GoogleTest - Google Testing and Mocking Framework (grpc protobuff依赖)
https://google.github.io/googletest/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2787 lines
98 KiB
2787 lines
98 KiB
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
// Author: wan@google.com (Zhanyong Wan) |
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file implements some commonly used argument matchers. More |
|
// matchers can be defined by the user implementing the |
|
// MatcherInterface<T> interface if necessary. |
|
|
|
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
|
#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
|
|
|
#include <algorithm> |
|
#include <limits> |
|
#include <ostream> // NOLINT |
|
#include <sstream> |
|
#include <string> |
|
#include <vector> |
|
|
|
#include <gmock/gmock-printers.h> |
|
#include <gmock/internal/gmock-internal-utils.h> |
|
#include <gmock/internal/gmock-port.h> |
|
#include <gtest/gtest.h> |
|
|
|
namespace testing { |
|
|
|
// To implement a matcher Foo for type T, define: |
|
// 1. a class FooMatcherImpl that implements the |
|
// MatcherInterface<T> interface, and |
|
// 2. a factory function that creates a Matcher<T> object from a |
|
// FooMatcherImpl*. |
|
// |
|
// The two-level delegation design makes it possible to allow a user |
|
// to write "v" instead of "Eq(v)" where a Matcher is expected, which |
|
// is impossible if we pass matchers by pointers. It also eases |
|
// ownership management as Matcher objects can now be copied like |
|
// plain values. |
|
|
|
// The implementation of a matcher. |
|
template <typename T> |
|
class MatcherInterface { |
|
public: |
|
virtual ~MatcherInterface() {} |
|
|
|
// Returns true iff the matcher matches x. |
|
virtual bool Matches(T x) const = 0; |
|
|
|
// Describes this matcher to an ostream. |
|
virtual void DescribeTo(::std::ostream* os) const = 0; |
|
|
|
// Describes the negation of this matcher to an ostream. For |
|
// example, if the description of this matcher is "is greater than |
|
// 7", the negated description could be "is not greater than 7". |
|
// You are not required to override this when implementing |
|
// MatcherInterface, but it is highly advised so that your matcher |
|
// can produce good error messages. |
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "not ("; |
|
DescribeTo(os); |
|
*os << ")"; |
|
} |
|
|
|
// Explains why x matches, or doesn't match, the matcher. Override |
|
// this to provide any additional information that helps a user |
|
// understand the match result. |
|
virtual void ExplainMatchResultTo(T /* x */, ::std::ostream* /* os */) const { |
|
// By default, nothing more needs to be explained, as Google Mock |
|
// has already printed the value of x when this function is |
|
// called. |
|
} |
|
}; |
|
|
|
namespace internal { |
|
|
|
// An internal class for implementing Matcher<T>, which will derive |
|
// from it. We put functionalities common to all Matcher<T> |
|
// specializations here to avoid code duplication. |
|
template <typename T> |
|
class MatcherBase { |
|
public: |
|
// Returns true iff this matcher matches x. |
|
bool Matches(T x) const { return impl_->Matches(x); } |
|
|
|
// Describes this matcher to an ostream. |
|
void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } |
|
|
|
// Describes the negation of this matcher to an ostream. |
|
void DescribeNegationTo(::std::ostream* os) const { |
|
impl_->DescribeNegationTo(os); |
|
} |
|
|
|
// Explains why x matches, or doesn't match, the matcher. |
|
void ExplainMatchResultTo(T x, ::std::ostream* os) const { |
|
impl_->ExplainMatchResultTo(x, os); |
|
} |
|
protected: |
|
MatcherBase() {} |
|
|
|
// Constructs a matcher from its implementation. |
|
explicit MatcherBase(const MatcherInterface<T>* impl) |
|
: impl_(impl) {} |
|
|
|
virtual ~MatcherBase() {} |
|
private: |
|
// shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar |
|
// interfaces. The former dynamically allocates a chunk of memory |
|
// to hold the reference count, while the latter tracks all |
|
// references using a circular linked list without allocating |
|
// memory. It has been observed that linked_ptr performs better in |
|
// typical scenarios. However, shared_ptr can out-perform |
|
// linked_ptr when there are many more uses of the copy constructor |
|
// than the default constructor. |
|
// |
|
// If performance becomes a problem, we should see if using |
|
// shared_ptr helps. |
|
::testing::internal::linked_ptr<const MatcherInterface<T> > impl_; |
|
}; |
|
|
|
// The default implementation of ExplainMatchResultTo() for |
|
// polymorphic matchers. |
|
template <typename PolymorphicMatcherImpl, typename T> |
|
inline void ExplainMatchResultTo(const PolymorphicMatcherImpl& /* impl */, |
|
const T& /* x */, |
|
::std::ostream* /* os */) { |
|
// By default, nothing more needs to be said, as Google Mock already |
|
// prints the value of x elsewhere. |
|
} |
|
|
|
} // namespace internal |
|
|
|
// A Matcher<T> is a copyable and IMMUTABLE (except by assignment) |
|
// object that can check whether a value of type T matches. The |
|
// implementation of Matcher<T> is just a linked_ptr to const |
|
// MatcherInterface<T>, so copying is fairly cheap. Don't inherit |
|
// from Matcher! |
|
template <typename T> |
|
class Matcher : public internal::MatcherBase<T> { |
|
public: |
|
// Constructs a null matcher. Needed for storing Matcher objects in |
|
// STL containers. |
|
Matcher() {} |
|
|
|
// Constructs a matcher from its implementation. |
|
explicit Matcher(const MatcherInterface<T>* impl) |
|
: internal::MatcherBase<T>(impl) {} |
|
|
|
// Implicit constructor here allows people to write |
|
// EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes |
|
Matcher(T value); // NOLINT |
|
}; |
|
|
|
// The following two specializations allow the user to write str |
|
// instead of Eq(str) and "foo" instead of Eq("foo") when a string |
|
// matcher is expected. |
|
template <> |
|
class Matcher<const internal::string&> |
|
: public internal::MatcherBase<const internal::string&> { |
|
public: |
|
Matcher() {} |
|
|
|
explicit Matcher(const MatcherInterface<const internal::string&>* impl) |
|
: internal::MatcherBase<const internal::string&>(impl) {} |
|
|
|
// Allows the user to write str instead of Eq(str) sometimes, where |
|
// str is a string object. |
|
Matcher(const internal::string& s); // NOLINT |
|
|
|
// Allows the user to write "foo" instead of Eq("foo") sometimes. |
|
Matcher(const char* s); // NOLINT |
|
}; |
|
|
|
template <> |
|
class Matcher<internal::string> |
|
: public internal::MatcherBase<internal::string> { |
|
public: |
|
Matcher() {} |
|
|
|
explicit Matcher(const MatcherInterface<internal::string>* impl) |
|
: internal::MatcherBase<internal::string>(impl) {} |
|
|
|
// Allows the user to write str instead of Eq(str) sometimes, where |
|
// str is a string object. |
|
Matcher(const internal::string& s); // NOLINT |
|
|
|
// Allows the user to write "foo" instead of Eq("foo") sometimes. |
|
Matcher(const char* s); // NOLINT |
|
}; |
|
|
|
// The PolymorphicMatcher class template makes it easy to implement a |
|
// polymorphic matcher (i.e. a matcher that can match values of more |
|
// than one type, e.g. Eq(n) and NotNull()). |
|
// |
|
// To define a polymorphic matcher, a user first provides a Impl class |
|
// that has a Matches() method, a DescribeTo() method, and a |
|
// DescribeNegationTo() method. The Matches() method is usually a |
|
// method template (such that it works with multiple types). Then the |
|
// user creates the polymorphic matcher using |
|
// MakePolymorphicMatcher(). To provide additional explanation to the |
|
// match result, define a FREE function (or function template) |
|
// |
|
// void ExplainMatchResultTo(const Impl& matcher, const Value& value, |
|
// ::std::ostream* os); |
|
// |
|
// in the SAME NAME SPACE where Impl is defined. See the definition |
|
// of NotNull() for a complete example. |
|
template <class Impl> |
|
class PolymorphicMatcher { |
|
public: |
|
explicit PolymorphicMatcher(const Impl& impl) : impl_(impl) {} |
|
|
|
// Returns a mutable reference to the underlying matcher |
|
// implementation object. |
|
Impl& mutable_impl() { return impl_; } |
|
|
|
// Returns an immutable reference to the underlying matcher |
|
// implementation object. |
|
const Impl& impl() const { return impl_; } |
|
|
|
template <typename T> |
|
operator Matcher<T>() const { |
|
return Matcher<T>(new MonomorphicImpl<T>(impl_)); |
|
} |
|
private: |
|
template <typename T> |
|
class MonomorphicImpl : public MatcherInterface<T> { |
|
public: |
|
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} |
|
|
|
virtual bool Matches(T x) const { return impl_.Matches(x); } |
|
|
|
virtual void DescribeTo(::std::ostream* os) const { |
|
impl_.DescribeTo(os); |
|
} |
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
impl_.DescribeNegationTo(os); |
|
} |
|
|
|
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const { |
|
using ::testing::internal::ExplainMatchResultTo; |
|
|
|
// C++ uses Argument-Dependent Look-up (aka Koenig Look-up) to |
|
// resolve the call to ExplainMatchResultTo() here. This |
|
// means that if there's a ExplainMatchResultTo() function |
|
// defined in the name space where class Impl is defined, it |
|
// will be picked by the compiler as the better match. |
|
// Otherwise the default implementation of it in |
|
// ::testing::internal will be picked. |
|
// |
|
// This look-up rule lets a writer of a polymorphic matcher |
|
// customize the behavior of ExplainMatchResultTo() when he |
|
// cares to. Nothing needs to be done by the writer if he |
|
// doesn't need to customize it. |
|
ExplainMatchResultTo(impl_, x, os); |
|
} |
|
|
|
private: |
|
const Impl impl_; |
|
}; |
|
|
|
Impl impl_; |
|
}; |
|
|
|
// Creates a matcher from its implementation. This is easier to use |
|
// than the Matcher<T> constructor as it doesn't require you to |
|
// explicitly write the template argument, e.g. |
|
// |
|
// MakeMatcher(foo); |
|
// vs |
|
// Matcher<const string&>(foo); |
|
template <typename T> |
|
inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) { |
|
return Matcher<T>(impl); |
|
}; |
|
|
|
// Creates a polymorphic matcher from its implementation. This is |
|
// easier to use than the PolymorphicMatcher<Impl> constructor as it |
|
// doesn't require you to explicitly write the template argument, e.g. |
|
// |
|
// MakePolymorphicMatcher(foo); |
|
// vs |
|
// PolymorphicMatcher<TypeOfFoo>(foo); |
|
template <class Impl> |
|
inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) { |
|
return PolymorphicMatcher<Impl>(impl); |
|
} |
|
|
|
// In order to be safe and clear, casting between different matcher |
|
// types is done explicitly via MatcherCast<T>(m), which takes a |
|
// matcher m and returns a Matcher<T>. It compiles only when T can be |
|
// statically converted to the argument type of m. |
|
template <typename T, typename M> |
|
Matcher<T> MatcherCast(M m); |
|
|
|
// TODO(vladl@google.com): Modify the implementation to reject casting |
|
// Matcher<int> to Matcher<double>. |
|
// Implements SafeMatcherCast(). |
|
// |
|
// This overload handles polymorphic matchers only since monomorphic |
|
// matchers are handled by the next one. |
|
template <typename T, typename M> |
|
inline Matcher<T> SafeMatcherCast(M polymorphic_matcher) { |
|
return Matcher<T>(polymorphic_matcher); |
|
} |
|
|
|
// This overload handles monomorphic matchers. |
|
// |
|
// In general, if type T can be implicitly converted to type U, we can |
|
// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is |
|
// contravariant): just keep a copy of the original Matcher<U>, convert the |
|
// argument from type T to U, and then pass it to the underlying Matcher<U>. |
|
// The only exception is when U is a reference and T is not, as the |
|
// underlying Matcher<U> may be interested in the argument's address, which |
|
// is not preserved in the conversion from T to U. |
|
template <typename T, typename U> |
|
Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) { |
|
// Enforce that T can be implicitly converted to U. |
|
GMOCK_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value), |
|
T_must_be_implicitly_convertible_to_U); |
|
// Enforce that we are not converting a non-reference type T to a reference |
|
// type U. |
|
GMOCK_COMPILE_ASSERT_( |
|
internal::is_reference<T>::value || !internal::is_reference<U>::value, |
|
cannot_convert_non_referentce_arg_to_reference); |
|
// In case both T and U are arithmetic types, enforce that the |
|
// conversion is not lossy. |
|
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(T)) RawT; |
|
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(U)) RawU; |
|
const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; |
|
const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; |
|
GMOCK_COMPILE_ASSERT_( |
|
kTIsOther || kUIsOther || |
|
(internal::LosslessArithmeticConvertible<RawT, RawU>::value), |
|
conversion_of_arithmetic_types_must_be_lossless); |
|
return MatcherCast<T>(matcher); |
|
} |
|
|
|
// A<T>() returns a matcher that matches any value of type T. |
|
template <typename T> |
|
Matcher<T> A(); |
|
|
|
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
|
// and MUST NOT BE USED IN USER CODE!!! |
|
namespace internal { |
|
|
|
// Appends the explanation on the result of matcher.Matches(value) to |
|
// os iff the explanation is not empty. |
|
template <typename T> |
|
void ExplainMatchResultAsNeededTo(const Matcher<T>& matcher, T value, |
|
::std::ostream* os) { |
|
::std::stringstream reason; |
|
matcher.ExplainMatchResultTo(value, &reason); |
|
const internal::string s = reason.str(); |
|
if (s != "") { |
|
*os << " (" << s << ")"; |
|
} |
|
} |
|
|
|
// An internal helper class for doing compile-time loop on a tuple's |
|
// fields. |
|
template <size_t N> |
|
class TuplePrefix { |
|
public: |
|
// TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true |
|
// iff the first N fields of matcher_tuple matches the first N |
|
// fields of value_tuple, respectively. |
|
template <typename MatcherTuple, typename ValueTuple> |
|
static bool Matches(const MatcherTuple& matcher_tuple, |
|
const ValueTuple& value_tuple) { |
|
using ::std::tr1::get; |
|
return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) |
|
&& get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple)); |
|
} |
|
|
|
// TuplePrefix<N>::DescribeMatchFailuresTo(matchers, values, os) |
|
// describes failures in matching the first N fields of matchers |
|
// against the first N fields of values. If there is no failure, |
|
// nothing will be streamed to os. |
|
template <typename MatcherTuple, typename ValueTuple> |
|
static void DescribeMatchFailuresTo(const MatcherTuple& matchers, |
|
const ValueTuple& values, |
|
::std::ostream* os) { |
|
using ::std::tr1::tuple_element; |
|
using ::std::tr1::get; |
|
|
|
// First, describes failures in the first N - 1 fields. |
|
TuplePrefix<N - 1>::DescribeMatchFailuresTo(matchers, values, os); |
|
|
|
// Then describes the failure (if any) in the (N - 1)-th (0-based) |
|
// field. |
|
typename tuple_element<N - 1, MatcherTuple>::type matcher = |
|
get<N - 1>(matchers); |
|
typedef typename tuple_element<N - 1, ValueTuple>::type Value; |
|
Value value = get<N - 1>(values); |
|
if (!matcher.Matches(value)) { |
|
// TODO(wan): include in the message the name of the parameter |
|
// as used in MOCK_METHOD*() when possible. |
|
*os << " Expected arg #" << N - 1 << ": "; |
|
get<N - 1>(matchers).DescribeTo(os); |
|
*os << "\n Actual: "; |
|
// We remove the reference in type Value to prevent the |
|
// universal printer from printing the address of value, which |
|
// isn't interesting to the user most of the time. The |
|
// matcher's ExplainMatchResultTo() method handles the case when |
|
// the address is interesting. |
|
internal::UniversalPrinter<GMOCK_REMOVE_REFERENCE_(Value)>:: |
|
Print(value, os); |
|
ExplainMatchResultAsNeededTo<Value>(matcher, value, os); |
|
*os << "\n"; |
|
} |
|
} |
|
}; |
|
|
|
// The base case. |
|
template <> |
|
class TuplePrefix<0> { |
|
public: |
|
template <typename MatcherTuple, typename ValueTuple> |
|
static bool Matches(const MatcherTuple& /* matcher_tuple */, |
|
const ValueTuple& /* value_tuple */) { |
|
return true; |
|
} |
|
|
|
template <typename MatcherTuple, typename ValueTuple> |
|
static void DescribeMatchFailuresTo(const MatcherTuple& /* matchers */, |
|
const ValueTuple& /* values */, |
|
::std::ostream* /* os */) {} |
|
}; |
|
|
|
// TupleMatches(matcher_tuple, value_tuple) returns true iff all |
|
// matchers in matcher_tuple match the corresponding fields in |
|
// value_tuple. It is a compiler error if matcher_tuple and |
|
// value_tuple have different number of fields or incompatible field |
|
// types. |
|
template <typename MatcherTuple, typename ValueTuple> |
|
bool TupleMatches(const MatcherTuple& matcher_tuple, |
|
const ValueTuple& value_tuple) { |
|
using ::std::tr1::tuple_size; |
|
// Makes sure that matcher_tuple and value_tuple have the same |
|
// number of fields. |
|
GMOCK_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value == |
|
tuple_size<ValueTuple>::value, |
|
matcher_and_value_have_different_numbers_of_fields); |
|
return TuplePrefix<tuple_size<ValueTuple>::value>:: |
|
Matches(matcher_tuple, value_tuple); |
|
} |
|
|
|
// Describes failures in matching matchers against values. If there |
|
// is no failure, nothing will be streamed to os. |
|
template <typename MatcherTuple, typename ValueTuple> |
|
void DescribeMatchFailureTupleTo(const MatcherTuple& matchers, |
|
const ValueTuple& values, |
|
::std::ostream* os) { |
|
using ::std::tr1::tuple_size; |
|
TuplePrefix<tuple_size<MatcherTuple>::value>::DescribeMatchFailuresTo( |
|
matchers, values, os); |
|
} |
|
|
|
// The MatcherCastImpl class template is a helper for implementing |
|
// MatcherCast(). We need this helper in order to partially |
|
// specialize the implementation of MatcherCast() (C++ allows |
|
// class/struct templates to be partially specialized, but not |
|
// function templates.). |
|
|
|
// This general version is used when MatcherCast()'s argument is a |
|
// polymorphic matcher (i.e. something that can be converted to a |
|
// Matcher but is not one yet; for example, Eq(value)). |
|
template <typename T, typename M> |
|
class MatcherCastImpl { |
|
public: |
|
static Matcher<T> Cast(M polymorphic_matcher) { |
|
return Matcher<T>(polymorphic_matcher); |
|
} |
|
}; |
|
|
|
// This more specialized version is used when MatcherCast()'s argument |
|
// is already a Matcher. This only compiles when type T can be |
|
// statically converted to type U. |
|
template <typename T, typename U> |
|
class MatcherCastImpl<T, Matcher<U> > { |
|
public: |
|
static Matcher<T> Cast(const Matcher<U>& source_matcher) { |
|
return Matcher<T>(new Impl(source_matcher)); |
|
} |
|
private: |
|
class Impl : public MatcherInterface<T> { |
|
public: |
|
explicit Impl(const Matcher<U>& source_matcher) |
|
: source_matcher_(source_matcher) {} |
|
|
|
// We delegate the matching logic to the source matcher. |
|
virtual bool Matches(T x) const { |
|
return source_matcher_.Matches(static_cast<U>(x)); |
|
} |
|
|
|
virtual void DescribeTo(::std::ostream* os) const { |
|
source_matcher_.DescribeTo(os); |
|
} |
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
source_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const { |
|
source_matcher_.ExplainMatchResultTo(static_cast<U>(x), os); |
|
} |
|
private: |
|
const Matcher<U> source_matcher_; |
|
}; |
|
}; |
|
|
|
// This even more specialized version is used for efficiently casting |
|
// a matcher to its own type. |
|
template <typename T> |
|
class MatcherCastImpl<T, Matcher<T> > { |
|
public: |
|
static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } |
|
}; |
|
|
|
// Implements A<T>(). |
|
template <typename T> |
|
class AnyMatcherImpl : public MatcherInterface<T> { |
|
public: |
|
virtual bool Matches(T /* x */) const { return true; } |
|
virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; } |
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
// This is mostly for completeness' safe, as it's not very useful |
|
// to write Not(A<bool>()). However we cannot completely rule out |
|
// such a possibility, and it doesn't hurt to be prepared. |
|
*os << "never matches"; |
|
} |
|
}; |
|
|
|
// Implements _, a matcher that matches any value of any |
|
// type. This is a polymorphic matcher, so we need a template type |
|
// conversion operator to make it appearing as a Matcher<T> for any |
|
// type T. |
|
class AnythingMatcher { |
|
public: |
|
template <typename T> |
|
operator Matcher<T>() const { return A<T>(); } |
|
}; |
|
|
|
// Implements a matcher that compares a given value with a |
|
// pre-supplied value using one of the ==, <=, <, etc, operators. The |
|
// two values being compared don't have to have the same type. |
|
// |
|
// The matcher defined here is polymorphic (for example, Eq(5) can be |
|
// used to match an int, a short, a double, etc). Therefore we use |
|
// a template type conversion operator in the implementation. |
|
// |
|
// We define this as a macro in order to eliminate duplicated source |
|
// code. |
|
// |
|
// The following template definition assumes that the Rhs parameter is |
|
// a "bare" type (i.e. neither 'const T' nor 'T&'). |
|
#define GMOCK_IMPLEMENT_COMPARISON_MATCHER_(name, op, relation) \ |
|
template <typename Rhs> class name##Matcher { \ |
|
public: \ |
|
explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \ |
|
template <typename Lhs> \ |
|
operator Matcher<Lhs>() const { \ |
|
return MakeMatcher(new Impl<Lhs>(rhs_)); \ |
|
} \ |
|
private: \ |
|
template <typename Lhs> \ |
|
class Impl : public MatcherInterface<Lhs> { \ |
|
public: \ |
|
explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \ |
|
virtual bool Matches(Lhs lhs) const { return lhs op rhs_; } \ |
|
virtual void DescribeTo(::std::ostream* os) const { \ |
|
*os << "is " relation " "; \ |
|
UniversalPrinter<Rhs>::Print(rhs_, os); \ |
|
} \ |
|
virtual void DescribeNegationTo(::std::ostream* os) const { \ |
|
*os << "is not " relation " "; \ |
|
UniversalPrinter<Rhs>::Print(rhs_, os); \ |
|
} \ |
|
private: \ |
|
Rhs rhs_; \ |
|
}; \ |
|
Rhs rhs_; \ |
|
} |
|
|
|
// Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v) |
|
// respectively. |
|
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "equal to"); |
|
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "greater than or equal to"); |
|
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "greater than"); |
|
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "less than or equal to"); |
|
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "less than"); |
|
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "not equal to"); |
|
|
|
#undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_ |
|
|
|
// Implements the polymorphic IsNull() matcher, which matches any |
|
// pointer that is NULL. |
|
class IsNullMatcher { |
|
public: |
|
template <typename T> |
|
bool Matches(T* p) const { return p == NULL; } |
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } |
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "is not NULL"; |
|
} |
|
}; |
|
|
|
// Implements the polymorphic NotNull() matcher, which matches any |
|
// pointer that is not NULL. |
|
class NotNullMatcher { |
|
public: |
|
template <typename T> |
|
bool Matches(T* p) const { return p != NULL; } |
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "is not NULL"; } |
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "is NULL"; |
|
} |
|
}; |
|
|
|
// Ref(variable) matches any argument that is a reference to |
|
// 'variable'. This matcher is polymorphic as it can match any |
|
// super type of the type of 'variable'. |
|
// |
|
// The RefMatcher template class implements Ref(variable). It can |
|
// only be instantiated with a reference type. This prevents a user |
|
// from mistakenly using Ref(x) to match a non-reference function |
|
// argument. For example, the following will righteously cause a |
|
// compiler error: |
|
// |
|
// int n; |
|
// Matcher<int> m1 = Ref(n); // This won't compile. |
|
// Matcher<int&> m2 = Ref(n); // This will compile. |
|
template <typename T> |
|
class RefMatcher; |
|
|
|
template <typename T> |
|
class RefMatcher<T&> { |
|
// Google Mock is a generic framework and thus needs to support |
|
// mocking any function types, including those that take non-const |
|
// reference arguments. Therefore the template parameter T (and |
|
// Super below) can be instantiated to either a const type or a |
|
// non-const type. |
|
public: |
|
// RefMatcher() takes a T& instead of const T&, as we want the |
|
// compiler to catch using Ref(const_value) as a matcher for a |
|
// non-const reference. |
|
explicit RefMatcher(T& x) : object_(x) {} // NOLINT |
|
|
|
template <typename Super> |
|
operator Matcher<Super&>() const { |
|
// By passing object_ (type T&) to Impl(), which expects a Super&, |
|
// we make sure that Super is a super type of T. In particular, |
|
// this catches using Ref(const_value) as a matcher for a |
|
// non-const reference, as you cannot implicitly convert a const |
|
// reference to a non-const reference. |
|
return MakeMatcher(new Impl<Super>(object_)); |
|
} |
|
private: |
|
template <typename Super> |
|
class Impl : public MatcherInterface<Super&> { |
|
public: |
|
explicit Impl(Super& x) : object_(x) {} // NOLINT |
|
|
|
// Matches() takes a Super& (as opposed to const Super&) in |
|
// order to match the interface MatcherInterface<Super&>. |
|
virtual bool Matches(Super& x) const { return &x == &object_; } // NOLINT |
|
|
|
virtual void DescribeTo(::std::ostream* os) const { |
|
*os << "references the variable "; |
|
UniversalPrinter<Super&>::Print(object_, os); |
|
} |
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "does not reference the variable "; |
|
UniversalPrinter<Super&>::Print(object_, os); |
|
} |
|
|
|
virtual void ExplainMatchResultTo(Super& x, // NOLINT |
|
::std::ostream* os) const { |
|
*os << "is located @" << static_cast<const void*>(&x); |
|
} |
|
private: |
|
const Super& object_; |
|
}; |
|
|
|
T& object_; |
|
}; |
|
|
|
// Polymorphic helper functions for narrow and wide string matchers. |
|
inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { |
|
return String::CaseInsensitiveCStringEquals(lhs, rhs); |
|
} |
|
|
|
inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, |
|
const wchar_t* rhs) { |
|
return String::CaseInsensitiveWideCStringEquals(lhs, rhs); |
|
} |
|
|
|
// String comparison for narrow or wide strings that can have embedded NUL |
|
// characters. |
|
template <typename StringType> |
|
bool CaseInsensitiveStringEquals(const StringType& s1, |
|
const StringType& s2) { |
|
// Are the heads equal? |
|
if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { |
|
return false; |
|
} |
|
|
|
// Skip the equal heads. |
|
const typename StringType::value_type nul = 0; |
|
const size_t i1 = s1.find(nul), i2 = s2.find(nul); |
|
|
|
// Are we at the end of either s1 or s2? |
|
if (i1 == StringType::npos || i2 == StringType::npos) { |
|
return i1 == i2; |
|
} |
|
|
|
// Are the tails equal? |
|
return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); |
|
} |
|
|
|
// String matchers. |
|
|
|
// Implements equality-based string matchers like StrEq, StrCaseNe, and etc. |
|
template <typename StringType> |
|
class StrEqualityMatcher { |
|
public: |
|
typedef typename StringType::const_pointer ConstCharPointer; |
|
|
|
StrEqualityMatcher(const StringType& str, bool expect_eq, |
|
bool case_sensitive) |
|
: string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} |
|
|
|
// When expect_eq_ is true, returns true iff s is equal to string_; |
|
// otherwise returns true iff s is not equal to string_. |
|
bool Matches(ConstCharPointer s) const { |
|
if (s == NULL) { |
|
return !expect_eq_; |
|
} |
|
return Matches(StringType(s)); |
|
} |
|
|
|
bool Matches(const StringType& s) const { |
|
const bool eq = case_sensitive_ ? s == string_ : |
|
CaseInsensitiveStringEquals(s, string_); |
|
return expect_eq_ == eq; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
DescribeToHelper(expect_eq_, os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
DescribeToHelper(!expect_eq_, os); |
|
} |
|
private: |
|
void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { |
|
*os << "is "; |
|
if (!expect_eq) { |
|
*os << "not "; |
|
} |
|
*os << "equal to "; |
|
if (!case_sensitive_) { |
|
*os << "(ignoring case) "; |
|
} |
|
UniversalPrinter<StringType>::Print(string_, os); |
|
} |
|
|
|
const StringType string_; |
|
const bool expect_eq_; |
|
const bool case_sensitive_; |
|
}; |
|
|
|
// Implements the polymorphic HasSubstr(substring) matcher, which |
|
// can be used as a Matcher<T> as long as T can be converted to a |
|
// string. |
|
template <typename StringType> |
|
class HasSubstrMatcher { |
|
public: |
|
typedef typename StringType::const_pointer ConstCharPointer; |
|
|
|
explicit HasSubstrMatcher(const StringType& substring) |
|
: substring_(substring) {} |
|
|
|
// These overloaded methods allow HasSubstr(substring) to be used as a |
|
// Matcher<T> as long as T can be converted to string. Returns true |
|
// iff s contains substring_ as a substring. |
|
bool Matches(ConstCharPointer s) const { |
|
return s != NULL && Matches(StringType(s)); |
|
} |
|
|
|
bool Matches(const StringType& s) const { |
|
return s.find(substring_) != StringType::npos; |
|
} |
|
|
|
// Describes what this matcher matches. |
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "has substring "; |
|
UniversalPrinter<StringType>::Print(substring_, os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "has no substring "; |
|
UniversalPrinter<StringType>::Print(substring_, os); |
|
} |
|
private: |
|
const StringType substring_; |
|
}; |
|
|
|
// Implements the polymorphic StartsWith(substring) matcher, which |
|
// can be used as a Matcher<T> as long as T can be converted to a |
|
// string. |
|
template <typename StringType> |
|
class StartsWithMatcher { |
|
public: |
|
typedef typename StringType::const_pointer ConstCharPointer; |
|
|
|
explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { |
|
} |
|
|
|
// These overloaded methods allow StartsWith(prefix) to be used as a |
|
// Matcher<T> as long as T can be converted to string. Returns true |
|
// iff s starts with prefix_. |
|
bool Matches(ConstCharPointer s) const { |
|
return s != NULL && Matches(StringType(s)); |
|
} |
|
|
|
bool Matches(const StringType& s) const { |
|
return s.length() >= prefix_.length() && |
|
s.substr(0, prefix_.length()) == prefix_; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "starts with "; |
|
UniversalPrinter<StringType>::Print(prefix_, os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "doesn't start with "; |
|
UniversalPrinter<StringType>::Print(prefix_, os); |
|
} |
|
private: |
|
const StringType prefix_; |
|
}; |
|
|
|
// Implements the polymorphic EndsWith(substring) matcher, which |
|
// can be used as a Matcher<T> as long as T can be converted to a |
|
// string. |
|
template <typename StringType> |
|
class EndsWithMatcher { |
|
public: |
|
typedef typename StringType::const_pointer ConstCharPointer; |
|
|
|
explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} |
|
|
|
// These overloaded methods allow EndsWith(suffix) to be used as a |
|
// Matcher<T> as long as T can be converted to string. Returns true |
|
// iff s ends with suffix_. |
|
bool Matches(ConstCharPointer s) const { |
|
return s != NULL && Matches(StringType(s)); |
|
} |
|
|
|
bool Matches(const StringType& s) const { |
|
return s.length() >= suffix_.length() && |
|
s.substr(s.length() - suffix_.length()) == suffix_; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "ends with "; |
|
UniversalPrinter<StringType>::Print(suffix_, os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "doesn't end with "; |
|
UniversalPrinter<StringType>::Print(suffix_, os); |
|
} |
|
private: |
|
const StringType suffix_; |
|
}; |
|
|
|
#if GMOCK_HAS_REGEX |
|
|
|
// Implements polymorphic matchers MatchesRegex(regex) and |
|
// ContainsRegex(regex), which can be used as a Matcher<T> as long as |
|
// T can be converted to a string. |
|
class MatchesRegexMatcher { |
|
public: |
|
MatchesRegexMatcher(const RE* regex, bool full_match) |
|
: regex_(regex), full_match_(full_match) {} |
|
|
|
// These overloaded methods allow MatchesRegex(regex) to be used as |
|
// a Matcher<T> as long as T can be converted to string. Returns |
|
// true iff s matches regular expression regex. When full_match_ is |
|
// true, a full match is done; otherwise a partial match is done. |
|
bool Matches(const char* s) const { |
|
return s != NULL && Matches(internal::string(s)); |
|
} |
|
|
|
bool Matches(const internal::string& s) const { |
|
return full_match_ ? RE::FullMatch(s, *regex_) : |
|
RE::PartialMatch(s, *regex_); |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << (full_match_ ? "matches" : "contains") |
|
<< " regular expression "; |
|
UniversalPrinter<internal::string>::Print(regex_->pattern(), os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "doesn't " << (full_match_ ? "match" : "contain") |
|
<< " regular expression "; |
|
UniversalPrinter<internal::string>::Print(regex_->pattern(), os); |
|
} |
|
private: |
|
const internal::linked_ptr<const RE> regex_; |
|
const bool full_match_; |
|
}; |
|
|
|
#endif // GMOCK_HAS_REGEX |
|
|
|
// Implements a matcher that compares the two fields of a 2-tuple |
|
// using one of the ==, <=, <, etc, operators. The two fields being |
|
// compared don't have to have the same type. |
|
// |
|
// The matcher defined here is polymorphic (for example, Eq() can be |
|
// used to match a tuple<int, short>, a tuple<const long&, double>, |
|
// etc). Therefore we use a template type conversion operator in the |
|
// implementation. |
|
// |
|
// We define this as a macro in order to eliminate duplicated source |
|
// code. |
|
#define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op) \ |
|
class name##2Matcher { \ |
|
public: \ |
|
template <typename T1, typename T2> \ |
|
operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \ |
|
return MakeMatcher(new Impl<T1, T2>); \ |
|
} \ |
|
private: \ |
|
template <typename T1, typename T2> \ |
|
class Impl : public MatcherInterface<const ::std::tr1::tuple<T1, T2>&> { \ |
|
public: \ |
|
virtual bool Matches(const ::std::tr1::tuple<T1, T2>& args) const { \ |
|
return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \ |
|
} \ |
|
virtual void DescribeTo(::std::ostream* os) const { \ |
|
*os << "are a pair (x, y) where x " #op " y"; \ |
|
} \ |
|
virtual void DescribeNegationTo(::std::ostream* os) const { \ |
|
*os << "are a pair (x, y) where x " #op " y is false"; \ |
|
} \ |
|
}; \ |
|
} |
|
|
|
// Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively. |
|
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==); |
|
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ge, >=); |
|
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Gt, >); |
|
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Le, <=); |
|
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Lt, <); |
|
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=); |
|
|
|
#undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_ |
|
|
|
// Implements the Not(...) matcher for a particular argument type T. |
|
// We do not nest it inside the NotMatcher class template, as that |
|
// will prevent different instantiations of NotMatcher from sharing |
|
// the same NotMatcherImpl<T> class. |
|
template <typename T> |
|
class NotMatcherImpl : public MatcherInterface<T> { |
|
public: |
|
explicit NotMatcherImpl(const Matcher<T>& matcher) |
|
: matcher_(matcher) {} |
|
|
|
virtual bool Matches(T x) const { |
|
return !matcher_.Matches(x); |
|
} |
|
|
|
virtual void DescribeTo(::std::ostream* os) const { |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const { |
|
matcher_.ExplainMatchResultTo(x, os); |
|
} |
|
private: |
|
const Matcher<T> matcher_; |
|
}; |
|
|
|
// Implements the Not(m) matcher, which matches a value that doesn't |
|
// match matcher m. |
|
template <typename InnerMatcher> |
|
class NotMatcher { |
|
public: |
|
explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} |
|
|
|
// This template type conversion operator allows Not(m) to be used |
|
// to match any type m can match. |
|
template <typename T> |
|
operator Matcher<T>() const { |
|
return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); |
|
} |
|
private: |
|
InnerMatcher matcher_; |
|
}; |
|
|
|
// Implements the AllOf(m1, m2) matcher for a particular argument type |
|
// T. We do not nest it inside the BothOfMatcher class template, as |
|
// that will prevent different instantiations of BothOfMatcher from |
|
// sharing the same BothOfMatcherImpl<T> class. |
|
template <typename T> |
|
class BothOfMatcherImpl : public MatcherInterface<T> { |
|
public: |
|
BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2) |
|
: matcher1_(matcher1), matcher2_(matcher2) {} |
|
|
|
virtual bool Matches(T x) const { |
|
return matcher1_.Matches(x) && matcher2_.Matches(x); |
|
} |
|
|
|
virtual void DescribeTo(::std::ostream* os) const { |
|
*os << "("; |
|
matcher1_.DescribeTo(os); |
|
*os << ") and ("; |
|
matcher2_.DescribeTo(os); |
|
*os << ")"; |
|
} |
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "not "; |
|
DescribeTo(os); |
|
} |
|
|
|
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const { |
|
if (Matches(x)) { |
|
// When both matcher1_ and matcher2_ match x, we need to |
|
// explain why *both* of them match. |
|
::std::stringstream ss1; |
|
matcher1_.ExplainMatchResultTo(x, &ss1); |
|
const internal::string s1 = ss1.str(); |
|
|
|
::std::stringstream ss2; |
|
matcher2_.ExplainMatchResultTo(x, &ss2); |
|
const internal::string s2 = ss2.str(); |
|
|
|
if (s1 == "") { |
|
*os << s2; |
|
} else { |
|
*os << s1; |
|
if (s2 != "") { |
|
*os << "; " << s2; |
|
} |
|
} |
|
} else { |
|
// Otherwise we only need to explain why *one* of them fails |
|
// to match. |
|
if (!matcher1_.Matches(x)) { |
|
matcher1_.ExplainMatchResultTo(x, os); |
|
} else { |
|
matcher2_.ExplainMatchResultTo(x, os); |
|
} |
|
} |
|
} |
|
private: |
|
const Matcher<T> matcher1_; |
|
const Matcher<T> matcher2_; |
|
}; |
|
|
|
// Used for implementing the AllOf(m_1, ..., m_n) matcher, which |
|
// matches a value that matches all of the matchers m_1, ..., and m_n. |
|
template <typename Matcher1, typename Matcher2> |
|
class BothOfMatcher { |
|
public: |
|
BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2) |
|
: matcher1_(matcher1), matcher2_(matcher2) {} |
|
|
|
// This template type conversion operator allows a |
|
// BothOfMatcher<Matcher1, Matcher2> object to match any type that |
|
// both Matcher1 and Matcher2 can match. |
|
template <typename T> |
|
operator Matcher<T>() const { |
|
return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_), |
|
SafeMatcherCast<T>(matcher2_))); |
|
} |
|
private: |
|
Matcher1 matcher1_; |
|
Matcher2 matcher2_; |
|
}; |
|
|
|
// Implements the AnyOf(m1, m2) matcher for a particular argument type |
|
// T. We do not nest it inside the AnyOfMatcher class template, as |
|
// that will prevent different instantiations of AnyOfMatcher from |
|
// sharing the same EitherOfMatcherImpl<T> class. |
|
template <typename T> |
|
class EitherOfMatcherImpl : public MatcherInterface<T> { |
|
public: |
|
EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2) |
|
: matcher1_(matcher1), matcher2_(matcher2) {} |
|
|
|
virtual bool Matches(T x) const { |
|
return matcher1_.Matches(x) || matcher2_.Matches(x); |
|
} |
|
|
|
virtual void DescribeTo(::std::ostream* os) const { |
|
*os << "("; |
|
matcher1_.DescribeTo(os); |
|
*os << ") or ("; |
|
matcher2_.DescribeTo(os); |
|
*os << ")"; |
|
} |
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "not "; |
|
DescribeTo(os); |
|
} |
|
|
|
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const { |
|
if (Matches(x)) { |
|
// If either matcher1_ or matcher2_ matches x, we just need |
|
// to explain why *one* of them matches. |
|
if (matcher1_.Matches(x)) { |
|
matcher1_.ExplainMatchResultTo(x, os); |
|
} else { |
|
matcher2_.ExplainMatchResultTo(x, os); |
|
} |
|
} else { |
|
// Otherwise we need to explain why *neither* matches. |
|
::std::stringstream ss1; |
|
matcher1_.ExplainMatchResultTo(x, &ss1); |
|
const internal::string s1 = ss1.str(); |
|
|
|
::std::stringstream ss2; |
|
matcher2_.ExplainMatchResultTo(x, &ss2); |
|
const internal::string s2 = ss2.str(); |
|
|
|
if (s1 == "") { |
|
*os << s2; |
|
} else { |
|
*os << s1; |
|
if (s2 != "") { |
|
*os << "; " << s2; |
|
} |
|
} |
|
} |
|
} |
|
private: |
|
const Matcher<T> matcher1_; |
|
const Matcher<T> matcher2_; |
|
}; |
|
|
|
// Used for implementing the AnyOf(m_1, ..., m_n) matcher, which |
|
// matches a value that matches at least one of the matchers m_1, ..., |
|
// and m_n. |
|
template <typename Matcher1, typename Matcher2> |
|
class EitherOfMatcher { |
|
public: |
|
EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2) |
|
: matcher1_(matcher1), matcher2_(matcher2) {} |
|
|
|
// This template type conversion operator allows a |
|
// EitherOfMatcher<Matcher1, Matcher2> object to match any type that |
|
// both Matcher1 and Matcher2 can match. |
|
template <typename T> |
|
operator Matcher<T>() const { |
|
return Matcher<T>(new EitherOfMatcherImpl<T>( |
|
SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_))); |
|
} |
|
private: |
|
Matcher1 matcher1_; |
|
Matcher2 matcher2_; |
|
}; |
|
|
|
// Used for implementing Truly(pred), which turns a predicate into a |
|
// matcher. |
|
template <typename Predicate> |
|
class TrulyMatcher { |
|
public: |
|
explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} |
|
|
|
// This method template allows Truly(pred) to be used as a matcher |
|
// for type T where T is the argument type of predicate 'pred'. The |
|
// argument is passed by reference as the predicate may be |
|
// interested in the address of the argument. |
|
template <typename T> |
|
bool Matches(T& x) const { // NOLINT |
|
#if GTEST_OS_WINDOWS |
|
// MSVC warns about converting a value into bool (warning 4800). |
|
#pragma warning(push) // Saves the current warning state. |
|
#pragma warning(disable:4800) // Temporarily disables warning 4800. |
|
#endif // GTEST_OS_WINDOWS |
|
return predicate_(x); |
|
#if GTEST_OS_WINDOWS |
|
#pragma warning(pop) // Restores the warning state. |
|
#endif // GTEST_OS_WINDOWS |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "satisfies the given predicate"; |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "doesn't satisfy the given predicate"; |
|
} |
|
private: |
|
Predicate predicate_; |
|
}; |
|
|
|
// Used for implementing Matches(matcher), which turns a matcher into |
|
// a predicate. |
|
template <typename M> |
|
class MatcherAsPredicate { |
|
public: |
|
explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} |
|
|
|
// This template operator() allows Matches(m) to be used as a |
|
// predicate on type T where m is a matcher on type T. |
|
// |
|
// The argument x is passed by reference instead of by value, as |
|
// some matcher may be interested in its address (e.g. as in |
|
// Matches(Ref(n))(x)). |
|
template <typename T> |
|
bool operator()(const T& x) const { |
|
// We let matcher_ commit to a particular type here instead of |
|
// when the MatcherAsPredicate object was constructed. This |
|
// allows us to write Matches(m) where m is a polymorphic matcher |
|
// (e.g. Eq(5)). |
|
// |
|
// If we write Matcher<T>(matcher_).Matches(x) here, it won't |
|
// compile when matcher_ has type Matcher<const T&>; if we write |
|
// Matcher<const T&>(matcher_).Matches(x) here, it won't compile |
|
// when matcher_ has type Matcher<T>; if we just write |
|
// matcher_.Matches(x), it won't compile when matcher_ is |
|
// polymorphic, e.g. Eq(5). |
|
// |
|
// MatcherCast<const T&>() is necessary for making the code work |
|
// in all of the above situations. |
|
return MatcherCast<const T&>(matcher_).Matches(x); |
|
} |
|
private: |
|
M matcher_; |
|
}; |
|
|
|
// For implementing ASSERT_THAT() and EXPECT_THAT(). The template |
|
// argument M must be a type that can be converted to a matcher. |
|
template <typename M> |
|
class PredicateFormatterFromMatcher { |
|
public: |
|
explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {} |
|
|
|
// This template () operator allows a PredicateFormatterFromMatcher |
|
// object to act as a predicate-formatter suitable for using with |
|
// Google Test's EXPECT_PRED_FORMAT1() macro. |
|
template <typename T> |
|
AssertionResult operator()(const char* value_text, const T& x) const { |
|
// We convert matcher_ to a Matcher<const T&> *now* instead of |
|
// when the PredicateFormatterFromMatcher object was constructed, |
|
// as matcher_ may be polymorphic (e.g. NotNull()) and we won't |
|
// know which type to instantiate it to until we actually see the |
|
// type of x here. |
|
// |
|
// We write MatcherCast<const T&>(matcher_) instead of |
|
// Matcher<const T&>(matcher_), as the latter won't compile when |
|
// matcher_ has type Matcher<T> (e.g. An<int>()). |
|
const Matcher<const T&> matcher = MatcherCast<const T&>(matcher_); |
|
if (matcher.Matches(x)) { |
|
return AssertionSuccess(); |
|
} else { |
|
::std::stringstream ss; |
|
ss << "Value of: " << value_text << "\n" |
|
<< "Expected: "; |
|
matcher.DescribeTo(&ss); |
|
ss << "\n Actual: "; |
|
UniversalPrinter<T>::Print(x, &ss); |
|
ExplainMatchResultAsNeededTo<const T&>(matcher, x, &ss); |
|
return AssertionFailure(Message() << ss.str()); |
|
} |
|
} |
|
private: |
|
const M matcher_; |
|
}; |
|
|
|
// A helper function for converting a matcher to a predicate-formatter |
|
// without the user needing to explicitly write the type. This is |
|
// used for implementing ASSERT_THAT() and EXPECT_THAT(). |
|
template <typename M> |
|
inline PredicateFormatterFromMatcher<M> |
|
MakePredicateFormatterFromMatcher(const M& matcher) { |
|
return PredicateFormatterFromMatcher<M>(matcher); |
|
} |
|
|
|
// Implements the polymorphic floating point equality matcher, which |
|
// matches two float values using ULP-based approximation. The |
|
// template is meant to be instantiated with FloatType being either |
|
// float or double. |
|
template <typename FloatType> |
|
class FloatingEqMatcher { |
|
public: |
|
// Constructor for FloatingEqMatcher. |
|
// The matcher's input will be compared with rhs. The matcher treats two |
|
// NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, |
|
// equality comparisons between NANs will always return false. |
|
FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) : |
|
rhs_(rhs), nan_eq_nan_(nan_eq_nan) {} |
|
|
|
// Implements floating point equality matcher as a Matcher<T>. |
|
template <typename T> |
|
class Impl : public MatcherInterface<T> { |
|
public: |
|
Impl(FloatType rhs, bool nan_eq_nan) : |
|
rhs_(rhs), nan_eq_nan_(nan_eq_nan) {} |
|
|
|
virtual bool Matches(T value) const { |
|
const FloatingPoint<FloatType> lhs(value), rhs(rhs_); |
|
|
|
// Compares NaNs first, if nan_eq_nan_ is true. |
|
if (nan_eq_nan_ && lhs.is_nan()) { |
|
return rhs.is_nan(); |
|
} |
|
|
|
return lhs.AlmostEquals(rhs); |
|
} |
|
|
|
virtual void DescribeTo(::std::ostream* os) const { |
|
// os->precision() returns the previously set precision, which we |
|
// store to restore the ostream to its original configuration |
|
// after outputting. |
|
const ::std::streamsize old_precision = os->precision( |
|
::std::numeric_limits<FloatType>::digits10 + 2); |
|
if (FloatingPoint<FloatType>(rhs_).is_nan()) { |
|
if (nan_eq_nan_) { |
|
*os << "is NaN"; |
|
} else { |
|
*os << "never matches"; |
|
} |
|
} else { |
|
*os << "is approximately " << rhs_; |
|
} |
|
os->precision(old_precision); |
|
} |
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
// As before, get original precision. |
|
const ::std::streamsize old_precision = os->precision( |
|
::std::numeric_limits<FloatType>::digits10 + 2); |
|
if (FloatingPoint<FloatType>(rhs_).is_nan()) { |
|
if (nan_eq_nan_) { |
|
*os << "is not NaN"; |
|
} else { |
|
*os << "is anything"; |
|
} |
|
} else { |
|
*os << "is not approximately " << rhs_; |
|
} |
|
// Restore original precision. |
|
os->precision(old_precision); |
|
} |
|
|
|
private: |
|
const FloatType rhs_; |
|
const bool nan_eq_nan_; |
|
}; |
|
|
|
// The following 3 type conversion operators allow FloatEq(rhs) and |
|
// NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a |
|
// Matcher<const float&>, or a Matcher<float&>, but nothing else. |
|
// (While Google's C++ coding style doesn't allow arguments passed |
|
// by non-const reference, we may see them in code not conforming to |
|
// the style. Therefore Google Mock needs to support them.) |
|
operator Matcher<FloatType>() const { |
|
return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_)); |
|
} |
|
|
|
operator Matcher<const FloatType&>() const { |
|
return MakeMatcher(new Impl<const FloatType&>(rhs_, nan_eq_nan_)); |
|
} |
|
|
|
operator Matcher<FloatType&>() const { |
|
return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_)); |
|
} |
|
private: |
|
const FloatType rhs_; |
|
const bool nan_eq_nan_; |
|
}; |
|
|
|
// Implements the Pointee(m) matcher for matching a pointer whose |
|
// pointee matches matcher m. The pointer can be either raw or smart. |
|
template <typename InnerMatcher> |
|
class PointeeMatcher { |
|
public: |
|
explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
|
|
|
// This type conversion operator template allows Pointee(m) to be |
|
// used as a matcher for any pointer type whose pointee type is |
|
// compatible with the inner matcher, where type Pointer can be |
|
// either a raw pointer or a smart pointer. |
|
// |
|
// The reason we do this instead of relying on |
|
// MakePolymorphicMatcher() is that the latter is not flexible |
|
// enough for implementing the DescribeTo() method of Pointee(). |
|
template <typename Pointer> |
|
operator Matcher<Pointer>() const { |
|
return MakeMatcher(new Impl<Pointer>(matcher_)); |
|
} |
|
private: |
|
// The monomorphic implementation that works for a particular pointer type. |
|
template <typename Pointer> |
|
class Impl : public MatcherInterface<Pointer> { |
|
public: |
|
typedef typename PointeeOf<GMOCK_REMOVE_CONST_( // NOLINT |
|
GMOCK_REMOVE_REFERENCE_(Pointer))>::type Pointee; |
|
|
|
explicit Impl(const InnerMatcher& matcher) |
|
: matcher_(MatcherCast<const Pointee&>(matcher)) {} |
|
|
|
virtual bool Matches(Pointer p) const { |
|
return GetRawPointer(p) != NULL && matcher_.Matches(*p); |
|
} |
|
|
|
virtual void DescribeTo(::std::ostream* os) const { |
|
*os << "points to a value that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "does not point to a value that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
virtual void ExplainMatchResultTo(Pointer pointer, |
|
::std::ostream* os) const { |
|
if (GetRawPointer(pointer) == NULL) |
|
return; |
|
|
|
::std::stringstream ss; |
|
matcher_.ExplainMatchResultTo(*pointer, &ss); |
|
const internal::string s = ss.str(); |
|
if (s != "") { |
|
*os << "points to a value that " << s; |
|
} |
|
} |
|
private: |
|
const Matcher<const Pointee&> matcher_; |
|
}; |
|
|
|
const InnerMatcher matcher_; |
|
}; |
|
|
|
// Implements the Field() matcher for matching a field (i.e. member |
|
// variable) of an object. |
|
template <typename Class, typename FieldType> |
|
class FieldMatcher { |
|
public: |
|
FieldMatcher(FieldType Class::*field, |
|
const Matcher<const FieldType&>& matcher) |
|
: field_(field), matcher_(matcher) {} |
|
|
|
// Returns true iff the inner matcher matches obj.field. |
|
bool Matches(const Class& obj) const { |
|
return matcher_.Matches(obj.*field_); |
|
} |
|
|
|
// Returns true iff the inner matcher matches obj->field. |
|
bool Matches(const Class* p) const { |
|
return (p != NULL) && matcher_.Matches(p->*field_); |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "the given field "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "the given field "; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
// The first argument of ExplainMatchResultTo() is needed to help |
|
// Symbian's C++ compiler choose which overload to use. Its type is |
|
// true_type iff the Field() matcher is used to match a pointer. |
|
void ExplainMatchResultTo(false_type /* is_not_pointer */, const Class& obj, |
|
::std::ostream* os) const { |
|
::std::stringstream ss; |
|
matcher_.ExplainMatchResultTo(obj.*field_, &ss); |
|
const internal::string s = ss.str(); |
|
if (s != "") { |
|
*os << "the given field " << s; |
|
} |
|
} |
|
|
|
void ExplainMatchResultTo(true_type /* is_pointer */, const Class* p, |
|
::std::ostream* os) const { |
|
if (p != NULL) { |
|
// Since *p has a field, it must be a class/struct/union type |
|
// and thus cannot be a pointer. Therefore we pass false_type() |
|
// as the first argument. |
|
ExplainMatchResultTo(false_type(), *p, os); |
|
} |
|
} |
|
private: |
|
const FieldType Class::*field_; |
|
const Matcher<const FieldType&> matcher_; |
|
}; |
|
|
|
// Explains the result of matching an object or pointer against a field matcher. |
|
template <typename Class, typename FieldType, typename T> |
|
void ExplainMatchResultTo(const FieldMatcher<Class, FieldType>& matcher, |
|
const T& value, ::std::ostream* os) { |
|
matcher.ExplainMatchResultTo( |
|
typename ::testing::internal::is_pointer<T>::type(), value, os); |
|
} |
|
|
|
// Implements the Property() matcher for matching a property |
|
// (i.e. return value of a getter method) of an object. |
|
template <typename Class, typename PropertyType> |
|
class PropertyMatcher { |
|
public: |
|
// The property may have a reference type, so 'const PropertyType&' |
|
// may cause double references and fail to compile. That's why we |
|
// need GMOCK_REFERENCE_TO_CONST, which works regardless of |
|
// PropertyType being a reference or not. |
|
typedef GMOCK_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty; |
|
|
|
PropertyMatcher(PropertyType (Class::*property)() const, |
|
const Matcher<RefToConstProperty>& matcher) |
|
: property_(property), matcher_(matcher) {} |
|
|
|
// Returns true iff obj.property() matches the inner matcher. |
|
bool Matches(const Class& obj) const { |
|
return matcher_.Matches((obj.*property_)()); |
|
} |
|
|
|
// Returns true iff p->property() matches the inner matcher. |
|
bool Matches(const Class* p) const { |
|
return (p != NULL) && matcher_.Matches((p->*property_)()); |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "the given property "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "the given property "; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
// The first argument of ExplainMatchResultTo() is needed to help |
|
// Symbian's C++ compiler choose which overload to use. Its type is |
|
// true_type iff the Property() matcher is used to match a pointer. |
|
void ExplainMatchResultTo(false_type /* is_not_pointer */, const Class& obj, |
|
::std::ostream* os) const { |
|
::std::stringstream ss; |
|
matcher_.ExplainMatchResultTo((obj.*property_)(), &ss); |
|
const internal::string s = ss.str(); |
|
if (s != "") { |
|
*os << "the given property " << s; |
|
} |
|
} |
|
|
|
void ExplainMatchResultTo(true_type /* is_pointer */, const Class* p, |
|
::std::ostream* os) const { |
|
if (p != NULL) { |
|
// Since *p has a property method, it must be a |
|
// class/struct/union type and thus cannot be a pointer. |
|
// Therefore we pass false_type() as the first argument. |
|
ExplainMatchResultTo(false_type(), *p, os); |
|
} |
|
} |
|
private: |
|
PropertyType (Class::*property_)() const; |
|
const Matcher<RefToConstProperty> matcher_; |
|
}; |
|
|
|
// Explains the result of matching an object or pointer against a |
|
// property matcher. |
|
template <typename Class, typename PropertyType, typename T> |
|
void ExplainMatchResultTo(const PropertyMatcher<Class, PropertyType>& matcher, |
|
const T& value, ::std::ostream* os) { |
|
matcher.ExplainMatchResultTo( |
|
typename ::testing::internal::is_pointer<T>::type(), value, os); |
|
} |
|
|
|
// Type traits specifying various features of different functors for ResultOf. |
|
// The default template specifies features for functor objects. |
|
// Functor classes have to typedef argument_type and result_type |
|
// to be compatible with ResultOf. |
|
template <typename Functor> |
|
struct CallableTraits { |
|
typedef typename Functor::result_type ResultType; |
|
typedef Functor StorageType; |
|
|
|
static void CheckIsValid(Functor functor) {} |
|
template <typename T> |
|
static ResultType Invoke(Functor f, T arg) { return f(arg); } |
|
}; |
|
|
|
// Specialization for function pointers. |
|
template <typename ArgType, typename ResType> |
|
struct CallableTraits<ResType(*)(ArgType)> { |
|
typedef ResType ResultType; |
|
typedef ResType(*StorageType)(ArgType); |
|
|
|
static void CheckIsValid(ResType(*f)(ArgType)) { |
|
GTEST_CHECK_(f != NULL) |
|
<< "NULL function pointer is passed into ResultOf()."; |
|
} |
|
template <typename T> |
|
static ResType Invoke(ResType(*f)(ArgType), T arg) { |
|
return (*f)(arg); |
|
} |
|
}; |
|
|
|
// Implements the ResultOf() matcher for matching a return value of a |
|
// unary function of an object. |
|
template <typename Callable> |
|
class ResultOfMatcher { |
|
public: |
|
typedef typename CallableTraits<Callable>::ResultType ResultType; |
|
|
|
ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher) |
|
: callable_(callable), matcher_(matcher) { |
|
CallableTraits<Callable>::CheckIsValid(callable_); |
|
} |
|
|
|
template <typename T> |
|
operator Matcher<T>() const { |
|
return Matcher<T>(new Impl<T>(callable_, matcher_)); |
|
} |
|
|
|
private: |
|
typedef typename CallableTraits<Callable>::StorageType CallableStorageType; |
|
|
|
template <typename T> |
|
class Impl : public MatcherInterface<T> { |
|
public: |
|
Impl(CallableStorageType callable, const Matcher<ResultType>& matcher) |
|
: callable_(callable), matcher_(matcher) {} |
|
// Returns true iff callable_(obj) matches the inner matcher. |
|
// The calling syntax is different for different types of callables |
|
// so we abstract it in CallableTraits<Callable>::Invoke(). |
|
virtual bool Matches(T obj) const { |
|
return matcher_.Matches( |
|
CallableTraits<Callable>::template Invoke<T>(callable_, obj)); |
|
} |
|
|
|
virtual void DescribeTo(::std::ostream* os) const { |
|
*os << "result of the given callable "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "result of the given callable "; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
virtual void ExplainMatchResultTo(T obj, ::std::ostream* os) const { |
|
::std::stringstream ss; |
|
matcher_.ExplainMatchResultTo( |
|
CallableTraits<Callable>::template Invoke<T>(callable_, obj), |
|
&ss); |
|
const internal::string s = ss.str(); |
|
if (s != "") |
|
*os << "result of the given callable " << s; |
|
} |
|
private: |
|
// Functors often define operator() as non-const method even though |
|
// they are actualy stateless. But we need to use them even when |
|
// 'this' is a const pointer. It's the user's responsibility not to |
|
// use stateful callables with ResultOf(), which does't guarantee |
|
// how many times the callable will be invoked. |
|
mutable CallableStorageType callable_; |
|
const Matcher<ResultType> matcher_; |
|
}; // class Impl |
|
|
|
const CallableStorageType callable_; |
|
const Matcher<ResultType> matcher_; |
|
}; |
|
|
|
// Explains the result of matching a value against a functor matcher. |
|
template <typename T, typename Callable> |
|
void ExplainMatchResultTo(const ResultOfMatcher<Callable>& matcher, |
|
T obj, ::std::ostream* os) { |
|
matcher.ExplainMatchResultTo(obj, os); |
|
} |
|
|
|
// Implements an equality matcher for any STL-style container whose elements |
|
// support ==. This matcher is like Eq(), but its failure explanations provide |
|
// more detailed information that is useful when the container is used as a set. |
|
// The failure message reports elements that are in one of the operands but not |
|
// the other. The failure messages do not report duplicate or out-of-order |
|
// elements in the containers (which don't properly matter to sets, but can |
|
// occur if the containers are vectors or lists, for example). |
|
// |
|
// Uses the container's const_iterator, value_type, operator ==, |
|
// begin(), and end(). |
|
template <typename Container> |
|
class ContainerEqMatcher { |
|
public: |
|
typedef internal::StlContainerView<Container> View; |
|
typedef typename View::type StlContainer; |
|
typedef typename View::const_reference StlContainerReference; |
|
|
|
// We make a copy of rhs in case the elements in it are modified |
|
// after this matcher is created. |
|
explicit ContainerEqMatcher(const Container& rhs) : rhs_(View::Copy(rhs)) { |
|
// Makes sure the user doesn't instantiate this class template |
|
// with a const or reference type. |
|
testing::StaticAssertTypeEq<Container, |
|
GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))>(); |
|
} |
|
|
|
template <typename LhsContainer> |
|
bool Matches(const LhsContainer& lhs) const { |
|
// GMOCK_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug |
|
// that causes LhsContainer to be a const type sometimes. |
|
typedef internal::StlContainerView<GMOCK_REMOVE_CONST_(LhsContainer)> |
|
LhsView; |
|
StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
|
return lhs_stl_container == rhs_; |
|
} |
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "equals "; |
|
UniversalPrinter<StlContainer>::Print(rhs_, os); |
|
} |
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "does not equal "; |
|
UniversalPrinter<StlContainer>::Print(rhs_, os); |
|
} |
|
|
|
template <typename LhsContainer> |
|
void ExplainMatchResultTo(const LhsContainer& lhs, |
|
::std::ostream* os) const { |
|
// GMOCK_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug |
|
// that causes LhsContainer to be a const type sometimes. |
|
typedef internal::StlContainerView<GMOCK_REMOVE_CONST_(LhsContainer)> |
|
LhsView; |
|
typedef typename LhsView::type LhsStlContainer; |
|
StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
|
|
|
// Something is different. Check for missing values first. |
|
bool printed_header = false; |
|
for (typename LhsStlContainer::const_iterator it = |
|
lhs_stl_container.begin(); |
|
it != lhs_stl_container.end(); ++it) { |
|
if (internal::ArrayAwareFind(rhs_.begin(), rhs_.end(), *it) == |
|
rhs_.end()) { |
|
if (printed_header) { |
|
*os << ", "; |
|
} else { |
|
*os << "Only in actual: "; |
|
printed_header = true; |
|
} |
|
UniversalPrinter<typename LhsStlContainer::value_type>::Print(*it, os); |
|
} |
|
} |
|
|
|
// Now check for extra values. |
|
bool printed_header2 = false; |
|
for (typename StlContainer::const_iterator it = rhs_.begin(); |
|
it != rhs_.end(); ++it) { |
|
if (internal::ArrayAwareFind( |
|
lhs_stl_container.begin(), lhs_stl_container.end(), *it) == |
|
lhs_stl_container.end()) { |
|
if (printed_header2) { |
|
*os << ", "; |
|
} else { |
|
*os << (printed_header ? "; not" : "Not") << " in actual: "; |
|
printed_header2 = true; |
|
} |
|
UniversalPrinter<typename StlContainer::value_type>::Print(*it, os); |
|
} |
|
} |
|
} |
|
private: |
|
const StlContainer rhs_; |
|
}; |
|
|
|
template <typename LhsContainer, typename Container> |
|
void ExplainMatchResultTo(const ContainerEqMatcher<Container>& matcher, |
|
const LhsContainer& lhs, |
|
::std::ostream* os) { |
|
matcher.ExplainMatchResultTo(lhs, os); |
|
} |
|
|
|
// Implements Contains(element_matcher) for the given argument type Container. |
|
template <typename Container> |
|
class ContainsMatcherImpl : public MatcherInterface<Container> { |
|
public: |
|
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) RawContainer; |
|
typedef StlContainerView<RawContainer> View; |
|
typedef typename View::type StlContainer; |
|
typedef typename View::const_reference StlContainerReference; |
|
typedef typename StlContainer::value_type Element; |
|
|
|
template <typename InnerMatcher> |
|
explicit ContainsMatcherImpl(InnerMatcher inner_matcher) |
|
: inner_matcher_( |
|
testing::SafeMatcherCast<const Element&>(inner_matcher)) {} |
|
|
|
// Returns true iff 'container' matches. |
|
virtual bool Matches(Container container) const { |
|
StlContainerReference stl_container = View::ConstReference(container); |
|
for (typename StlContainer::const_iterator it = stl_container.begin(); |
|
it != stl_container.end(); ++it) { |
|
if (inner_matcher_.Matches(*it)) |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// Describes what this matcher does. |
|
virtual void DescribeTo(::std::ostream* os) const { |
|
*os << "contains at least one element that "; |
|
inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
// Describes what the negation of this matcher does. |
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "doesn't contain any element that "; |
|
inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
// Explains why 'container' matches, or doesn't match, this matcher. |
|
virtual void ExplainMatchResultTo(Container container, |
|
::std::ostream* os) const { |
|
StlContainerReference stl_container = View::ConstReference(container); |
|
|
|
// We need to explain which (if any) element matches inner_matcher_. |
|
typename StlContainer::const_iterator it = stl_container.begin(); |
|
for (size_t i = 0; it != stl_container.end(); ++it, ++i) { |
|
if (inner_matcher_.Matches(*it)) { |
|
*os << "element " << i << " matches"; |
|
return; |
|
} |
|
} |
|
} |
|
|
|
private: |
|
const Matcher<const Element&> inner_matcher_; |
|
}; |
|
|
|
// Implements polymorphic Contains(element_matcher). |
|
template <typename M> |
|
class ContainsMatcher { |
|
public: |
|
explicit ContainsMatcher(M m) : inner_matcher_(m) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_)); |
|
} |
|
|
|
private: |
|
const M inner_matcher_; |
|
}; |
|
|
|
// Implements Key(inner_matcher) for the given argument pair type. |
|
// Key(inner_matcher) matches an std::pair whose 'first' field matches |
|
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
|
// std::map that contains at least one element whose key is >= 5. |
|
template <typename PairType> |
|
class KeyMatcherImpl : public MatcherInterface<PairType> { |
|
public: |
|
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(PairType)) RawPairType; |
|
typedef typename RawPairType::first_type KeyType; |
|
|
|
template <typename InnerMatcher> |
|
explicit KeyMatcherImpl(InnerMatcher inner_matcher) |
|
: inner_matcher_( |
|
testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { |
|
} |
|
|
|
// Returns true iff 'key_value.first' (the key) matches the inner matcher. |
|
virtual bool Matches(PairType key_value) const { |
|
return inner_matcher_.Matches(key_value.first); |
|
} |
|
|
|
// Describes what this matcher does. |
|
virtual void DescribeTo(::std::ostream* os) const { |
|
*os << "has a key that "; |
|
inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
// Describes what the negation of this matcher does. |
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "doesn't have a key that "; |
|
inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
// Explains why 'key_value' matches, or doesn't match, this matcher. |
|
virtual void ExplainMatchResultTo(PairType key_value, |
|
::std::ostream* os) const { |
|
inner_matcher_.ExplainMatchResultTo(key_value.first, os); |
|
} |
|
|
|
private: |
|
const Matcher<const KeyType&> inner_matcher_; |
|
}; |
|
|
|
// Implements polymorphic Key(matcher_for_key). |
|
template <typename M> |
|
class KeyMatcher { |
|
public: |
|
explicit KeyMatcher(M m) : matcher_for_key_(m) {} |
|
|
|
template <typename PairType> |
|
operator Matcher<PairType>() const { |
|
return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_)); |
|
} |
|
|
|
private: |
|
const M matcher_for_key_; |
|
}; |
|
|
|
// Implements Pair(first_matcher, second_matcher) for the given argument pair |
|
// type with its two matchers. See Pair() function below. |
|
template <typename PairType> |
|
class PairMatcherImpl : public MatcherInterface<PairType> { |
|
public: |
|
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(PairType)) RawPairType; |
|
typedef typename RawPairType::first_type FirstType; |
|
typedef typename RawPairType::second_type SecondType; |
|
|
|
template <typename FirstMatcher, typename SecondMatcher> |
|
PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) |
|
: first_matcher_( |
|
testing::SafeMatcherCast<const FirstType&>(first_matcher)), |
|
second_matcher_( |
|
testing::SafeMatcherCast<const SecondType&>(second_matcher)) { |
|
} |
|
|
|
// Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second' |
|
// matches second_matcher. |
|
virtual bool Matches(PairType a_pair) const { |
|
return first_matcher_.Matches(a_pair.first) && |
|
second_matcher_.Matches(a_pair.second); |
|
} |
|
|
|
// Describes what this matcher does. |
|
virtual void DescribeTo(::std::ostream* os) const { |
|
*os << "has a first field that "; |
|
first_matcher_.DescribeTo(os); |
|
*os << ", and has a second field that "; |
|
second_matcher_.DescribeTo(os); |
|
} |
|
|
|
// Describes what the negation of this matcher does. |
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "has a first field that "; |
|
first_matcher_.DescribeNegationTo(os); |
|
*os << ", or has a second field that "; |
|
second_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
// Explains why 'a_pair' matches, or doesn't match, this matcher. |
|
virtual void ExplainMatchResultTo(PairType a_pair, |
|
::std::ostream* os) const { |
|
::std::stringstream ss1; |
|
first_matcher_.ExplainMatchResultTo(a_pair.first, &ss1); |
|
internal::string s1 = ss1.str(); |
|
if (s1 != "") { |
|
s1 = "the first field " + s1; |
|
} |
|
|
|
::std::stringstream ss2; |
|
second_matcher_.ExplainMatchResultTo(a_pair.second, &ss2); |
|
internal::string s2 = ss2.str(); |
|
if (s2 != "") { |
|
s2 = "the second field " + s2; |
|
} |
|
|
|
*os << s1; |
|
if (s1 != "" && s2 != "") { |
|
*os << ", and "; |
|
} |
|
*os << s2; |
|
} |
|
|
|
private: |
|
const Matcher<const FirstType&> first_matcher_; |
|
const Matcher<const SecondType&> second_matcher_; |
|
}; |
|
|
|
// Implements polymorphic Pair(first_matcher, second_matcher). |
|
template <typename FirstMatcher, typename SecondMatcher> |
|
class PairMatcher { |
|
public: |
|
PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) |
|
: first_matcher_(first_matcher), second_matcher_(second_matcher) {} |
|
|
|
template <typename PairType> |
|
operator Matcher<PairType> () const { |
|
return MakeMatcher( |
|
new PairMatcherImpl<PairType>( |
|
first_matcher_, second_matcher_)); |
|
} |
|
|
|
private: |
|
const FirstMatcher first_matcher_; |
|
const SecondMatcher second_matcher_; |
|
}; |
|
|
|
// Implements ElementsAre() and ElementsAreArray(). |
|
template <typename Container> |
|
class ElementsAreMatcherImpl : public MatcherInterface<Container> { |
|
public: |
|
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) RawContainer; |
|
typedef internal::StlContainerView<RawContainer> View; |
|
typedef typename View::type StlContainer; |
|
typedef typename View::const_reference StlContainerReference; |
|
typedef typename StlContainer::value_type Element; |
|
|
|
// Constructs the matcher from a sequence of element values or |
|
// element matchers. |
|
template <typename InputIter> |
|
ElementsAreMatcherImpl(InputIter first, size_t count) { |
|
matchers_.reserve(count); |
|
InputIter it = first; |
|
for (size_t i = 0; i != count; ++i, ++it) { |
|
matchers_.push_back(MatcherCast<const Element&>(*it)); |
|
} |
|
} |
|
|
|
// Returns true iff 'container' matches. |
|
virtual bool Matches(Container container) const { |
|
StlContainerReference stl_container = View::ConstReference(container); |
|
if (stl_container.size() != count()) |
|
return false; |
|
|
|
typename StlContainer::const_iterator it = stl_container.begin(); |
|
for (size_t i = 0; i != count(); ++it, ++i) { |
|
if (!matchers_[i].Matches(*it)) |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
// Describes what this matcher does. |
|
virtual void DescribeTo(::std::ostream* os) const { |
|
if (count() == 0) { |
|
*os << "is empty"; |
|
} else if (count() == 1) { |
|
*os << "has 1 element that "; |
|
matchers_[0].DescribeTo(os); |
|
} else { |
|
*os << "has " << Elements(count()) << " where\n"; |
|
for (size_t i = 0; i != count(); ++i) { |
|
*os << "element " << i << " "; |
|
matchers_[i].DescribeTo(os); |
|
if (i + 1 < count()) { |
|
*os << ",\n"; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Describes what the negation of this matcher does. |
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
if (count() == 0) { |
|
*os << "is not empty"; |
|
return; |
|
} |
|
|
|
*os << "does not have " << Elements(count()) << ", or\n"; |
|
for (size_t i = 0; i != count(); ++i) { |
|
*os << "element " << i << " "; |
|
matchers_[i].DescribeNegationTo(os); |
|
if (i + 1 < count()) { |
|
*os << ", or\n"; |
|
} |
|
} |
|
} |
|
|
|
// Explains why 'container' matches, or doesn't match, this matcher. |
|
virtual void ExplainMatchResultTo(Container container, |
|
::std::ostream* os) const { |
|
StlContainerReference stl_container = View::ConstReference(container); |
|
if (Matches(container)) { |
|
// We need to explain why *each* element matches (the obvious |
|
// ones can be skipped). |
|
|
|
bool reason_printed = false; |
|
typename StlContainer::const_iterator it = stl_container.begin(); |
|
for (size_t i = 0; i != count(); ++it, ++i) { |
|
::std::stringstream ss; |
|
matchers_[i].ExplainMatchResultTo(*it, &ss); |
|
|
|
const string s = ss.str(); |
|
if (!s.empty()) { |
|
if (reason_printed) { |
|
*os << ",\n"; |
|
} |
|
*os << "element " << i << " " << s; |
|
reason_printed = true; |
|
} |
|
} |
|
} else { |
|
// We need to explain why the container doesn't match. |
|
const size_t actual_count = stl_container.size(); |
|
if (actual_count != count()) { |
|
// The element count doesn't match. If the container is |
|
// empty, there's no need to explain anything as Google Mock |
|
// already prints the empty container. Otherwise we just need |
|
// to show how many elements there actually are. |
|
if (actual_count != 0) { |
|
*os << "has " << Elements(actual_count); |
|
} |
|
return; |
|
} |
|
|
|
// The container has the right size but at least one element |
|
// doesn't match expectation. We need to find this element and |
|
// explain why it doesn't match. |
|
typename StlContainer::const_iterator it = stl_container.begin(); |
|
for (size_t i = 0; i != count(); ++it, ++i) { |
|
if (matchers_[i].Matches(*it)) { |
|
continue; |
|
} |
|
|
|
*os << "element " << i << " doesn't match"; |
|
|
|
::std::stringstream ss; |
|
matchers_[i].ExplainMatchResultTo(*it, &ss); |
|
const string s = ss.str(); |
|
if (!s.empty()) { |
|
*os << " (" << s << ")"; |
|
} |
|
return; |
|
} |
|
} |
|
} |
|
|
|
private: |
|
static Message Elements(size_t count) { |
|
return Message() << count << (count == 1 ? " element" : " elements"); |
|
} |
|
|
|
size_t count() const { return matchers_.size(); } |
|
std::vector<Matcher<const Element&> > matchers_; |
|
}; |
|
|
|
// Implements ElementsAre() of 0 arguments. |
|
class ElementsAreMatcher0 { |
|
public: |
|
ElementsAreMatcher0() {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) |
|
RawContainer; |
|
typedef typename internal::StlContainerView<RawContainer>::type::value_type |
|
Element; |
|
|
|
const Matcher<const Element&>* const matchers = NULL; |
|
return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 0)); |
|
} |
|
}; |
|
|
|
// Implements ElementsAreArray(). |
|
template <typename T> |
|
class ElementsAreArrayMatcher { |
|
public: |
|
ElementsAreArrayMatcher(const T* first, size_t count) : |
|
first_(first), count_(count) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) |
|
RawContainer; |
|
typedef typename internal::StlContainerView<RawContainer>::type::value_type |
|
Element; |
|
|
|
return MakeMatcher(new ElementsAreMatcherImpl<Container>(first_, count_)); |
|
} |
|
|
|
private: |
|
const T* const first_; |
|
const size_t count_; |
|
}; |
|
|
|
// Constants denoting interpolations in a matcher description string. |
|
const int kTupleInterpolation = -1; // "%(*)s" |
|
const int kPercentInterpolation = -2; // "%%" |
|
const int kInvalidInterpolation = -3; // "%" followed by invalid text |
|
|
|
// Records the location and content of an interpolation. |
|
struct Interpolation { |
|
Interpolation(const char* start, const char* end, int param) |
|
: start_pos(start), end_pos(end), param_index(param) {} |
|
|
|
// Points to the start of the interpolation (the '%' character). |
|
const char* start_pos; |
|
// Points to the first character after the interpolation. |
|
const char* end_pos; |
|
// 0-based index of the interpolated matcher parameter; |
|
// kTupleInterpolation for "%(*)s"; kPercentInterpolation for "%%". |
|
int param_index; |
|
}; |
|
|
|
typedef ::std::vector<Interpolation> Interpolations; |
|
|
|
// Parses a matcher description string and returns a vector of |
|
// interpolations that appear in the string; generates non-fatal |
|
// failures iff 'description' is an invalid matcher description. |
|
// 'param_names' is a NULL-terminated array of parameter names in the |
|
// order they appear in the MATCHER_P*() parameter list. |
|
Interpolations ValidateMatcherDescription( |
|
const char* param_names[], const char* description); |
|
|
|
// Returns the actual matcher description, given the matcher name, |
|
// user-supplied description template string, interpolations in the |
|
// string, and the printed values of the matcher parameters. |
|
string FormatMatcherDescription( |
|
const char* matcher_name, const char* description, |
|
const Interpolations& interp, const Strings& param_values); |
|
|
|
} // namespace internal |
|
|
|
// Implements MatcherCast(). |
|
template <typename T, typename M> |
|
inline Matcher<T> MatcherCast(M matcher) { |
|
return internal::MatcherCastImpl<T, M>::Cast(matcher); |
|
} |
|
|
|
// _ is a matcher that matches anything of any type. |
|
// |
|
// This definition is fine as: |
|
// |
|
// 1. The C++ standard permits using the name _ in a namespace that |
|
// is not the global namespace or ::std. |
|
// 2. The AnythingMatcher class has no data member or constructor, |
|
// so it's OK to create global variables of this type. |
|
// 3. c-style has approved of using _ in this case. |
|
const internal::AnythingMatcher _ = {}; |
|
// Creates a matcher that matches any value of the given type T. |
|
template <typename T> |
|
inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); } |
|
|
|
// Creates a matcher that matches any value of the given type T. |
|
template <typename T> |
|
inline Matcher<T> An() { return A<T>(); } |
|
|
|
// Creates a polymorphic matcher that matches anything equal to x. |
|
// Note: if the parameter of Eq() were declared as const T&, Eq("foo") |
|
// wouldn't compile. |
|
template <typename T> |
|
inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); } |
|
|
|
// Constructs a Matcher<T> from a 'value' of type T. The constructed |
|
// matcher matches any value that's equal to 'value'. |
|
template <typename T> |
|
Matcher<T>::Matcher(T value) { *this = Eq(value); } |
|
|
|
// Creates a monomorphic matcher that matches anything with type Lhs |
|
// and equal to rhs. A user may need to use this instead of Eq(...) |
|
// in order to resolve an overloading ambiguity. |
|
// |
|
// TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x)) |
|
// or Matcher<T>(x), but more readable than the latter. |
|
// |
|
// We could define similar monomorphic matchers for other comparison |
|
// operations (e.g. TypedLt, TypedGe, and etc), but decided not to do |
|
// it yet as those are used much less than Eq() in practice. A user |
|
// can always write Matcher<T>(Lt(5)) to be explicit about the type, |
|
// for example. |
|
template <typename Lhs, typename Rhs> |
|
inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); } |
|
|
|
// Creates a polymorphic matcher that matches anything >= x. |
|
template <typename Rhs> |
|
inline internal::GeMatcher<Rhs> Ge(Rhs x) { |
|
return internal::GeMatcher<Rhs>(x); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches anything > x. |
|
template <typename Rhs> |
|
inline internal::GtMatcher<Rhs> Gt(Rhs x) { |
|
return internal::GtMatcher<Rhs>(x); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches anything <= x. |
|
template <typename Rhs> |
|
inline internal::LeMatcher<Rhs> Le(Rhs x) { |
|
return internal::LeMatcher<Rhs>(x); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches anything < x. |
|
template <typename Rhs> |
|
inline internal::LtMatcher<Rhs> Lt(Rhs x) { |
|
return internal::LtMatcher<Rhs>(x); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches anything != x. |
|
template <typename Rhs> |
|
inline internal::NeMatcher<Rhs> Ne(Rhs x) { |
|
return internal::NeMatcher<Rhs>(x); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches any NULL pointer. |
|
inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { |
|
return MakePolymorphicMatcher(internal::IsNullMatcher()); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches any non-NULL pointer. |
|
// This is convenient as Not(NULL) doesn't compile (the compiler |
|
// thinks that that expression is comparing a pointer with an integer). |
|
inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { |
|
return MakePolymorphicMatcher(internal::NotNullMatcher()); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches any argument that |
|
// references variable x. |
|
template <typename T> |
|
inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT |
|
return internal::RefMatcher<T&>(x); |
|
} |
|
|
|
// Creates a matcher that matches any double argument approximately |
|
// equal to rhs, where two NANs are considered unequal. |
|
inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { |
|
return internal::FloatingEqMatcher<double>(rhs, false); |
|
} |
|
|
|
// Creates a matcher that matches any double argument approximately |
|
// equal to rhs, including NaN values when rhs is NaN. |
|
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { |
|
return internal::FloatingEqMatcher<double>(rhs, true); |
|
} |
|
|
|
// Creates a matcher that matches any float argument approximately |
|
// equal to rhs, where two NANs are considered unequal. |
|
inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { |
|
return internal::FloatingEqMatcher<float>(rhs, false); |
|
} |
|
|
|
// Creates a matcher that matches any double argument approximately |
|
// equal to rhs, including NaN values when rhs is NaN. |
|
inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { |
|
return internal::FloatingEqMatcher<float>(rhs, true); |
|
} |
|
|
|
// Creates a matcher that matches a pointer (raw or smart) that points |
|
// to a value that matches inner_matcher. |
|
template <typename InnerMatcher> |
|
inline internal::PointeeMatcher<InnerMatcher> Pointee( |
|
const InnerMatcher& inner_matcher) { |
|
return internal::PointeeMatcher<InnerMatcher>(inner_matcher); |
|
} |
|
|
|
// Creates a matcher that matches an object whose given field matches |
|
// 'matcher'. For example, |
|
// Field(&Foo::number, Ge(5)) |
|
// matches a Foo object x iff x.number >= 5. |
|
template <typename Class, typename FieldType, typename FieldMatcher> |
|
inline PolymorphicMatcher< |
|
internal::FieldMatcher<Class, FieldType> > Field( |
|
FieldType Class::*field, const FieldMatcher& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::FieldMatcher<Class, FieldType>( |
|
field, MatcherCast<const FieldType&>(matcher))); |
|
// The call to MatcherCast() is required for supporting inner |
|
// matchers of compatible types. For example, it allows |
|
// Field(&Foo::bar, m) |
|
// to compile where bar is an int32 and m is a matcher for int64. |
|
} |
|
|
|
// Creates a matcher that matches an object whose given property |
|
// matches 'matcher'. For example, |
|
// Property(&Foo::str, StartsWith("hi")) |
|
// matches a Foo object x iff x.str() starts with "hi". |
|
template <typename Class, typename PropertyType, typename PropertyMatcher> |
|
inline PolymorphicMatcher< |
|
internal::PropertyMatcher<Class, PropertyType> > Property( |
|
PropertyType (Class::*property)() const, const PropertyMatcher& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::PropertyMatcher<Class, PropertyType>( |
|
property, |
|
MatcherCast<GMOCK_REFERENCE_TO_CONST_(PropertyType)>(matcher))); |
|
// The call to MatcherCast() is required for supporting inner |
|
// matchers of compatible types. For example, it allows |
|
// Property(&Foo::bar, m) |
|
// to compile where bar() returns an int32 and m is a matcher for int64. |
|
} |
|
|
|
// Creates a matcher that matches an object iff the result of applying |
|
// a callable to x matches 'matcher'. |
|
// For example, |
|
// ResultOf(f, StartsWith("hi")) |
|
// matches a Foo object x iff f(x) starts with "hi". |
|
// callable parameter can be a function, function pointer, or a functor. |
|
// Callable has to satisfy the following conditions: |
|
// * It is required to keep no state affecting the results of |
|
// the calls on it and make no assumptions about how many calls |
|
// will be made. Any state it keeps must be protected from the |
|
// concurrent access. |
|
// * If it is a function object, it has to define type result_type. |
|
// We recommend deriving your functor classes from std::unary_function. |
|
template <typename Callable, typename ResultOfMatcher> |
|
internal::ResultOfMatcher<Callable> ResultOf( |
|
Callable callable, const ResultOfMatcher& matcher) { |
|
return internal::ResultOfMatcher<Callable>( |
|
callable, |
|
MatcherCast<typename internal::CallableTraits<Callable>::ResultType>( |
|
matcher)); |
|
// The call to MatcherCast() is required for supporting inner |
|
// matchers of compatible types. For example, it allows |
|
// ResultOf(Function, m) |
|
// to compile where Function() returns an int32 and m is a matcher for int64. |
|
} |
|
|
|
// String matchers. |
|
|
|
// Matches a string equal to str. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > |
|
StrEq(const internal::string& str) { |
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( |
|
str, true, true)); |
|
} |
|
|
|
// Matches a string not equal to str. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > |
|
StrNe(const internal::string& str) { |
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( |
|
str, false, true)); |
|
} |
|
|
|
// Matches a string equal to str, ignoring case. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > |
|
StrCaseEq(const internal::string& str) { |
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( |
|
str, true, false)); |
|
} |
|
|
|
// Matches a string not equal to str, ignoring case. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > |
|
StrCaseNe(const internal::string& str) { |
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( |
|
str, false, false)); |
|
} |
|
|
|
// Creates a matcher that matches any string, std::string, or C string |
|
// that contains the given substring. |
|
inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> > |
|
HasSubstr(const internal::string& substring) { |
|
return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>( |
|
substring)); |
|
} |
|
|
|
// Matches a string that starts with 'prefix' (case-sensitive). |
|
inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> > |
|
StartsWith(const internal::string& prefix) { |
|
return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>( |
|
prefix)); |
|
} |
|
|
|
// Matches a string that ends with 'suffix' (case-sensitive). |
|
inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> > |
|
EndsWith(const internal::string& suffix) { |
|
return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>( |
|
suffix)); |
|
} |
|
|
|
#ifdef GMOCK_HAS_REGEX |
|
|
|
// Matches a string that fully matches regular expression 'regex'. |
|
// The matcher takes ownership of 'regex'. |
|
inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( |
|
const internal::RE* regex) { |
|
return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true)); |
|
} |
|
inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( |
|
const internal::string& regex) { |
|
return MatchesRegex(new internal::RE(regex)); |
|
} |
|
|
|
// Matches a string that contains regular expression 'regex'. |
|
// The matcher takes ownership of 'regex'. |
|
inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( |
|
const internal::RE* regex) { |
|
return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false)); |
|
} |
|
inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( |
|
const internal::string& regex) { |
|
return ContainsRegex(new internal::RE(regex)); |
|
} |
|
|
|
#endif // GMOCK_HAS_REGEX |
|
|
|
#if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING |
|
// Wide string matchers. |
|
|
|
// Matches a string equal to str. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > |
|
StrEq(const internal::wstring& str) { |
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( |
|
str, true, true)); |
|
} |
|
|
|
// Matches a string not equal to str. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > |
|
StrNe(const internal::wstring& str) { |
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( |
|
str, false, true)); |
|
} |
|
|
|
// Matches a string equal to str, ignoring case. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > |
|
StrCaseEq(const internal::wstring& str) { |
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( |
|
str, true, false)); |
|
} |
|
|
|
// Matches a string not equal to str, ignoring case. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > |
|
StrCaseNe(const internal::wstring& str) { |
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( |
|
str, false, false)); |
|
} |
|
|
|
// Creates a matcher that matches any wstring, std::wstring, or C wide string |
|
// that contains the given substring. |
|
inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> > |
|
HasSubstr(const internal::wstring& substring) { |
|
return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>( |
|
substring)); |
|
} |
|
|
|
// Matches a string that starts with 'prefix' (case-sensitive). |
|
inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> > |
|
StartsWith(const internal::wstring& prefix) { |
|
return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>( |
|
prefix)); |
|
} |
|
|
|
// Matches a string that ends with 'suffix' (case-sensitive). |
|
inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> > |
|
EndsWith(const internal::wstring& suffix) { |
|
return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>( |
|
suffix)); |
|
} |
|
|
|
#endif // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field == the second field. |
|
inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field >= the second field. |
|
inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field > the second field. |
|
inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field <= the second field. |
|
inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field < the second field. |
|
inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field != the second field. |
|
inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } |
|
|
|
// Creates a matcher that matches any value of type T that m doesn't |
|
// match. |
|
template <typename InnerMatcher> |
|
inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { |
|
return internal::NotMatcher<InnerMatcher>(m); |
|
} |
|
|
|
// Creates a matcher that matches any value that matches all of the |
|
// given matchers. |
|
// |
|
// For now we only support up to 5 matchers. Support for more |
|
// matchers can be added as needed, or the user can use nested |
|
// AllOf()s. |
|
template <typename Matcher1, typename Matcher2> |
|
inline internal::BothOfMatcher<Matcher1, Matcher2> |
|
AllOf(Matcher1 m1, Matcher2 m2) { |
|
return internal::BothOfMatcher<Matcher1, Matcher2>(m1, m2); |
|
} |
|
|
|
template <typename Matcher1, typename Matcher2, typename Matcher3> |
|
inline internal::BothOfMatcher<Matcher1, |
|
internal::BothOfMatcher<Matcher2, Matcher3> > |
|
AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) { |
|
return AllOf(m1, AllOf(m2, m3)); |
|
} |
|
|
|
template <typename Matcher1, typename Matcher2, typename Matcher3, |
|
typename Matcher4> |
|
inline internal::BothOfMatcher<Matcher1, |
|
internal::BothOfMatcher<Matcher2, |
|
internal::BothOfMatcher<Matcher3, Matcher4> > > |
|
AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) { |
|
return AllOf(m1, AllOf(m2, m3, m4)); |
|
} |
|
|
|
template <typename Matcher1, typename Matcher2, typename Matcher3, |
|
typename Matcher4, typename Matcher5> |
|
inline internal::BothOfMatcher<Matcher1, |
|
internal::BothOfMatcher<Matcher2, |
|
internal::BothOfMatcher<Matcher3, |
|
internal::BothOfMatcher<Matcher4, Matcher5> > > > |
|
AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) { |
|
return AllOf(m1, AllOf(m2, m3, m4, m5)); |
|
} |
|
|
|
// Creates a matcher that matches any value that matches at least one |
|
// of the given matchers. |
|
// |
|
// For now we only support up to 5 matchers. Support for more |
|
// matchers can be added as needed, or the user can use nested |
|
// AnyOf()s. |
|
template <typename Matcher1, typename Matcher2> |
|
inline internal::EitherOfMatcher<Matcher1, Matcher2> |
|
AnyOf(Matcher1 m1, Matcher2 m2) { |
|
return internal::EitherOfMatcher<Matcher1, Matcher2>(m1, m2); |
|
} |
|
|
|
template <typename Matcher1, typename Matcher2, typename Matcher3> |
|
inline internal::EitherOfMatcher<Matcher1, |
|
internal::EitherOfMatcher<Matcher2, Matcher3> > |
|
AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) { |
|
return AnyOf(m1, AnyOf(m2, m3)); |
|
} |
|
|
|
template <typename Matcher1, typename Matcher2, typename Matcher3, |
|
typename Matcher4> |
|
inline internal::EitherOfMatcher<Matcher1, |
|
internal::EitherOfMatcher<Matcher2, |
|
internal::EitherOfMatcher<Matcher3, Matcher4> > > |
|
AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) { |
|
return AnyOf(m1, AnyOf(m2, m3, m4)); |
|
} |
|
|
|
template <typename Matcher1, typename Matcher2, typename Matcher3, |
|
typename Matcher4, typename Matcher5> |
|
inline internal::EitherOfMatcher<Matcher1, |
|
internal::EitherOfMatcher<Matcher2, |
|
internal::EitherOfMatcher<Matcher3, |
|
internal::EitherOfMatcher<Matcher4, Matcher5> > > > |
|
AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) { |
|
return AnyOf(m1, AnyOf(m2, m3, m4, m5)); |
|
} |
|
|
|
// Returns a matcher that matches anything that satisfies the given |
|
// predicate. The predicate can be any unary function or functor |
|
// whose return type can be implicitly converted to bool. |
|
template <typename Predicate> |
|
inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > |
|
Truly(Predicate pred) { |
|
return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); |
|
} |
|
|
|
// Returns a matcher that matches an equal container. |
|
// This matcher behaves like Eq(), but in the event of mismatch lists the |
|
// values that are included in one container but not the other. (Duplicate |
|
// values and order differences are not explained.) |
|
template <typename Container> |
|
inline PolymorphicMatcher<internal::ContainerEqMatcher< |
|
GMOCK_REMOVE_CONST_(Container)> > |
|
ContainerEq(const Container& rhs) { |
|
// This following line is for working around a bug in MSVC 8.0, |
|
// which causes Container to be a const type sometimes. |
|
typedef GMOCK_REMOVE_CONST_(Container) RawContainer; |
|
return MakePolymorphicMatcher(internal::ContainerEqMatcher<RawContainer>(rhs)); |
|
} |
|
|
|
// Matches an STL-style container or a native array that contains at |
|
// least one element matching the given value or matcher. |
|
// |
|
// Examples: |
|
// ::std::set<int> page_ids; |
|
// page_ids.insert(3); |
|
// page_ids.insert(1); |
|
// EXPECT_THAT(page_ids, Contains(1)); |
|
// EXPECT_THAT(page_ids, Contains(Gt(2))); |
|
// EXPECT_THAT(page_ids, Not(Contains(4))); |
|
// |
|
// ::std::map<int, size_t> page_lengths; |
|
// page_lengths[1] = 100; |
|
// EXPECT_THAT(page_lengths, |
|
// Contains(::std::pair<const int, size_t>(1, 100))); |
|
// |
|
// const char* user_ids[] = { "joe", "mike", "tom" }; |
|
// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); |
|
template <typename M> |
|
inline internal::ContainsMatcher<M> Contains(M matcher) { |
|
return internal::ContainsMatcher<M>(matcher); |
|
} |
|
|
|
// Key(inner_matcher) matches an std::pair whose 'first' field matches |
|
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
|
// std::map that contains at least one element whose key is >= 5. |
|
template <typename M> |
|
inline internal::KeyMatcher<M> Key(M inner_matcher) { |
|
return internal::KeyMatcher<M>(inner_matcher); |
|
} |
|
|
|
// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field |
|
// matches first_matcher and whose 'second' field matches second_matcher. For |
|
// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used |
|
// to match a std::map<int, string> that contains exactly one element whose key |
|
// is >= 5 and whose value equals "foo". |
|
template <typename FirstMatcher, typename SecondMatcher> |
|
inline internal::PairMatcher<FirstMatcher, SecondMatcher> |
|
Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { |
|
return internal::PairMatcher<FirstMatcher, SecondMatcher>( |
|
first_matcher, second_matcher); |
|
} |
|
|
|
// Returns a predicate that is satisfied by anything that matches the |
|
// given matcher. |
|
template <typename M> |
|
inline internal::MatcherAsPredicate<M> Matches(M matcher) { |
|
return internal::MatcherAsPredicate<M>(matcher); |
|
} |
|
|
|
// Returns true iff the value matches the matcher. |
|
template <typename T, typename M> |
|
inline bool Value(const T& value, M matcher) { |
|
return testing::Matches(matcher)(value); |
|
} |
|
|
|
// AllArgs(m) is a synonym of m. This is useful in |
|
// |
|
// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); |
|
// |
|
// which is easier to read than |
|
// |
|
// EXPECT_CALL(foo, Bar(_, _)).With(Eq()); |
|
template <typename InnerMatcher> |
|
inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } |
|
|
|
// These macros allow using matchers to check values in Google Test |
|
// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) |
|
// succeed iff the value matches the matcher. If the assertion fails, |
|
// the value and the description of the matcher will be printed. |
|
#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ |
|
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
|
#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ |
|
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
|
|
|
} // namespace testing |
|
|
|
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
|
|
|