GoogleTest - Google Testing and Mocking Framework (grpc protobuff依赖)
https://google.github.io/googletest/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
522 lines
18 KiB
522 lines
18 KiB
$$ -*- mode: c++; -*- |
|
$$ This is a Pump source file. Please use Pump to convert it to |
|
$$ gmock-generated-actions.h. |
|
$$ |
|
$var n = 10 $$ The maximum arity we support. |
|
$$ }} This line fixes auto-indentation of the following code in Emacs. |
|
// Copyright 2008, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file implements some commonly used variadic matchers. |
|
|
|
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_ |
|
#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_ |
|
|
|
#include <sstream> |
|
#include <string> |
|
#include <vector> |
|
#include <gmock/gmock-matchers.h> |
|
#include <gmock/gmock-printers.h> |
|
|
|
namespace testing { |
|
namespace internal { |
|
|
|
$range i 0..n-1 |
|
|
|
// The type of the i-th (0-based) field of Tuple. |
|
#define GMOCK_FIELD_TYPE_(Tuple, i) \ |
|
typename ::std::tr1::tuple_element<i, Tuple>::type |
|
|
|
// TupleFields<Tuple, k0, ..., kn> is for selecting fields from a |
|
// tuple of type Tuple. It has two members: |
|
// |
|
// type: a tuple type whose i-th field is the ki-th field of Tuple. |
|
// GetSelectedFields(t): returns fields k0, ..., and kn of t as a tuple. |
|
// |
|
// For example, in class TupleFields<tuple<bool, char, int>, 2, 0>, we have: |
|
// |
|
// type is tuple<int, bool>, and |
|
// GetSelectedFields(make_tuple(true, 'a', 42)) is (42, true). |
|
|
|
template <class Tuple$for i [[, int k$i = -1]]> |
|
class TupleFields; |
|
|
|
// This generic version is used when there are $n selectors. |
|
template <class Tuple$for i [[, int k$i]]> |
|
class TupleFields { |
|
public: |
|
typedef ::std::tr1::tuple<$for i, [[GMOCK_FIELD_TYPE_(Tuple, k$i)]]> type; |
|
static type GetSelectedFields(const Tuple& t) { |
|
using ::std::tr1::get; |
|
return type($for i, [[get<k$i>(t)]]); |
|
} |
|
}; |
|
|
|
// The following specialization is used for 0 ~ $(n-1) selectors. |
|
|
|
$for i [[ |
|
$$ }}} |
|
$range j 0..i-1 |
|
$range k 0..n-1 |
|
|
|
template <class Tuple$for j [[, int k$j]]> |
|
class TupleFields<Tuple, $for k, [[$if k < i [[k$k]] $else [[-1]]]]> { |
|
public: |
|
typedef ::std::tr1::tuple<$for j, [[GMOCK_FIELD_TYPE_(Tuple, k$j)]]> type; |
|
static type GetSelectedFields(const Tuple& t) { |
|
using ::std::tr1::get; |
|
return type($for j, [[get<k$j>(t)]]); |
|
} |
|
}; |
|
|
|
]] |
|
|
|
#undef GMOCK_FIELD_TYPE_ |
|
|
|
// Implements the Args() matcher. |
|
|
|
$var ks = [[$for i, [[k$i]]]] |
|
template <class ArgsTuple$for i [[, int k$i = -1]]> |
|
class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { |
|
public: |
|
// ArgsTuple may have top-level const or reference modifiers. |
|
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(ArgsTuple)) RawArgsTuple; |
|
typedef typename internal::TupleFields<RawArgsTuple, $ks>::type SelectedArgs; |
|
typedef Matcher<const SelectedArgs&> MonomorphicInnerMatcher; |
|
|
|
template <typename InnerMatcher> |
|
explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) |
|
: inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} |
|
|
|
virtual bool Matches(ArgsTuple args) const { |
|
return inner_matcher_.Matches(GetSelectedArgs(args)); |
|
} |
|
|
|
virtual void DescribeTo(::std::ostream* os) const { |
|
PrintIndices(os); |
|
inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const { |
|
PrintIndices(os); |
|
inner_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
virtual void ExplainMatchResultTo(ArgsTuple args, |
|
::std::ostream* os) const { |
|
inner_matcher_.ExplainMatchResultTo(GetSelectedArgs(args), os); |
|
} |
|
|
|
private: |
|
static SelectedArgs GetSelectedArgs(ArgsTuple args) { |
|
return TupleFields<RawArgsTuple, $ks>::GetSelectedFields(args); |
|
} |
|
|
|
// Prints the indices of the selected fields. |
|
static void PrintIndices(::std::ostream* os) { |
|
*os << "are a tuple whose fields ("; |
|
const int indices[$n] = { $ks }; |
|
for (int i = 0; i < $n; i++) { |
|
if (indices[i] < 0) |
|
break; |
|
|
|
if (i >= 1) |
|
*os << ", "; |
|
|
|
*os << "#" << indices[i]; |
|
} |
|
*os << ") "; |
|
} |
|
|
|
const MonomorphicInnerMatcher inner_matcher_; |
|
}; |
|
|
|
template <class InnerMatcher$for i [[, int k$i = -1]]> |
|
class ArgsMatcher { |
|
public: |
|
explicit ArgsMatcher(const InnerMatcher& inner_matcher) |
|
: inner_matcher_(inner_matcher) {} |
|
|
|
template <typename ArgsTuple> |
|
operator Matcher<ArgsTuple>() const { |
|
return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, $ks>(inner_matcher_)); |
|
} |
|
|
|
const InnerMatcher inner_matcher_; |
|
}; |
|
|
|
// Implements ElementsAre() of 1-$n arguments. |
|
|
|
|
|
$range i 1..n |
|
$for i [[ |
|
$range j 1..i |
|
template <$for j, [[typename T$j]]> |
|
class ElementsAreMatcher$i { |
|
public: |
|
$if i==1 [[explicit ]]ElementsAreMatcher$i($for j, [[const T$j& e$j]])$if i > 0 [[ : ]] |
|
$for j, [[e$j[[]]_(e$j)]] {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) |
|
RawContainer; |
|
typedef typename internal::StlContainerView<RawContainer>::type::value_type |
|
Element; |
|
|
|
const Matcher<const Element&> matchers[] = { |
|
|
|
$for j [[ |
|
MatcherCast<const Element&>(e$j[[]]_), |
|
|
|
]] |
|
}; |
|
|
|
return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, $i)); |
|
} |
|
|
|
private: |
|
|
|
$for j [[ |
|
const T$j& e$j[[]]_; |
|
|
|
]] |
|
}; |
|
|
|
|
|
]] |
|
} // namespace internal |
|
|
|
// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected |
|
// fields of it matches a_matcher. C++ doesn't support default |
|
// arguments for function templates, so we have to overload it. |
|
|
|
$range i 0..n |
|
$for i [[ |
|
$range j 1..i |
|
template <$for j [[int k$j, ]]typename InnerMatcher> |
|
inline internal::ArgsMatcher<InnerMatcher$for j [[, k$j]]> |
|
Args(const InnerMatcher& matcher) { |
|
return internal::ArgsMatcher<InnerMatcher$for j [[, k$j]]>(matcher); |
|
} |
|
|
|
|
|
]] |
|
// ElementsAre(e0, e1, ..., e_n) matches an STL-style container with |
|
// (n + 1) elements, where the i-th element in the container must |
|
// match the i-th argument in the list. Each argument of |
|
// ElementsAre() can be either a value or a matcher. We support up to |
|
// $n arguments. |
|
// |
|
// NOTE: Since ElementsAre() cares about the order of the elements, it |
|
// must not be used with containers whose elements's order is |
|
// undefined (e.g. hash_map). |
|
|
|
inline internal::ElementsAreMatcher0 ElementsAre() { |
|
return internal::ElementsAreMatcher0(); |
|
} |
|
|
|
$range i 1..n |
|
$for i [[ |
|
$range j 1..i |
|
|
|
template <$for j, [[typename T$j]]> |
|
inline internal::ElementsAreMatcher$i<$for j, [[T$j]]> ElementsAre($for j, [[const T$j& e$j]]) { |
|
return internal::ElementsAreMatcher$i<$for j, [[T$j]]>($for j, [[e$j]]); |
|
} |
|
|
|
]] |
|
|
|
// ElementsAreArray(array) and ElementAreArray(array, count) are like |
|
// ElementsAre(), except that they take an array of values or |
|
// matchers. The former form infers the size of 'array', which must |
|
// be a static C-style array. In the latter form, 'array' can either |
|
// be a static array or a pointer to a dynamically created array. |
|
|
|
template <typename T> |
|
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
|
const T* first, size_t count) { |
|
return internal::ElementsAreArrayMatcher<T>(first, count); |
|
} |
|
|
|
template <typename T, size_t N> |
|
inline internal::ElementsAreArrayMatcher<T> |
|
ElementsAreArray(const T (&array)[N]) { |
|
return internal::ElementsAreArrayMatcher<T>(array, N); |
|
} |
|
|
|
} // namespace testing |
|
$$ } // This Pump meta comment fixes auto-indentation in Emacs. It will not |
|
$$ // show up in the generated code. |
|
|
|
|
|
// The MATCHER* family of macros can be used in a namespace scope to |
|
// define custom matchers easily. The syntax: |
|
// |
|
// MATCHER(name, description_string) { statements; } |
|
// |
|
// will define a matcher with the given name that executes the |
|
// statements, which must return a bool to indicate if the match |
|
// succeeds. Inside the statements, you can refer to the value being |
|
// matched by 'arg', and refer to its type by 'arg_type'. |
|
// |
|
// The description string documents what the matcher does, and is used |
|
// to generate the failure message when the match fails. Since a |
|
// MATCHER() is usually defined in a header file shared by multiple |
|
// C++ source files, we require the description to be a C-string |
|
// literal to avoid possible side effects. It can be empty, in which |
|
// case we'll use the sequence of words in the matcher name as the |
|
// description. |
|
// |
|
// For example: |
|
// |
|
// MATCHER(IsEven, "") { return (arg % 2) == 0; } |
|
// |
|
// allows you to write |
|
// |
|
// // Expects mock_foo.Bar(n) to be called where n is even. |
|
// EXPECT_CALL(mock_foo, Bar(IsEven())); |
|
// |
|
// or, |
|
// |
|
// // Verifies that the value of some_expression is even. |
|
// EXPECT_THAT(some_expression, IsEven()); |
|
// |
|
// If the above assertion fails, it will print something like: |
|
// |
|
// Value of: some_expression |
|
// Expected: is even |
|
// Actual: 7 |
|
// |
|
// where the description "is even" is automatically calculated from the |
|
// matcher name IsEven. |
|
// |
|
// Note that the type of the value being matched (arg_type) is |
|
// determined by the context in which you use the matcher and is |
|
// supplied to you by the compiler, so you don't need to worry about |
|
// declaring it (nor can you). This allows the matcher to be |
|
// polymorphic. For example, IsEven() can be used to match any type |
|
// where the value of "(arg % 2) == 0" can be implicitly converted to |
|
// a bool. In the "Bar(IsEven())" example above, if method Bar() |
|
// takes an int, 'arg_type' will be int; if it takes an unsigned long, |
|
// 'arg_type' will be unsigned long; and so on. |
|
// |
|
// Sometimes you'll want to parameterize the matcher. For that you |
|
// can use another macro: |
|
// |
|
// MATCHER_P(name, param_name, description_string) { statements; } |
|
// |
|
// For example: |
|
// |
|
// MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } |
|
// |
|
// will allow you to write: |
|
// |
|
// EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); |
|
// |
|
// which may lead to this message (assuming n is 10): |
|
// |
|
// Value of: Blah("a") |
|
// Expected: has absolute value 10 |
|
// Actual: -9 |
|
// |
|
// Note that both the matcher description and its parameter are |
|
// printed, making the message human-friendly. |
|
// |
|
// In the matcher definition body, you can write 'foo_type' to |
|
// reference the type of a parameter named 'foo'. For example, in the |
|
// body of MATCHER_P(HasAbsoluteValue, value) above, you can write |
|
// 'value_type' to refer to the type of 'value'. |
|
// |
|
// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to |
|
// support multi-parameter matchers. |
|
// |
|
// When defining a parameterized matcher, you can use Python-style |
|
// interpolations in the description string to refer to the parameter |
|
// values. We support the following syntax currently: |
|
// |
|
// %% a single '%' character |
|
// %(*)s all parameters of the matcher printed as a tuple |
|
// %(foo)s value of the matcher parameter named 'foo' |
|
// |
|
// For example, |
|
// |
|
// MATCHER_P2(InClosedRange, low, hi, "is in range [%(low)s, %(hi)s]") { |
|
// return low <= arg && arg <= hi; |
|
// } |
|
// ... |
|
// EXPECT_THAT(3, InClosedRange(4, 6)); |
|
// |
|
// would generate a failure that contains the message: |
|
// |
|
// Expected: is in range [4, 6] |
|
// |
|
// If you specify "" as the description, the failure message will |
|
// contain the sequence of words in the matcher name followed by the |
|
// parameter values printed as a tuple. For example, |
|
// |
|
// MATCHER_P2(InClosedRange, low, hi, "") { ... } |
|
// ... |
|
// EXPECT_THAT(3, InClosedRange(4, 6)); |
|
// |
|
// would generate a failure that contains the text: |
|
// |
|
// Expected: in closed range (4, 6) |
|
// |
|
// For the purpose of typing, you can view |
|
// |
|
// MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } |
|
// |
|
// as shorthand for |
|
// |
|
// template <typename p1_type, ..., typename pk_type> |
|
// FooMatcherPk<p1_type, ..., pk_type> |
|
// Foo(p1_type p1, ..., pk_type pk) { ... } |
|
// |
|
// When you write Foo(v1, ..., vk), the compiler infers the types of |
|
// the parameters v1, ..., and vk for you. If you are not happy with |
|
// the result of the type inference, you can specify the types by |
|
// explicitly instantiating the template, as in Foo<long, bool>(5, |
|
// false). As said earlier, you don't get to (or need to) specify |
|
// 'arg_type' as that's determined by the context in which the matcher |
|
// is used. You can assign the result of expression Foo(p1, ..., pk) |
|
// to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This |
|
// can be useful when composing matchers. |
|
// |
|
// While you can instantiate a matcher template with reference types, |
|
// passing the parameters by pointer usually makes your code more |
|
// readable. If, however, you still want to pass a parameter by |
|
// reference, be aware that in the failure message generated by the |
|
// matcher you will see the value of the referenced object but not its |
|
// address. |
|
// |
|
// You can overload matchers with different numbers of parameters: |
|
// |
|
// MATCHER_P(Blah, a, description_string1) { ... } |
|
// MATCHER_P2(Blah, a, b, description_string2) { ... } |
|
// |
|
// While it's tempting to always use the MATCHER* macros when defining |
|
// a new matcher, you should also consider implementing |
|
// MatcherInterface or using MakePolymorphicMatcher() instead, |
|
// especially if you need to use the matcher a lot. While these |
|
// approaches require more work, they give you more control on the |
|
// types of the value being matched and the matcher parameters, which |
|
// in general leads to better compiler error messages that pay off in |
|
// the long run. They also allow overloading matchers based on |
|
// parameter types (as opposed to just based on the number of |
|
// parameters). |
|
// |
|
// CAVEAT: |
|
// |
|
// MATCHER*() can only be used in a namespace scope. The reason is |
|
// that C++ doesn't yet allow function-local types to be used to |
|
// instantiate templates. The up-coming C++0x standard will fix this. |
|
// Once that's done, we'll consider supporting using MATCHER*() inside |
|
// a function. |
|
// |
|
// MORE INFORMATION: |
|
// |
|
// To learn more about using these macros, please search for 'MATCHER' |
|
// on http://code.google.com/p/googlemock/wiki/CookBook. |
|
|
|
$range i 0..n |
|
$for i |
|
|
|
[[ |
|
$var macro_name = [[$if i==0 [[MATCHER]] $elif i==1 [[MATCHER_P]] |
|
$else [[MATCHER_P$i]]]] |
|
$var class_name = [[name##Matcher[[$if i==0 [[]] $elif i==1 [[P]] |
|
$else [[P$i]]]]]] |
|
$range j 0..i-1 |
|
$var template = [[$if i==0 [[]] $else [[ |
|
|
|
template <$for j, [[typename p$j##_type]]>\ |
|
]]]] |
|
$var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]] |
|
$var impl_ctor_param_list = [[$for j [[p$j##_type gmock_p$j, ]] |
|
const ::testing::internal::Interpolations& gmock_interp]] |
|
$var impl_inits = [[ : $for j [[p$j(gmock_p$j), ]]gmock_interp_(gmock_interp)]] |
|
$var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]] |
|
$var params_and_interp = [[$for j [[p$j, ]]gmock_interp_]] |
|
$var params = [[$for j, [[p$j]]]] |
|
$var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]] |
|
$var param_types_and_names = [[$for j, [[p$j##_type p$j]]]] |
|
$var param_field_decls = [[$for j |
|
[[ |
|
|
|
p$j##_type p$j;\ |
|
]]]] |
|
$var param_field_decls2 = [[$for j |
|
[[ |
|
|
|
p$j##_type p$j;\ |
|
]]]] |
|
|
|
#define $macro_name(name$for j [[, p$j]], description)\$template |
|
class $class_name {\ |
|
public:\ |
|
template <typename arg_type>\ |
|
class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ |
|
public:\ |
|
[[$if i==1 [[explicit ]]]]gmock_Impl($impl_ctor_param_list)\ |
|
$impl_inits {}\ |
|
virtual bool Matches(arg_type arg) const;\ |
|
virtual void DescribeTo(::std::ostream* gmock_os) const {\ |
|
const ::testing::internal::Strings& gmock_printed_params = \ |
|
::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ |
|
::std::tr1::tuple<$for j, [[p$j##_type]]>($for j, [[p$j]]));\ |
|
*gmock_os << ::testing::internal::FormatMatcherDescription(\ |
|
#name, description, gmock_interp_, gmock_printed_params);\ |
|
}\$param_field_decls |
|
const ::testing::internal::Interpolations gmock_interp_;\ |
|
};\ |
|
template <typename arg_type>\ |
|
operator ::testing::Matcher<arg_type>() const {\ |
|
return ::testing::Matcher<arg_type>(\ |
|
new gmock_Impl<arg_type>($params_and_interp));\ |
|
}\ |
|
$class_name($ctor_param_list)$inits {\ |
|
const char* gmock_param_names[] = { $for j [[#p$j, ]]NULL };\ |
|
gmock_interp_ = ::testing::internal::ValidateMatcherDescription(\ |
|
gmock_param_names, ("" description ""));\ |
|
}\$param_field_decls2 |
|
::testing::internal::Interpolations gmock_interp_;\ |
|
};\$template |
|
inline $class_name$param_types name($param_types_and_names) {\ |
|
return $class_name$param_types($params);\ |
|
}\$template |
|
template <typename arg_type>\ |
|
bool $class_name$param_types::\ |
|
gmock_Impl<arg_type>::Matches(arg_type arg) const |
|
]] |
|
|
|
|
|
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
|
|
|