal::WithArgsAction<InnerAction, k>(action); |
|
} |
|
|
|
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes |
|
// the selected arguments of the mock function to an_action and |
|
// performs it. It serves as an adaptor between actions with |
|
// different argument lists. C++ doesn't support default arguments for |
|
// function templates, so we have to overload it. |
|
|
|
$range i 1..n |
|
$for i [[ |
|
$range j 1..i |
|
template <$for j [[int k$j, ]]typename InnerAction> |
|
inline internal::WithArgsAction<InnerAction$for j [[, k$j]]> |
|
WithArgs(const InnerAction& action) { |
|
return internal::WithArgsAction<InnerAction$for j [[, k$j]]>(action); |
|
} |
|
|
|
|
|
]] |
|
// Creates an action that does actions a1, a2, ..., sequentially in |
|
// each invocation. |
|
$range i 2..n |
|
$for i [[ |
|
$range j 2..i |
|
$var types = [[$for j, [[typename Action$j]]]] |
|
$var Aas = [[$for j [[, Action$j a$j]]]] |
|
|
|
template <typename Action1, $types> |
|
$range k 1..i-1 |
|
|
|
inline $for k [[internal::DoBothAction<Action$k, ]]Action$i$for k [[>]] |
|
|
|
DoAll(Action1 a1$Aas) { |
|
$if i==2 [[ |
|
|
|
return internal::DoBothAction<Action1, Action2>(a1, a2); |
|
]] $else [[ |
|
$range j2 2..i |
|
|
|
return DoAll(a1, DoAll($for j2, [[a$j2]])); |
|
]] |
|
|
|
} |
|
|
|
]] |
|
|
|
} // namespace testing |
|
|
|
// The ACTION* family of macros can be used in a namespace scope to |
|
// define custom actions easily. The syntax: |
|
// |
|
// ACTION(name) { statements; } |
|
// |
|
// will define an action with the given name that executes the |
|
// statements. The value returned by the statements will be used as |
|
// the return value of the action. Inside the statements, you can |
|
// refer to the K-th (0-based) argument of the mock function by |
|
// 'argK', and refer to its type by 'argK_type'. For example: |
|
// |
|
// ACTION(IncrementArg1) { |
|
// arg1_type temp = arg1; |
|
// return ++(*temp); |
|
// } |
|
// |
|
// allows you to write |
|
// |
|
// ...WillOnce(IncrementArg1()); |
|
// |
|
// You can also refer to the entire argument tuple and its type by |
|
// 'args' and 'args_type', and refer to the mock function type and its |
|
// return type by 'function_type' and 'return_type'. |
|
// |
|
// Note that you don't need to specify the types of the mock function |
|
// arguments. However rest assured that your code is still type-safe: |
|
// you'll get a compiler error if *arg1 doesn't support the ++ |
|
// operator, or if the type of ++(*arg1) isn't compatible with the |
|
// mock function's return type, for example. |
|
// |
|
// Sometimes you'll want to parameterize the action. For that you can use |
|
// another macro: |
|
// |
|
// ACTION_P(name, param_name) { statements; } |
|
// |
|
// For example: |
|
// |
|
// ACTION_P(Add, n) { return arg0 + n; } |
|
// |
|
// will allow you to write: |
|
// |
|
// ...WillOnce(Add(5)); |
|
// |
|
// Note that you don't need to provide the type of the parameter |
|
// either. If you need to reference the type of a parameter named |
|
// 'foo', you can write 'foo_type'. For example, in the body of |
|
// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type |
|
// of 'n'. |
|
// |
|
// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P$n to support |
|
// multi-parameter actions. |
|
// |
|
// For the purpose of typing, you can view |
|
// |
|
// ACTION_Pk(Foo, p1, ..., pk) { ... } |
|
// |
|
// as shorthand for |
|
// |
|
// template <typename p1_type, ..., typename pk_type> |
|
// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } |
|
// |
|
// In particular, you can provide the template type arguments |
|
// explicitly when invoking Foo(), as in Foo<long, bool>(5, false); |
|
// although usually you can rely on the compiler to infer the types |
|
// for you automatically. You can assign the result of expression |
|
// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., |
|
// pk_type>. This can be useful when composing actions. |
|
// |
|
// You can also overload actions with different numbers of parameters: |
|
// |
|
// ACTION_P(Plus, a) { ... } |
|
// ACTION_P2(Plus, a, b) { ... } |
|
// |
|
// While it's tempting to always use the ACTION* macros when defining |
|
// a new action, you should also consider implementing ActionInterface |
|
// or using MakePolymorphicAction() instead, especially if you need to |
|
// use the action a lot. While these approaches require more work, |
|
// they give you more control on the types of the mock function |
|
// arguments and the action parameters, which in general leads to |
|
// better compiler error messages that pay off in the long run. They |
|
// also allow overloading actions based on parameter types (as opposed |
|
// to just based on the number of parameters). |
|
// |
|
// CAVEAT: |
|
// |
|
// ACTION*() can only be used in a namespace scope. The reason is |
|
// that C++ doesn't yet allow function-local types to be used to |
|
// instantiate templates. The up-coming C++0x standard will fix this. |
|
// Once that's done, we'll consider supporting using ACTION*() inside |
|
// a function. |
|
// |
|
// MORE INFORMATION: |
|
// |
|
// To learn more about using these macros, please search for 'ACTION' |
|
// on http://code.google.com/p/googlemock/wiki/CookBook. |
|
|
|
$range i 0..n |
|
$for i |
|
|
|
[[ |
|
$var template = [[$if i==0 [[]] $else [[ |
|
$range j 0..i-1 |
|
|
|
template <$for j, [[typename p$j##_type]]>\ |
|
]]]] |
|
$var class_name = [[name##Action[[$if i==0 [[]] $elif i==1 [[P]] |
|
$else [[P$i]]]]]] |
|
$range j 0..i-1 |
|
$var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]] |
|
$var param_types_and_names = [[$for j, [[p$j##_type p$j]]]] |
|
$var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]] |
|
$var const_param_field_decls = [[$for j |
|
[[ |
|
|
|
const p$j##_type p$j;\ |
|
]]]] |
|
$var const_param_field_decls2 = [[$for j |
|
[[ |
|
|
|
const p$j##_type p$j;\ |
|
]]]] |
|
$var params = [[$for j, [[p$j]]]] |
|
$var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]] |
|
$range k 0..n-1 |
|
$var typename_arg_types = [[$for k, [[typename arg$k[[]]_type]]]] |
|
$var arg_types_and_names = [[$for k, [[arg$k[[]]_type arg$k]]]] |
|
$var macro_name = [[$if i==0 [[ACTION]] $elif i==1 [[ACTION_P]] |
|
$else [[ACTION_P$i]]]] |
|
|
|
#define $macro_name(name$for j [[, p$j]])\$template |
|
class $class_name {\ |
|
public:\ |
|
$class_name($ctor_param_list)$inits {}\ |
|
template <typename F>\ |
|
class gmock_Impl : public ::testing::ActionInterface<F> {\ |
|
public:\ |
|
typedef F function_type;\ |
|
typedef typename ::testing::internal::Function<F>::Result return_type;\ |
|
typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
|
args_type;\ |
|
[[$if i==1 [[explicit ]]]]gmock_Impl($ctor_param_list)$inits {}\ |
|
virtual return_type Perform(const args_type& args) {\ |
|
return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
|
Perform(this, args);\ |
|
}\ |
|
template <$typename_arg_types>\ |
|
return_type gmock_PerformImpl(const args_type& args, [[]] |
|
$arg_types_and_names) const;\$const_param_field_decls |
|
};\ |
|
template <typename F> operator ::testing::Action<F>() const {\ |
|
return ::testing::Action<F>(new gmock_Impl<F>($params));\ |
|
}\$const_param_field_decls2 |
|
};\$template |
|
inline $class_name$param_types name($param_types_and_names) {\ |
|
return $class_name$param_types($params);\ |
|
}\$template |
|
template <typename F>\ |
|
template <$typename_arg_types>\ |
|
typename ::testing::internal::Function<F>::Result\ |
|
$class_name$param_types::\ |
|
gmock_Impl<F>::gmock_PerformImpl(const args_type& args, [[]] |
|
$arg_types_and_names) const |
|
]] |
|
|
|
|
|
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_
|
|
|