GoogleTest - Google Testing and Mocking Framework (grpc protobuff依赖)
https://google.github.io/googletest/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1863 lines
62 KiB
1863 lines
62 KiB
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file tests some commonly used argument matchers. |
|
|
|
#include <array> |
|
#include <memory> |
|
#include <ostream> |
|
#include <string> |
|
#include <tuple> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#include "gmock/gmock.h" |
|
#include "test/gmock-matchers_test.h" |
|
#include "gtest/gtest.h" |
|
|
|
// Silence warning C4244: 'initializing': conversion from 'int' to 'short', |
|
// possible loss of data and C4100, unreferenced local parameter |
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244 4100) |
|
|
|
namespace testing { |
|
namespace gmock_matchers_test { |
|
namespace { |
|
|
|
TEST(AddressTest, NonConst) { |
|
int n = 1; |
|
const Matcher<int> m = Address(Eq(&n)); |
|
|
|
EXPECT_TRUE(m.Matches(n)); |
|
|
|
int other = 5; |
|
|
|
EXPECT_FALSE(m.Matches(other)); |
|
|
|
int& n_ref = n; |
|
|
|
EXPECT_TRUE(m.Matches(n_ref)); |
|
} |
|
|
|
TEST(AddressTest, Const) { |
|
const int n = 1; |
|
const Matcher<int> m = Address(Eq(&n)); |
|
|
|
EXPECT_TRUE(m.Matches(n)); |
|
|
|
int other = 5; |
|
|
|
EXPECT_FALSE(m.Matches(other)); |
|
} |
|
|
|
TEST(AddressTest, MatcherDoesntCopy) { |
|
std::unique_ptr<int> n(new int(1)); |
|
const Matcher<std::unique_ptr<int>> m = Address(Eq(&n)); |
|
|
|
EXPECT_TRUE(m.Matches(n)); |
|
} |
|
|
|
TEST(AddressTest, Describe) { |
|
Matcher<int> matcher = Address(_); |
|
EXPECT_EQ("has address that is anything", Describe(matcher)); |
|
EXPECT_EQ("does not have address that is anything", |
|
DescribeNegation(matcher)); |
|
} |
|
|
|
// The following two tests verify that values without a public copy |
|
// ctor can be used as arguments to matchers like Eq(), Ge(), and etc |
|
// with the help of ByRef(). |
|
|
|
class NotCopyable { |
|
public: |
|
explicit NotCopyable(int a_value) : value_(a_value) {} |
|
|
|
int value() const { return value_; } |
|
|
|
bool operator==(const NotCopyable& rhs) const { |
|
return value() == rhs.value(); |
|
} |
|
|
|
bool operator>=(const NotCopyable& rhs) const { |
|
return value() >= rhs.value(); |
|
} |
|
|
|
private: |
|
int value_; |
|
|
|
NotCopyable(const NotCopyable&) = delete; |
|
NotCopyable& operator=(const NotCopyable&) = delete; |
|
}; |
|
|
|
TEST(ByRefTest, AllowsNotCopyableConstValueInMatchers) { |
|
const NotCopyable const_value1(1); |
|
const Matcher<const NotCopyable&> m = Eq(ByRef(const_value1)); |
|
|
|
const NotCopyable n1(1), n2(2); |
|
EXPECT_TRUE(m.Matches(n1)); |
|
EXPECT_FALSE(m.Matches(n2)); |
|
} |
|
|
|
TEST(ByRefTest, AllowsNotCopyableValueInMatchers) { |
|
NotCopyable value2(2); |
|
const Matcher<NotCopyable&> m = Ge(ByRef(value2)); |
|
|
|
NotCopyable n1(1), n2(2); |
|
EXPECT_FALSE(m.Matches(n1)); |
|
EXPECT_TRUE(m.Matches(n2)); |
|
} |
|
|
|
TEST(IsEmptyTest, ImplementsIsEmpty) { |
|
vector<int> container; |
|
EXPECT_THAT(container, IsEmpty()); |
|
container.push_back(0); |
|
EXPECT_THAT(container, Not(IsEmpty())); |
|
container.push_back(1); |
|
EXPECT_THAT(container, Not(IsEmpty())); |
|
} |
|
|
|
TEST(IsEmptyTest, WorksWithString) { |
|
std::string text; |
|
EXPECT_THAT(text, IsEmpty()); |
|
text = "foo"; |
|
EXPECT_THAT(text, Not(IsEmpty())); |
|
text = std::string("\0", 1); |
|
EXPECT_THAT(text, Not(IsEmpty())); |
|
} |
|
|
|
TEST(IsEmptyTest, CanDescribeSelf) { |
|
Matcher<vector<int>> m = IsEmpty(); |
|
EXPECT_EQ("is empty", Describe(m)); |
|
EXPECT_EQ("isn't empty", DescribeNegation(m)); |
|
} |
|
|
|
TEST(IsEmptyTest, ExplainsResult) { |
|
Matcher<vector<int>> m = IsEmpty(); |
|
vector<int> container; |
|
EXPECT_EQ("", Explain(m, container)); |
|
container.push_back(0); |
|
EXPECT_EQ("whose size is 1", Explain(m, container)); |
|
} |
|
|
|
TEST(IsEmptyTest, WorksWithMoveOnly) { |
|
ContainerHelper helper; |
|
EXPECT_CALL(helper, Call(IsEmpty())); |
|
helper.Call({}); |
|
} |
|
|
|
TEST(IsTrueTest, IsTrueIsFalse) { |
|
EXPECT_THAT(true, IsTrue()); |
|
EXPECT_THAT(false, IsFalse()); |
|
EXPECT_THAT(true, Not(IsFalse())); |
|
EXPECT_THAT(false, Not(IsTrue())); |
|
EXPECT_THAT(0, Not(IsTrue())); |
|
EXPECT_THAT(0, IsFalse()); |
|
EXPECT_THAT(nullptr, Not(IsTrue())); |
|
EXPECT_THAT(nullptr, IsFalse()); |
|
EXPECT_THAT(-1, IsTrue()); |
|
EXPECT_THAT(-1, Not(IsFalse())); |
|
EXPECT_THAT(1, IsTrue()); |
|
EXPECT_THAT(1, Not(IsFalse())); |
|
EXPECT_THAT(2, IsTrue()); |
|
EXPECT_THAT(2, Not(IsFalse())); |
|
int a = 42; |
|
EXPECT_THAT(a, IsTrue()); |
|
EXPECT_THAT(a, Not(IsFalse())); |
|
EXPECT_THAT(&a, IsTrue()); |
|
EXPECT_THAT(&a, Not(IsFalse())); |
|
EXPECT_THAT(false, Not(IsTrue())); |
|
EXPECT_THAT(true, Not(IsFalse())); |
|
EXPECT_THAT(std::true_type(), IsTrue()); |
|
EXPECT_THAT(std::true_type(), Not(IsFalse())); |
|
EXPECT_THAT(std::false_type(), IsFalse()); |
|
EXPECT_THAT(std::false_type(), Not(IsTrue())); |
|
EXPECT_THAT(nullptr, Not(IsTrue())); |
|
EXPECT_THAT(nullptr, IsFalse()); |
|
std::unique_ptr<int> null_unique; |
|
std::unique_ptr<int> nonnull_unique(new int(0)); |
|
EXPECT_THAT(null_unique, Not(IsTrue())); |
|
EXPECT_THAT(null_unique, IsFalse()); |
|
EXPECT_THAT(nonnull_unique, IsTrue()); |
|
EXPECT_THAT(nonnull_unique, Not(IsFalse())); |
|
} |
|
|
|
#ifdef GTEST_HAS_TYPED_TEST |
|
// Tests ContainerEq with different container types, and |
|
// different element types. |
|
|
|
template <typename T> |
|
class ContainerEqTest : public testing::Test {}; |
|
|
|
typedef testing::Types<set<int>, vector<size_t>, multiset<size_t>, list<int>> |
|
ContainerEqTestTypes; |
|
|
|
TYPED_TEST_SUITE(ContainerEqTest, ContainerEqTestTypes); |
|
|
|
// Tests that the filled container is equal to itself. |
|
TYPED_TEST(ContainerEqTest, EqualsSelf) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
TypeParam my_set(vals, vals + 6); |
|
const Matcher<TypeParam> m = ContainerEq(my_set); |
|
EXPECT_TRUE(m.Matches(my_set)); |
|
EXPECT_EQ("", Explain(m, my_set)); |
|
} |
|
|
|
// Tests that missing values are reported. |
|
TYPED_TEST(ContainerEqTest, ValueMissing) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {2, 1, 8, 5}; |
|
TypeParam my_set(vals, vals + 6); |
|
TypeParam test_set(test_vals, test_vals + 4); |
|
const Matcher<TypeParam> m = ContainerEq(my_set); |
|
EXPECT_FALSE(m.Matches(test_set)); |
|
EXPECT_EQ("which doesn't have these expected elements: 3", |
|
Explain(m, test_set)); |
|
} |
|
|
|
// Tests that added values are reported. |
|
TYPED_TEST(ContainerEqTest, ValueAdded) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {1, 2, 3, 5, 8, 46}; |
|
TypeParam my_set(vals, vals + 6); |
|
TypeParam test_set(test_vals, test_vals + 6); |
|
const Matcher<const TypeParam&> m = ContainerEq(my_set); |
|
EXPECT_FALSE(m.Matches(test_set)); |
|
EXPECT_EQ("which has these unexpected elements: 46", Explain(m, test_set)); |
|
} |
|
|
|
// Tests that added and missing values are reported together. |
|
TYPED_TEST(ContainerEqTest, ValueAddedAndRemoved) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {1, 2, 3, 8, 46}; |
|
TypeParam my_set(vals, vals + 6); |
|
TypeParam test_set(test_vals, test_vals + 5); |
|
const Matcher<TypeParam> m = ContainerEq(my_set); |
|
EXPECT_FALSE(m.Matches(test_set)); |
|
EXPECT_EQ( |
|
"which has these unexpected elements: 46,\n" |
|
"and doesn't have these expected elements: 5", |
|
Explain(m, test_set)); |
|
} |
|
|
|
// Tests duplicated value -- expect no explanation. |
|
TYPED_TEST(ContainerEqTest, DuplicateDifference) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {1, 2, 3, 5, 8}; |
|
TypeParam my_set(vals, vals + 6); |
|
TypeParam test_set(test_vals, test_vals + 5); |
|
const Matcher<const TypeParam&> m = ContainerEq(my_set); |
|
// Depending on the container, match may be true or false |
|
// But in any case there should be no explanation. |
|
EXPECT_EQ("", Explain(m, test_set)); |
|
} |
|
#endif // GTEST_HAS_TYPED_TEST |
|
|
|
// Tests that multiple missing values are reported. |
|
// Using just vector here, so order is predictable. |
|
TEST(ContainerEqExtraTest, MultipleValuesMissing) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {2, 1, 5}; |
|
vector<int> my_set(vals, vals + 6); |
|
vector<int> test_set(test_vals, test_vals + 3); |
|
const Matcher<vector<int>> m = ContainerEq(my_set); |
|
EXPECT_FALSE(m.Matches(test_set)); |
|
EXPECT_EQ("which doesn't have these expected elements: 3, 8", |
|
Explain(m, test_set)); |
|
} |
|
|
|
// Tests that added values are reported. |
|
// Using just vector here, so order is predictable. |
|
TEST(ContainerEqExtraTest, MultipleValuesAdded) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {1, 2, 92, 3, 5, 8, 46}; |
|
list<size_t> my_set(vals, vals + 6); |
|
list<size_t> test_set(test_vals, test_vals + 7); |
|
const Matcher<const list<size_t>&> m = ContainerEq(my_set); |
|
EXPECT_FALSE(m.Matches(test_set)); |
|
EXPECT_EQ("which has these unexpected elements: 92, 46", |
|
Explain(m, test_set)); |
|
} |
|
|
|
// Tests that added and missing values are reported together. |
|
TEST(ContainerEqExtraTest, MultipleValuesAddedAndRemoved) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {1, 2, 3, 92, 46}; |
|
list<size_t> my_set(vals, vals + 6); |
|
list<size_t> test_set(test_vals, test_vals + 5); |
|
const Matcher<const list<size_t>> m = ContainerEq(my_set); |
|
EXPECT_FALSE(m.Matches(test_set)); |
|
EXPECT_EQ( |
|
"which has these unexpected elements: 92, 46,\n" |
|
"and doesn't have these expected elements: 5, 8", |
|
Explain(m, test_set)); |
|
} |
|
|
|
// Tests to see that duplicate elements are detected, |
|
// but (as above) not reported in the explanation. |
|
TEST(ContainerEqExtraTest, MultiSetOfIntDuplicateDifference) { |
|
static const int vals[] = {1, 1, 2, 3, 5, 8}; |
|
static const int test_vals[] = {1, 2, 3, 5, 8}; |
|
vector<int> my_set(vals, vals + 6); |
|
vector<int> test_set(test_vals, test_vals + 5); |
|
const Matcher<vector<int>> m = ContainerEq(my_set); |
|
EXPECT_TRUE(m.Matches(my_set)); |
|
EXPECT_FALSE(m.Matches(test_set)); |
|
// There is nothing to report when both sets contain all the same values. |
|
EXPECT_EQ("", Explain(m, test_set)); |
|
} |
|
|
|
// Tests that ContainerEq works for non-trivial associative containers, |
|
// like maps. |
|
TEST(ContainerEqExtraTest, WorksForMaps) { |
|
map<int, std::string> my_map; |
|
my_map[0] = "a"; |
|
my_map[1] = "b"; |
|
|
|
map<int, std::string> test_map; |
|
test_map[0] = "aa"; |
|
test_map[1] = "b"; |
|
|
|
const Matcher<const map<int, std::string>&> m = ContainerEq(my_map); |
|
EXPECT_TRUE(m.Matches(my_map)); |
|
EXPECT_FALSE(m.Matches(test_map)); |
|
|
|
EXPECT_EQ( |
|
"which has these unexpected elements: (0, \"aa\"),\n" |
|
"and doesn't have these expected elements: (0, \"a\")", |
|
Explain(m, test_map)); |
|
} |
|
|
|
TEST(ContainerEqExtraTest, WorksForNativeArray) { |
|
int a1[] = {1, 2, 3}; |
|
int a2[] = {1, 2, 3}; |
|
int b[] = {1, 2, 4}; |
|
|
|
EXPECT_THAT(a1, ContainerEq(a2)); |
|
EXPECT_THAT(a1, Not(ContainerEq(b))); |
|
} |
|
|
|
TEST(ContainerEqExtraTest, WorksForTwoDimensionalNativeArray) { |
|
const char a1[][3] = {"hi", "lo"}; |
|
const char a2[][3] = {"hi", "lo"}; |
|
const char b[][3] = {"lo", "hi"}; |
|
|
|
// Tests using ContainerEq() in the first dimension. |
|
EXPECT_THAT(a1, ContainerEq(a2)); |
|
EXPECT_THAT(a1, Not(ContainerEq(b))); |
|
|
|
// Tests using ContainerEq() in the second dimension. |
|
EXPECT_THAT(a1, ElementsAre(ContainerEq(a2[0]), ContainerEq(a2[1]))); |
|
EXPECT_THAT(a1, ElementsAre(Not(ContainerEq(b[0])), ContainerEq(a2[1]))); |
|
} |
|
|
|
TEST(ContainerEqExtraTest, WorksForNativeArrayAsTuple) { |
|
const int a1[] = {1, 2, 3}; |
|
const int a2[] = {1, 2, 3}; |
|
const int b[] = {1, 2, 3, 4}; |
|
|
|
const int* const p1 = a1; |
|
EXPECT_THAT(std::make_tuple(p1, 3), ContainerEq(a2)); |
|
EXPECT_THAT(std::make_tuple(p1, 3), Not(ContainerEq(b))); |
|
|
|
const int c[] = {1, 3, 2}; |
|
EXPECT_THAT(std::make_tuple(p1, 3), Not(ContainerEq(c))); |
|
} |
|
|
|
TEST(ContainerEqExtraTest, CopiesNativeArrayParameter) { |
|
std::string a1[][3] = {{"hi", "hello", "ciao"}, {"bye", "see you", "ciao"}}; |
|
|
|
std::string a2[][3] = {{"hi", "hello", "ciao"}, {"bye", "see you", "ciao"}}; |
|
|
|
const Matcher<const std::string(&)[2][3]> m = ContainerEq(a2); |
|
EXPECT_THAT(a1, m); |
|
|
|
a2[0][0] = "ha"; |
|
EXPECT_THAT(a1, m); |
|
} |
|
|
|
namespace { |
|
|
|
// Used as a check on the more complex max flow method used in the |
|
// real testing::internal::FindMaxBipartiteMatching. This method is |
|
// compatible but runs in worst-case factorial time, so we only |
|
// use it in testing for small problem sizes. |
|
template <typename Graph> |
|
class BacktrackingMaxBPMState { |
|
public: |
|
// Does not take ownership of 'g'. |
|
explicit BacktrackingMaxBPMState(const Graph* g) : graph_(g) {} |
|
|
|
ElementMatcherPairs Compute() { |
|
if (graph_->LhsSize() == 0 || graph_->RhsSize() == 0) { |
|
return best_so_far_; |
|
} |
|
lhs_used_.assign(graph_->LhsSize(), kUnused); |
|
rhs_used_.assign(graph_->RhsSize(), kUnused); |
|
for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { |
|
matches_.clear(); |
|
RecurseInto(irhs); |
|
if (best_so_far_.size() == graph_->RhsSize()) break; |
|
} |
|
return best_so_far_; |
|
} |
|
|
|
private: |
|
static const size_t kUnused = static_cast<size_t>(-1); |
|
|
|
void PushMatch(size_t lhs, size_t rhs) { |
|
matches_.push_back(ElementMatcherPair(lhs, rhs)); |
|
lhs_used_[lhs] = rhs; |
|
rhs_used_[rhs] = lhs; |
|
if (matches_.size() > best_so_far_.size()) { |
|
best_so_far_ = matches_; |
|
} |
|
} |
|
|
|
void PopMatch() { |
|
const ElementMatcherPair& back = matches_.back(); |
|
lhs_used_[back.first] = kUnused; |
|
rhs_used_[back.second] = kUnused; |
|
matches_.pop_back(); |
|
} |
|
|
|
bool RecurseInto(size_t irhs) { |
|
if (rhs_used_[irhs] != kUnused) { |
|
return true; |
|
} |
|
for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { |
|
if (lhs_used_[ilhs] != kUnused) { |
|
continue; |
|
} |
|
if (!graph_->HasEdge(ilhs, irhs)) { |
|
continue; |
|
} |
|
PushMatch(ilhs, irhs); |
|
if (best_so_far_.size() == graph_->RhsSize()) { |
|
return false; |
|
} |
|
for (size_t mi = irhs + 1; mi < graph_->RhsSize(); ++mi) { |
|
if (!RecurseInto(mi)) return false; |
|
} |
|
PopMatch(); |
|
} |
|
return true; |
|
} |
|
|
|
const Graph* graph_; // not owned |
|
std::vector<size_t> lhs_used_; |
|
std::vector<size_t> rhs_used_; |
|
ElementMatcherPairs matches_; |
|
ElementMatcherPairs best_so_far_; |
|
}; |
|
|
|
template <typename Graph> |
|
const size_t BacktrackingMaxBPMState<Graph>::kUnused; |
|
|
|
} // namespace |
|
|
|
// Implement a simple backtracking algorithm to determine if it is possible |
|
// to find one element per matcher, without reusing elements. |
|
template <typename Graph> |
|
ElementMatcherPairs FindBacktrackingMaxBPM(const Graph& g) { |
|
return BacktrackingMaxBPMState<Graph>(&g).Compute(); |
|
} |
|
|
|
class BacktrackingBPMTest : public ::testing::Test {}; |
|
|
|
// Tests the MaxBipartiteMatching algorithm with square matrices. |
|
// The single int param is the # of nodes on each of the left and right sides. |
|
class BipartiteTest : public ::testing::TestWithParam<size_t> {}; |
|
|
|
// Verify all match graphs up to some moderate number of edges. |
|
TEST_P(BipartiteTest, Exhaustive) { |
|
size_t nodes = GetParam(); |
|
MatchMatrix graph(nodes, nodes); |
|
do { |
|
ElementMatcherPairs matches = internal::FindMaxBipartiteMatching(graph); |
|
EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), matches.size()) |
|
<< "graph: " << graph.DebugString(); |
|
// Check that all elements of matches are in the graph. |
|
// Check that elements of first and second are unique. |
|
std::vector<bool> seen_element(graph.LhsSize()); |
|
std::vector<bool> seen_matcher(graph.RhsSize()); |
|
SCOPED_TRACE(PrintToString(matches)); |
|
for (size_t i = 0; i < matches.size(); ++i) { |
|
size_t ilhs = matches[i].first; |
|
size_t irhs = matches[i].second; |
|
EXPECT_TRUE(graph.HasEdge(ilhs, irhs)); |
|
EXPECT_FALSE(seen_element[ilhs]); |
|
EXPECT_FALSE(seen_matcher[irhs]); |
|
seen_element[ilhs] = true; |
|
seen_matcher[irhs] = true; |
|
} |
|
} while (graph.NextGraph()); |
|
} |
|
|
|
INSTANTIATE_TEST_SUITE_P(AllGraphs, BipartiteTest, |
|
::testing::Range(size_t{0}, size_t{5})); |
|
|
|
// Parameterized by a pair interpreted as (LhsSize, RhsSize). |
|
class BipartiteNonSquareTest |
|
: public ::testing::TestWithParam<std::pair<size_t, size_t>> {}; |
|
|
|
TEST_F(BipartiteNonSquareTest, SimpleBacktracking) { |
|
// ....... |
|
// 0:-----\ : |
|
// 1:---\ | : |
|
// 2:---\ | : |
|
// 3:-\ | | : |
|
// :.......: |
|
// 0 1 2 |
|
MatchMatrix g(4, 3); |
|
constexpr std::array<std::array<size_t, 2>, 4> kEdges = { |
|
{{{0, 2}}, {{1, 1}}, {{2, 1}}, {{3, 0}}}}; |
|
for (size_t i = 0; i < kEdges.size(); ++i) { |
|
g.SetEdge(kEdges[i][0], kEdges[i][1], true); |
|
} |
|
EXPECT_THAT(FindBacktrackingMaxBPM(g), |
|
ElementsAre(Pair(3, 0), Pair(AnyOf(1, 2), 1), Pair(0, 2))) |
|
<< g.DebugString(); |
|
} |
|
|
|
// Verify a few nonsquare matrices. |
|
TEST_P(BipartiteNonSquareTest, Exhaustive) { |
|
size_t nlhs = GetParam().first; |
|
size_t nrhs = GetParam().second; |
|
MatchMatrix graph(nlhs, nrhs); |
|
do { |
|
EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), |
|
internal::FindMaxBipartiteMatching(graph).size()) |
|
<< "graph: " << graph.DebugString() |
|
<< "\nbacktracking: " << PrintToString(FindBacktrackingMaxBPM(graph)) |
|
<< "\nmax flow: " |
|
<< PrintToString(internal::FindMaxBipartiteMatching(graph)); |
|
} while (graph.NextGraph()); |
|
} |
|
|
|
INSTANTIATE_TEST_SUITE_P( |
|
AllGraphs, BipartiteNonSquareTest, |
|
testing::Values(std::make_pair(1, 2), std::make_pair(2, 1), |
|
std::make_pair(3, 2), std::make_pair(2, 3), |
|
std::make_pair(4, 1), std::make_pair(1, 4), |
|
std::make_pair(4, 3), std::make_pair(3, 4))); |
|
|
|
class BipartiteRandomTest |
|
: public ::testing::TestWithParam<std::pair<int, int>> {}; |
|
|
|
// Verifies a large sample of larger graphs. |
|
TEST_P(BipartiteRandomTest, LargerNets) { |
|
int nodes = GetParam().first; |
|
int iters = GetParam().second; |
|
MatchMatrix graph(static_cast<size_t>(nodes), static_cast<size_t>(nodes)); |
|
|
|
auto seed = static_cast<uint32_t>(GTEST_FLAG_GET(random_seed)); |
|
if (seed == 0) { |
|
seed = static_cast<uint32_t>(time(nullptr)); |
|
} |
|
|
|
for (; iters > 0; --iters, ++seed) { |
|
srand(static_cast<unsigned int>(seed)); |
|
graph.Randomize(); |
|
EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), |
|
internal::FindMaxBipartiteMatching(graph).size()) |
|
<< " graph: " << graph.DebugString() |
|
<< "\nTo reproduce the failure, rerun the test with the flag" |
|
" --" |
|
<< GTEST_FLAG_PREFIX_ << "random_seed=" << seed; |
|
} |
|
} |
|
|
|
// Test argument is a std::pair<int, int> representing (nodes, iters). |
|
INSTANTIATE_TEST_SUITE_P(Samples, BipartiteRandomTest, |
|
testing::Values(std::make_pair(5, 10000), |
|
std::make_pair(6, 5000), |
|
std::make_pair(7, 2000), |
|
std::make_pair(8, 500), |
|
std::make_pair(9, 100))); |
|
|
|
// Tests IsReadableTypeName(). |
|
|
|
TEST(IsReadableTypeNameTest, ReturnsTrueForShortNames) { |
|
EXPECT_TRUE(IsReadableTypeName("int")); |
|
EXPECT_TRUE(IsReadableTypeName("const unsigned char*")); |
|
EXPECT_TRUE(IsReadableTypeName("MyMap<int, void*>")); |
|
EXPECT_TRUE(IsReadableTypeName("void (*)(int, bool)")); |
|
} |
|
|
|
TEST(IsReadableTypeNameTest, ReturnsTrueForLongNonTemplateNonFunctionNames) { |
|
EXPECT_TRUE(IsReadableTypeName("my_long_namespace::MyClassName")); |
|
EXPECT_TRUE(IsReadableTypeName("int [5][6][7][8][9][10][11]")); |
|
EXPECT_TRUE(IsReadableTypeName("my_namespace::MyOuterClass::MyInnerClass")); |
|
} |
|
|
|
TEST(IsReadableTypeNameTest, ReturnsFalseForLongTemplateNames) { |
|
EXPECT_FALSE( |
|
IsReadableTypeName("basic_string<char, std::char_traits<char> >")); |
|
EXPECT_FALSE(IsReadableTypeName("std::vector<int, std::alloc_traits<int> >")); |
|
} |
|
|
|
TEST(IsReadableTypeNameTest, ReturnsFalseForLongFunctionTypeNames) { |
|
EXPECT_FALSE(IsReadableTypeName("void (&)(int, bool, char, float)")); |
|
} |
|
|
|
// Tests FormatMatcherDescription(). |
|
|
|
TEST(FormatMatcherDescriptionTest, WorksForEmptyDescription) { |
|
EXPECT_EQ("is even", |
|
FormatMatcherDescription(false, "IsEven", {}, Strings())); |
|
EXPECT_EQ("not (is even)", |
|
FormatMatcherDescription(true, "IsEven", {}, Strings())); |
|
|
|
EXPECT_EQ("equals (a: 5)", |
|
FormatMatcherDescription(false, "Equals", {"a"}, {"5"})); |
|
|
|
EXPECT_EQ( |
|
"is in range (a: 5, b: 8)", |
|
FormatMatcherDescription(false, "IsInRange", {"a", "b"}, {"5", "8"})); |
|
} |
|
|
|
INSTANTIATE_GTEST_MATCHER_TEST_P(MatcherTupleTest); |
|
|
|
TEST_P(MatcherTupleTestP, ExplainsMatchFailure) { |
|
stringstream ss1; |
|
ExplainMatchFailureTupleTo( |
|
std::make_tuple(Matcher<char>(Eq('a')), GreaterThan(5)), |
|
std::make_tuple('a', 10), &ss1); |
|
EXPECT_EQ("", ss1.str()); // Successful match. |
|
|
|
stringstream ss2; |
|
ExplainMatchFailureTupleTo( |
|
std::make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))), |
|
std::make_tuple(2, 'b'), &ss2); |
|
EXPECT_EQ( |
|
" Expected arg #0: is > 5\n" |
|
" Actual: 2, which is 3 less than 5\n" |
|
" Expected arg #1: is equal to 'a' (97, 0x61)\n" |
|
" Actual: 'b' (98, 0x62)\n", |
|
ss2.str()); // Failed match where both arguments need explanation. |
|
|
|
stringstream ss3; |
|
ExplainMatchFailureTupleTo( |
|
std::make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))), |
|
std::make_tuple(2, 'a'), &ss3); |
|
EXPECT_EQ( |
|
" Expected arg #0: is > 5\n" |
|
" Actual: 2, which is 3 less than 5\n", |
|
ss3.str()); // Failed match where only one argument needs |
|
// explanation. |
|
} |
|
|
|
#if GTEST_HAS_TYPED_TEST |
|
|
|
// Sample optional type implementation with minimal requirements for use with |
|
// Optional matcher. |
|
template <typename T> |
|
class SampleOptional { |
|
public: |
|
using value_type = T; |
|
explicit SampleOptional(T value) |
|
: value_(std::move(value)), has_value_(true) {} |
|
SampleOptional() : value_(), has_value_(false) {} |
|
operator bool() const { return has_value_; } |
|
const T& operator*() const { return value_; } |
|
|
|
private: |
|
T value_; |
|
bool has_value_; |
|
}; |
|
|
|
// Sample optional type implementation with alternative minimal requirements for |
|
// use with Optional matcher. In particular, while it doesn't have a bool |
|
// conversion operator, it does have a has_value() method. |
|
template <typename T> |
|
class SampleOptionalWithoutBoolConversion { |
|
public: |
|
using value_type = T; |
|
explicit SampleOptionalWithoutBoolConversion(T value) |
|
: value_(std::move(value)), has_value_(true) {} |
|
SampleOptionalWithoutBoolConversion() : value_(), has_value_(false) {} |
|
bool has_value() const { return has_value_; } |
|
const T& operator*() const { return value_; } |
|
|
|
private: |
|
T value_; |
|
bool has_value_; |
|
}; |
|
|
|
template <typename T> |
|
class OptionalTest : public testing::Test {}; |
|
|
|
using OptionalTestTypes = |
|
testing::Types<SampleOptional<int>, |
|
SampleOptionalWithoutBoolConversion<int>>; |
|
|
|
TYPED_TEST_SUITE(OptionalTest, OptionalTestTypes); |
|
|
|
TYPED_TEST(OptionalTest, DescribesSelf) { |
|
const Matcher<TypeParam> m = Optional(Eq(1)); |
|
EXPECT_EQ("value is equal to 1", Describe(m)); |
|
} |
|
|
|
TYPED_TEST(OptionalTest, ExplainsSelf) { |
|
const Matcher<TypeParam> m = Optional(Eq(1)); |
|
EXPECT_EQ("whose value 1 matches", Explain(m, TypeParam(1))); |
|
EXPECT_EQ("whose value 2 doesn't match", Explain(m, TypeParam(2))); |
|
} |
|
|
|
TYPED_TEST(OptionalTest, MatchesNonEmptyOptional) { |
|
const Matcher<TypeParam> m1 = Optional(1); |
|
const Matcher<TypeParam> m2 = Optional(Eq(2)); |
|
const Matcher<TypeParam> m3 = Optional(Lt(3)); |
|
TypeParam opt(1); |
|
EXPECT_TRUE(m1.Matches(opt)); |
|
EXPECT_FALSE(m2.Matches(opt)); |
|
EXPECT_TRUE(m3.Matches(opt)); |
|
} |
|
|
|
TYPED_TEST(OptionalTest, DoesNotMatchNullopt) { |
|
const Matcher<TypeParam> m = Optional(1); |
|
TypeParam empty; |
|
EXPECT_FALSE(m.Matches(empty)); |
|
} |
|
|
|
template <typename T> |
|
class MoveOnlyOptionalTest : public testing::Test {}; |
|
|
|
using MoveOnlyOptionalTestTypes = |
|
testing::Types<SampleOptional<std::unique_ptr<int>>, |
|
SampleOptionalWithoutBoolConversion<std::unique_ptr<int>>>; |
|
|
|
TYPED_TEST_SUITE(MoveOnlyOptionalTest, MoveOnlyOptionalTestTypes); |
|
|
|
TYPED_TEST(MoveOnlyOptionalTest, WorksWithMoveOnly) { |
|
Matcher<TypeParam> m = Optional(Eq(nullptr)); |
|
EXPECT_TRUE(m.Matches(TypeParam(nullptr))); |
|
} |
|
|
|
#endif // GTEST_HAS_TYPED_TEST |
|
|
|
class SampleVariantIntString { |
|
public: |
|
SampleVariantIntString(int i) : i_(i), has_int_(true) {} |
|
SampleVariantIntString(const std::string& s) : s_(s), has_int_(false) {} |
|
|
|
template <typename T> |
|
friend bool holds_alternative(const SampleVariantIntString& value) { |
|
return value.has_int_ == std::is_same<T, int>::value; |
|
} |
|
|
|
template <typename T> |
|
friend const T& get(const SampleVariantIntString& value) { |
|
return value.get_impl(static_cast<T*>(nullptr)); |
|
} |
|
|
|
private: |
|
const int& get_impl(int*) const { return i_; } |
|
const std::string& get_impl(std::string*) const { return s_; } |
|
|
|
int i_; |
|
std::string s_; |
|
bool has_int_; |
|
}; |
|
|
|
TEST(VariantTest, DescribesSelf) { |
|
const Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
|
EXPECT_THAT(Describe(m), ContainsRegex("is a variant<> with value of type " |
|
"'.*' and the value is equal to 1")); |
|
} |
|
|
|
TEST(VariantTest, ExplainsSelf) { |
|
const Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
|
EXPECT_THAT(Explain(m, SampleVariantIntString(1)), |
|
ContainsRegex("whose value 1")); |
|
EXPECT_THAT(Explain(m, SampleVariantIntString("A")), |
|
HasSubstr("whose value is not of type '")); |
|
EXPECT_THAT(Explain(m, SampleVariantIntString(2)), |
|
"whose value 2 doesn't match"); |
|
} |
|
|
|
TEST(VariantTest, FullMatch) { |
|
Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
|
EXPECT_TRUE(m.Matches(SampleVariantIntString(1))); |
|
|
|
m = VariantWith<std::string>(Eq("1")); |
|
EXPECT_TRUE(m.Matches(SampleVariantIntString("1"))); |
|
} |
|
|
|
TEST(VariantTest, TypeDoesNotMatch) { |
|
Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
|
EXPECT_FALSE(m.Matches(SampleVariantIntString("1"))); |
|
|
|
m = VariantWith<std::string>(Eq("1")); |
|
EXPECT_FALSE(m.Matches(SampleVariantIntString(1))); |
|
} |
|
|
|
TEST(VariantTest, InnerDoesNotMatch) { |
|
Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); |
|
EXPECT_FALSE(m.Matches(SampleVariantIntString(2))); |
|
|
|
m = VariantWith<std::string>(Eq("1")); |
|
EXPECT_FALSE(m.Matches(SampleVariantIntString("2"))); |
|
} |
|
|
|
class SampleAnyType { |
|
public: |
|
explicit SampleAnyType(int i) : index_(0), i_(i) {} |
|
explicit SampleAnyType(const std::string& s) : index_(1), s_(s) {} |
|
|
|
template <typename T> |
|
friend const T* any_cast(const SampleAnyType* any) { |
|
return any->get_impl(static_cast<T*>(nullptr)); |
|
} |
|
|
|
private: |
|
int index_; |
|
int i_; |
|
std::string s_; |
|
|
|
const int* get_impl(int*) const { return index_ == 0 ? &i_ : nullptr; } |
|
const std::string* get_impl(std::string*) const { |
|
return index_ == 1 ? &s_ : nullptr; |
|
} |
|
}; |
|
|
|
TEST(AnyWithTest, FullMatch) { |
|
Matcher<SampleAnyType> m = AnyWith<int>(Eq(1)); |
|
EXPECT_TRUE(m.Matches(SampleAnyType(1))); |
|
} |
|
|
|
TEST(AnyWithTest, TestBadCastType) { |
|
Matcher<SampleAnyType> m = AnyWith<std::string>(Eq("fail")); |
|
EXPECT_FALSE(m.Matches(SampleAnyType(1))); |
|
} |
|
|
|
TEST(AnyWithTest, TestUseInContainers) { |
|
std::vector<SampleAnyType> a; |
|
a.emplace_back(1); |
|
a.emplace_back(2); |
|
a.emplace_back(3); |
|
EXPECT_THAT( |
|
a, ElementsAreArray({AnyWith<int>(1), AnyWith<int>(2), AnyWith<int>(3)})); |
|
|
|
std::vector<SampleAnyType> b; |
|
b.emplace_back("hello"); |
|
b.emplace_back("merhaba"); |
|
b.emplace_back("salut"); |
|
EXPECT_THAT(b, ElementsAreArray({AnyWith<std::string>("hello"), |
|
AnyWith<std::string>("merhaba"), |
|
AnyWith<std::string>("salut")})); |
|
} |
|
TEST(AnyWithTest, TestCompare) { |
|
EXPECT_THAT(SampleAnyType(1), AnyWith<int>(Gt(0))); |
|
} |
|
|
|
TEST(AnyWithTest, DescribesSelf) { |
|
const Matcher<const SampleAnyType&> m = AnyWith<int>(Eq(1)); |
|
EXPECT_THAT(Describe(m), ContainsRegex("is an 'any' type with value of type " |
|
"'.*' and the value is equal to 1")); |
|
} |
|
|
|
TEST(AnyWithTest, ExplainsSelf) { |
|
const Matcher<const SampleAnyType&> m = AnyWith<int>(Eq(1)); |
|
|
|
EXPECT_THAT(Explain(m, SampleAnyType(1)), ContainsRegex("whose value 1")); |
|
EXPECT_THAT(Explain(m, SampleAnyType("A")), |
|
HasSubstr("whose value is not of type '")); |
|
EXPECT_THAT(Explain(m, SampleAnyType(2)), "whose value 2 doesn't match"); |
|
} |
|
|
|
// Tests Args<k0, ..., kn>(m). |
|
|
|
TEST(ArgsTest, AcceptsZeroTemplateArg) { |
|
const std::tuple<int, bool> t(5, true); |
|
EXPECT_THAT(t, Args<>(Eq(std::tuple<>()))); |
|
EXPECT_THAT(t, Not(Args<>(Ne(std::tuple<>())))); |
|
} |
|
|
|
TEST(ArgsTest, AcceptsOneTemplateArg) { |
|
const std::tuple<int, bool> t(5, true); |
|
EXPECT_THAT(t, Args<0>(Eq(std::make_tuple(5)))); |
|
EXPECT_THAT(t, Args<1>(Eq(std::make_tuple(true)))); |
|
EXPECT_THAT(t, Not(Args<1>(Eq(std::make_tuple(false))))); |
|
} |
|
|
|
TEST(ArgsTest, AcceptsTwoTemplateArgs) { |
|
const std::tuple<short, int, long> t(short{4}, 5, 6L); // NOLINT |
|
|
|
EXPECT_THAT(t, (Args<0, 1>(Lt()))); |
|
EXPECT_THAT(t, (Args<1, 2>(Lt()))); |
|
EXPECT_THAT(t, Not(Args<0, 2>(Gt()))); |
|
} |
|
|
|
TEST(ArgsTest, AcceptsRepeatedTemplateArgs) { |
|
const std::tuple<short, int, long> t(short{4}, 5, 6L); // NOLINT |
|
EXPECT_THAT(t, (Args<0, 0>(Eq()))); |
|
EXPECT_THAT(t, Not(Args<1, 1>(Ne()))); |
|
} |
|
|
|
TEST(ArgsTest, AcceptsDecreasingTemplateArgs) { |
|
const std::tuple<short, int, long> t(short{4}, 5, 6L); // NOLINT |
|
EXPECT_THAT(t, (Args<2, 0>(Gt()))); |
|
EXPECT_THAT(t, Not(Args<2, 1>(Lt()))); |
|
} |
|
|
|
MATCHER(SumIsZero, "") { |
|
return std::get<0>(arg) + std::get<1>(arg) + std::get<2>(arg) == 0; |
|
} |
|
|
|
TEST(ArgsTest, AcceptsMoreTemplateArgsThanArityOfOriginalTuple) { |
|
EXPECT_THAT(std::make_tuple(-1, 2), (Args<0, 0, 1>(SumIsZero()))); |
|
EXPECT_THAT(std::make_tuple(1, 2), Not(Args<0, 0, 1>(SumIsZero()))); |
|
} |
|
|
|
TEST(ArgsTest, CanBeNested) { |
|
const std::tuple<short, int, long, int> t(short{4}, 5, 6L, 6); // NOLINT |
|
EXPECT_THAT(t, (Args<1, 2, 3>(Args<1, 2>(Eq())))); |
|
EXPECT_THAT(t, (Args<0, 1, 3>(Args<0, 2>(Lt())))); |
|
} |
|
|
|
TEST(ArgsTest, CanMatchTupleByValue) { |
|
typedef std::tuple<char, int, int> Tuple3; |
|
const Matcher<Tuple3> m = Args<1, 2>(Lt()); |
|
EXPECT_TRUE(m.Matches(Tuple3('a', 1, 2))); |
|
EXPECT_FALSE(m.Matches(Tuple3('b', 2, 2))); |
|
} |
|
|
|
TEST(ArgsTest, CanMatchTupleByReference) { |
|
typedef std::tuple<char, char, int> Tuple3; |
|
const Matcher<const Tuple3&> m = Args<0, 1>(Lt()); |
|
EXPECT_TRUE(m.Matches(Tuple3('a', 'b', 2))); |
|
EXPECT_FALSE(m.Matches(Tuple3('b', 'b', 2))); |
|
} |
|
|
|
// Validates that arg is printed as str. |
|
MATCHER_P(PrintsAs, str, "") { return testing::PrintToString(arg) == str; } |
|
|
|
TEST(ArgsTest, AcceptsTenTemplateArgs) { |
|
EXPECT_THAT(std::make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), |
|
(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( |
|
PrintsAs("(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); |
|
EXPECT_THAT(std::make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), |
|
Not(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( |
|
PrintsAs("(0, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); |
|
} |
|
|
|
TEST(ArgsTest, DescirbesSelfCorrectly) { |
|
const Matcher<std::tuple<int, bool, char>> m = Args<2, 0>(Lt()); |
|
EXPECT_EQ( |
|
"are a tuple whose fields (#2, #0) are a pair where " |
|
"the first < the second", |
|
Describe(m)); |
|
} |
|
|
|
TEST(ArgsTest, DescirbesNestedArgsCorrectly) { |
|
const Matcher<const std::tuple<int, bool, char, int>&> m = |
|
Args<0, 2, 3>(Args<2, 0>(Lt())); |
|
EXPECT_EQ( |
|
"are a tuple whose fields (#0, #2, #3) are a tuple " |
|
"whose fields (#2, #0) are a pair where the first < the second", |
|
Describe(m)); |
|
} |
|
|
|
TEST(ArgsTest, DescribesNegationCorrectly) { |
|
const Matcher<std::tuple<int, char>> m = Args<1, 0>(Gt()); |
|
EXPECT_EQ( |
|
"are a tuple whose fields (#1, #0) aren't a pair " |
|
"where the first > the second", |
|
DescribeNegation(m)); |
|
} |
|
|
|
TEST(ArgsTest, ExplainsMatchResultWithoutInnerExplanation) { |
|
const Matcher<std::tuple<bool, int, int>> m = Args<1, 2>(Eq()); |
|
EXPECT_EQ("whose fields (#1, #2) are (42, 42)", |
|
Explain(m, std::make_tuple(false, 42, 42))); |
|
EXPECT_EQ("whose fields (#1, #2) are (42, 43)", |
|
Explain(m, std::make_tuple(false, 42, 43))); |
|
} |
|
|
|
// For testing Args<>'s explanation. |
|
class LessThanMatcher : public MatcherInterface<std::tuple<char, int>> { |
|
public: |
|
void DescribeTo(::std::ostream* /*os*/) const override {} |
|
|
|
bool MatchAndExplain(std::tuple<char, int> value, |
|
MatchResultListener* listener) const override { |
|
const int diff = std::get<0>(value) - std::get<1>(value); |
|
if (diff > 0) { |
|
*listener << "where the first value is " << diff |
|
<< " more than the second"; |
|
} |
|
return diff < 0; |
|
} |
|
}; |
|
|
|
Matcher<std::tuple<char, int>> LessThan() { |
|
return MakeMatcher(new LessThanMatcher); |
|
} |
|
|
|
TEST(ArgsTest, ExplainsMatchResultWithInnerExplanation) { |
|
const Matcher<std::tuple<char, int, int>> m = Args<0, 2>(LessThan()); |
|
EXPECT_EQ( |
|
"whose fields (#0, #2) are ('a' (97, 0x61), 42), " |
|
"where the first value is 55 more than the second", |
|
Explain(m, std::make_tuple('a', 42, 42))); |
|
EXPECT_EQ("whose fields (#0, #2) are ('\\0', 43)", |
|
Explain(m, std::make_tuple('\0', 42, 43))); |
|
} |
|
|
|
// Tests for the MATCHER*() macro family. |
|
|
|
// Tests that a simple MATCHER() definition works. |
|
|
|
MATCHER(IsEven, "") { return (arg % 2) == 0; } |
|
|
|
TEST(MatcherMacroTest, Works) { |
|
const Matcher<int> m = IsEven(); |
|
EXPECT_TRUE(m.Matches(6)); |
|
EXPECT_FALSE(m.Matches(7)); |
|
|
|
EXPECT_EQ("is even", Describe(m)); |
|
EXPECT_EQ("not (is even)", DescribeNegation(m)); |
|
EXPECT_EQ("", Explain(m, 6)); |
|
EXPECT_EQ("", Explain(m, 7)); |
|
} |
|
|
|
// This also tests that the description string can reference 'negation'. |
|
MATCHER(IsEven2, negation ? "is odd" : "is even") { |
|
if ((arg % 2) == 0) { |
|
// Verifies that we can stream to result_listener, a listener |
|
// supplied by the MATCHER macro implicitly. |
|
*result_listener << "OK"; |
|
return true; |
|
} else { |
|
*result_listener << "% 2 == " << (arg % 2); |
|
return false; |
|
} |
|
} |
|
|
|
// This also tests that the description string can reference matcher |
|
// parameters. |
|
MATCHER_P2(EqSumOf, x, y, |
|
std::string(negation ? "doesn't equal" : "equals") + " the sum of " + |
|
PrintToString(x) + " and " + PrintToString(y)) { |
|
if (arg == (x + y)) { |
|
*result_listener << "OK"; |
|
return true; |
|
} else { |
|
// Verifies that we can stream to the underlying stream of |
|
// result_listener. |
|
if (result_listener->stream() != nullptr) { |
|
*result_listener->stream() << "diff == " << (x + y - arg); |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
// Tests that the matcher description can reference 'negation' and the |
|
// matcher parameters. |
|
TEST(MatcherMacroTest, DescriptionCanReferenceNegationAndParameters) { |
|
const Matcher<int> m1 = IsEven2(); |
|
EXPECT_EQ("is even", Describe(m1)); |
|
EXPECT_EQ("is odd", DescribeNegation(m1)); |
|
|
|
const Matcher<int> m2 = EqSumOf(5, 9); |
|
EXPECT_EQ("equals the sum of 5 and 9", Describe(m2)); |
|
EXPECT_EQ("doesn't equal the sum of 5 and 9", DescribeNegation(m2)); |
|
} |
|
|
|
// Tests explaining match result in a MATCHER* macro. |
|
TEST(MatcherMacroTest, CanExplainMatchResult) { |
|
const Matcher<int> m1 = IsEven2(); |
|
EXPECT_EQ("OK", Explain(m1, 4)); |
|
EXPECT_EQ("% 2 == 1", Explain(m1, 5)); |
|
|
|
const Matcher<int> m2 = EqSumOf(1, 2); |
|
EXPECT_EQ("OK", Explain(m2, 3)); |
|
EXPECT_EQ("diff == -1", Explain(m2, 4)); |
|
} |
|
|
|
// Tests that the body of MATCHER() can reference the type of the |
|
// value being matched. |
|
|
|
MATCHER(IsEmptyString, "") { |
|
StaticAssertTypeEq<::std::string, arg_type>(); |
|
return arg.empty(); |
|
} |
|
|
|
MATCHER(IsEmptyStringByRef, "") { |
|
StaticAssertTypeEq<const ::std::string&, arg_type>(); |
|
return arg.empty(); |
|
} |
|
|
|
TEST(MatcherMacroTest, CanReferenceArgType) { |
|
const Matcher<::std::string> m1 = IsEmptyString(); |
|
EXPECT_TRUE(m1.Matches("")); |
|
|
|
const Matcher<const ::std::string&> m2 = IsEmptyStringByRef(); |
|
EXPECT_TRUE(m2.Matches("")); |
|
} |
|
|
|
// Tests that MATCHER() can be used in a namespace. |
|
|
|
namespace matcher_test { |
|
MATCHER(IsOdd, "") { return (arg % 2) != 0; } |
|
} // namespace matcher_test |
|
|
|
TEST(MatcherMacroTest, WorksInNamespace) { |
|
Matcher<int> m = matcher_test::IsOdd(); |
|
EXPECT_FALSE(m.Matches(4)); |
|
EXPECT_TRUE(m.Matches(5)); |
|
} |
|
|
|
// Tests that Value() can be used to compose matchers. |
|
MATCHER(IsPositiveOdd, "") { |
|
return Value(arg, matcher_test::IsOdd()) && arg > 0; |
|
} |
|
|
|
TEST(MatcherMacroTest, CanBeComposedUsingValue) { |
|
EXPECT_THAT(3, IsPositiveOdd()); |
|
EXPECT_THAT(4, Not(IsPositiveOdd())); |
|
EXPECT_THAT(-1, Not(IsPositiveOdd())); |
|
} |
|
|
|
// Tests that a simple MATCHER_P() definition works. |
|
|
|
MATCHER_P(IsGreaterThan32And, n, "") { return arg > 32 && arg > n; } |
|
|
|
TEST(MatcherPMacroTest, Works) { |
|
const Matcher<int> m = IsGreaterThan32And(5); |
|
EXPECT_TRUE(m.Matches(36)); |
|
EXPECT_FALSE(m.Matches(5)); |
|
|
|
EXPECT_EQ("is greater than 32 and (n: 5)", Describe(m)); |
|
EXPECT_EQ("not (is greater than 32 and (n: 5))", DescribeNegation(m)); |
|
EXPECT_EQ("", Explain(m, 36)); |
|
EXPECT_EQ("", Explain(m, 5)); |
|
} |
|
|
|
// Tests that the description is calculated correctly from the matcher name. |
|
MATCHER_P(_is_Greater_Than32and_, n, "") { return arg > 32 && arg > n; } |
|
|
|
TEST(MatcherPMacroTest, GeneratesCorrectDescription) { |
|
const Matcher<int> m = _is_Greater_Than32and_(5); |
|
|
|
EXPECT_EQ("is greater than 32 and (n: 5)", Describe(m)); |
|
EXPECT_EQ("not (is greater than 32 and (n: 5))", DescribeNegation(m)); |
|
EXPECT_EQ("", Explain(m, 36)); |
|
EXPECT_EQ("", Explain(m, 5)); |
|
} |
|
|
|
// Tests that a MATCHER_P matcher can be explicitly instantiated with |
|
// a reference parameter type. |
|
|
|
class UncopyableFoo { |
|
public: |
|
explicit UncopyableFoo(char value) : value_(value) { (void)value_; } |
|
|
|
UncopyableFoo(const UncopyableFoo&) = delete; |
|
void operator=(const UncopyableFoo&) = delete; |
|
|
|
private: |
|
char value_; |
|
}; |
|
|
|
MATCHER_P(ReferencesUncopyable, variable, "") { return &arg == &variable; } |
|
|
|
TEST(MatcherPMacroTest, WorksWhenExplicitlyInstantiatedWithReference) { |
|
UncopyableFoo foo1('1'), foo2('2'); |
|
const Matcher<const UncopyableFoo&> m = |
|
ReferencesUncopyable<const UncopyableFoo&>(foo1); |
|
|
|
EXPECT_TRUE(m.Matches(foo1)); |
|
EXPECT_FALSE(m.Matches(foo2)); |
|
|
|
// We don't want the address of the parameter printed, as most |
|
// likely it will just annoy the user. If the address is |
|
// interesting, the user should consider passing the parameter by |
|
// pointer instead. |
|
EXPECT_EQ("references uncopyable (variable: 1-byte object <31>)", |
|
Describe(m)); |
|
} |
|
|
|
// Tests that the body of MATCHER_Pn() can reference the parameter |
|
// types. |
|
|
|
MATCHER_P3(ParamTypesAreIntLongAndChar, foo, bar, baz, "") { |
|
StaticAssertTypeEq<int, foo_type>(); |
|
StaticAssertTypeEq<long, bar_type>(); // NOLINT |
|
StaticAssertTypeEq<char, baz_type>(); |
|
return arg == 0; |
|
} |
|
|
|
TEST(MatcherPnMacroTest, CanReferenceParamTypes) { |
|
EXPECT_THAT(0, ParamTypesAreIntLongAndChar(10, 20L, 'a')); |
|
} |
|
|
|
// Tests that a MATCHER_Pn matcher can be explicitly instantiated with |
|
// reference parameter types. |
|
|
|
MATCHER_P2(ReferencesAnyOf, variable1, variable2, "") { |
|
return &arg == &variable1 || &arg == &variable2; |
|
} |
|
|
|
TEST(MatcherPnMacroTest, WorksWhenExplicitlyInstantiatedWithReferences) { |
|
UncopyableFoo foo1('1'), foo2('2'), foo3('3'); |
|
const Matcher<const UncopyableFoo&> const_m = |
|
ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2); |
|
|
|
EXPECT_TRUE(const_m.Matches(foo1)); |
|
EXPECT_TRUE(const_m.Matches(foo2)); |
|
EXPECT_FALSE(const_m.Matches(foo3)); |
|
|
|
const Matcher<UncopyableFoo&> m = |
|
ReferencesAnyOf<UncopyableFoo&, UncopyableFoo&>(foo1, foo2); |
|
|
|
EXPECT_TRUE(m.Matches(foo1)); |
|
EXPECT_TRUE(m.Matches(foo2)); |
|
EXPECT_FALSE(m.Matches(foo3)); |
|
} |
|
|
|
TEST(MatcherPnMacroTest, |
|
GeneratesCorretDescriptionWhenExplicitlyInstantiatedWithReferences) { |
|
UncopyableFoo foo1('1'), foo2('2'); |
|
const Matcher<const UncopyableFoo&> m = |
|
ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2); |
|
|
|
// We don't want the addresses of the parameters printed, as most |
|
// likely they will just annoy the user. If the addresses are |
|
// interesting, the user should consider passing the parameters by |
|
// pointers instead. |
|
EXPECT_EQ( |
|
"references any of (variable1: 1-byte object <31>, variable2: 1-byte " |
|
"object <32>)", |
|
Describe(m)); |
|
} |
|
|
|
// Tests that a simple MATCHER_P2() definition works. |
|
|
|
MATCHER_P2(IsNotInClosedRange, low, hi, "") { return arg < low || arg > hi; } |
|
|
|
TEST(MatcherPnMacroTest, Works) { |
|
const Matcher<const long&> m = IsNotInClosedRange(10, 20); // NOLINT |
|
EXPECT_TRUE(m.Matches(36L)); |
|
EXPECT_FALSE(m.Matches(15L)); |
|
|
|
EXPECT_EQ("is not in closed range (low: 10, hi: 20)", Describe(m)); |
|
EXPECT_EQ("not (is not in closed range (low: 10, hi: 20))", |
|
DescribeNegation(m)); |
|
EXPECT_EQ("", Explain(m, 36L)); |
|
EXPECT_EQ("", Explain(m, 15L)); |
|
} |
|
|
|
// Tests that MATCHER*() definitions can be overloaded on the number |
|
// of parameters; also tests MATCHER_Pn() where n >= 3. |
|
|
|
MATCHER(EqualsSumOf, "") { return arg == 0; } |
|
MATCHER_P(EqualsSumOf, a, "") { return arg == a; } |
|
MATCHER_P2(EqualsSumOf, a, b, "") { return arg == a + b; } |
|
MATCHER_P3(EqualsSumOf, a, b, c, "") { return arg == a + b + c; } |
|
MATCHER_P4(EqualsSumOf, a, b, c, d, "") { return arg == a + b + c + d; } |
|
MATCHER_P5(EqualsSumOf, a, b, c, d, e, "") { return arg == a + b + c + d + e; } |
|
MATCHER_P6(EqualsSumOf, a, b, c, d, e, f, "") { |
|
return arg == a + b + c + d + e + f; |
|
} |
|
MATCHER_P7(EqualsSumOf, a, b, c, d, e, f, g, "") { |
|
return arg == a + b + c + d + e + f + g; |
|
} |
|
MATCHER_P8(EqualsSumOf, a, b, c, d, e, f, g, h, "") { |
|
return arg == a + b + c + d + e + f + g + h; |
|
} |
|
MATCHER_P9(EqualsSumOf, a, b, c, d, e, f, g, h, i, "") { |
|
return arg == a + b + c + d + e + f + g + h + i; |
|
} |
|
MATCHER_P10(EqualsSumOf, a, b, c, d, e, f, g, h, i, j, "") { |
|
return arg == a + b + c + d + e + f + g + h + i + j; |
|
} |
|
|
|
TEST(MatcherPnMacroTest, CanBeOverloadedOnNumberOfParameters) { |
|
EXPECT_THAT(0, EqualsSumOf()); |
|
EXPECT_THAT(1, EqualsSumOf(1)); |
|
EXPECT_THAT(12, EqualsSumOf(10, 2)); |
|
EXPECT_THAT(123, EqualsSumOf(100, 20, 3)); |
|
EXPECT_THAT(1234, EqualsSumOf(1000, 200, 30, 4)); |
|
EXPECT_THAT(12345, EqualsSumOf(10000, 2000, 300, 40, 5)); |
|
EXPECT_THAT("abcdef", |
|
EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f')); |
|
EXPECT_THAT("abcdefg", |
|
EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g')); |
|
EXPECT_THAT("abcdefgh", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", |
|
'f', 'g', "h")); |
|
EXPECT_THAT("abcdefghi", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", |
|
'f', 'g', "h", 'i')); |
|
EXPECT_THAT("abcdefghij", |
|
EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h", |
|
'i', ::std::string("j"))); |
|
|
|
EXPECT_THAT(1, Not(EqualsSumOf())); |
|
EXPECT_THAT(-1, Not(EqualsSumOf(1))); |
|
EXPECT_THAT(-12, Not(EqualsSumOf(10, 2))); |
|
EXPECT_THAT(-123, Not(EqualsSumOf(100, 20, 3))); |
|
EXPECT_THAT(-1234, Not(EqualsSumOf(1000, 200, 30, 4))); |
|
EXPECT_THAT(-12345, Not(EqualsSumOf(10000, 2000, 300, 40, 5))); |
|
EXPECT_THAT("abcdef ", |
|
Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f'))); |
|
EXPECT_THAT("abcdefg ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", |
|
"e", 'f', 'g'))); |
|
EXPECT_THAT("abcdefgh ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", |
|
"e", 'f', 'g', "h"))); |
|
EXPECT_THAT("abcdefghi ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", |
|
"e", 'f', 'g', "h", 'i'))); |
|
EXPECT_THAT("abcdefghij ", |
|
Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', |
|
"h", 'i', ::std::string("j")))); |
|
} |
|
|
|
// Tests that a MATCHER_Pn() definition can be instantiated with any |
|
// compatible parameter types. |
|
TEST(MatcherPnMacroTest, WorksForDifferentParameterTypes) { |
|
EXPECT_THAT(123, EqualsSumOf(100L, 20, static_cast<char>(3))); |
|
EXPECT_THAT("abcd", EqualsSumOf(::std::string("a"), "b", 'c', "d")); |
|
|
|
EXPECT_THAT(124, Not(EqualsSumOf(100L, 20, static_cast<char>(3)))); |
|
EXPECT_THAT("abcde", Not(EqualsSumOf(::std::string("a"), "b", 'c', "d"))); |
|
} |
|
|
|
// Tests that the matcher body can promote the parameter types. |
|
|
|
MATCHER_P2(EqConcat, prefix, suffix, "") { |
|
// The following lines promote the two parameters to desired types. |
|
std::string prefix_str(prefix); |
|
char suffix_char = static_cast<char>(suffix); |
|
return arg == prefix_str + suffix_char; |
|
} |
|
|
|
TEST(MatcherPnMacroTest, SimpleTypePromotion) { |
|
Matcher<std::string> no_promo = EqConcat(std::string("foo"), 't'); |
|
Matcher<const std::string&> promo = EqConcat("foo", static_cast<int>('t')); |
|
EXPECT_FALSE(no_promo.Matches("fool")); |
|
EXPECT_FALSE(promo.Matches("fool")); |
|
EXPECT_TRUE(no_promo.Matches("foot")); |
|
EXPECT_TRUE(promo.Matches("foot")); |
|
} |
|
|
|
// Verifies the type of a MATCHER*. |
|
|
|
TEST(MatcherPnMacroTest, TypesAreCorrect) { |
|
// EqualsSumOf() must be assignable to a EqualsSumOfMatcher variable. |
|
EqualsSumOfMatcher a0 = EqualsSumOf(); |
|
|
|
// EqualsSumOf(1) must be assignable to a EqualsSumOfMatcherP variable. |
|
EqualsSumOfMatcherP<int> a1 = EqualsSumOf(1); |
|
|
|
// EqualsSumOf(p1, ..., pk) must be assignable to a EqualsSumOfMatcherPk |
|
// variable, and so on. |
|
EqualsSumOfMatcherP2<int, char> a2 = EqualsSumOf(1, '2'); |
|
EqualsSumOfMatcherP3<int, int, char> a3 = EqualsSumOf(1, 2, '3'); |
|
EqualsSumOfMatcherP4<int, int, int, char> a4 = EqualsSumOf(1, 2, 3, '4'); |
|
EqualsSumOfMatcherP5<int, int, int, int, char> a5 = |
|
EqualsSumOf(1, 2, 3, 4, '5'); |
|
EqualsSumOfMatcherP6<int, int, int, int, int, char> a6 = |
|
EqualsSumOf(1, 2, 3, 4, 5, '6'); |
|
EqualsSumOfMatcherP7<int, int, int, int, int, int, char> a7 = |
|
EqualsSumOf(1, 2, 3, 4, 5, 6, '7'); |
|
EqualsSumOfMatcherP8<int, int, int, int, int, int, int, char> a8 = |
|
EqualsSumOf(1, 2, 3, 4, 5, 6, 7, '8'); |
|
EqualsSumOfMatcherP9<int, int, int, int, int, int, int, int, char> a9 = |
|
EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, '9'); |
|
EqualsSumOfMatcherP10<int, int, int, int, int, int, int, int, int, char> a10 = |
|
EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, 9, '0'); |
|
|
|
// Avoid "unused variable" warnings. |
|
(void)a0; |
|
(void)a1; |
|
(void)a2; |
|
(void)a3; |
|
(void)a4; |
|
(void)a5; |
|
(void)a6; |
|
(void)a7; |
|
(void)a8; |
|
(void)a9; |
|
(void)a10; |
|
} |
|
|
|
// Tests that matcher-typed parameters can be used in Value() inside a |
|
// MATCHER_Pn definition. |
|
|
|
// Succeeds if arg matches exactly 2 of the 3 matchers. |
|
MATCHER_P3(TwoOf, m1, m2, m3, "") { |
|
const int count = static_cast<int>(Value(arg, m1)) + |
|
static_cast<int>(Value(arg, m2)) + |
|
static_cast<int>(Value(arg, m3)); |
|
return count == 2; |
|
} |
|
|
|
TEST(MatcherPnMacroTest, CanUseMatcherTypedParameterInValue) { |
|
EXPECT_THAT(42, TwoOf(Gt(0), Lt(50), Eq(10))); |
|
EXPECT_THAT(0, Not(TwoOf(Gt(-1), Lt(1), Eq(0)))); |
|
} |
|
|
|
// Tests Contains().Times(). |
|
|
|
INSTANTIATE_GTEST_MATCHER_TEST_P(ContainsTimes); |
|
|
|
TEST(ContainsTimes, ListMatchesWhenElementQuantityMatches) { |
|
list<int> some_list; |
|
some_list.push_back(3); |
|
some_list.push_back(1); |
|
some_list.push_back(2); |
|
some_list.push_back(3); |
|
EXPECT_THAT(some_list, Contains(3).Times(2)); |
|
EXPECT_THAT(some_list, Contains(2).Times(1)); |
|
EXPECT_THAT(some_list, Contains(Ge(2)).Times(3)); |
|
EXPECT_THAT(some_list, Contains(Ge(2)).Times(Gt(2))); |
|
EXPECT_THAT(some_list, Contains(4).Times(0)); |
|
EXPECT_THAT(some_list, Contains(_).Times(4)); |
|
EXPECT_THAT(some_list, Not(Contains(5).Times(1))); |
|
EXPECT_THAT(some_list, Contains(5).Times(_)); // Times(_) always matches |
|
EXPECT_THAT(some_list, Not(Contains(3).Times(1))); |
|
EXPECT_THAT(some_list, Contains(3).Times(Not(1))); |
|
EXPECT_THAT(list<int>{}, Not(Contains(_))); |
|
} |
|
|
|
TEST_P(ContainsTimesP, ExplainsMatchResultCorrectly) { |
|
const int a[2] = {1, 2}; |
|
Matcher<const int(&)[2]> m = Contains(2).Times(3); |
|
EXPECT_EQ( |
|
"whose element #1 matches but whose match quantity of 1 does not match", |
|
Explain(m, a)); |
|
|
|
m = Contains(3).Times(0); |
|
EXPECT_EQ("has no element that matches and whose match quantity of 0 matches", |
|
Explain(m, a)); |
|
|
|
m = Contains(3).Times(4); |
|
EXPECT_EQ( |
|
"has no element that matches and whose match quantity of 0 does not " |
|
"match", |
|
Explain(m, a)); |
|
|
|
m = Contains(2).Times(4); |
|
EXPECT_EQ( |
|
"whose element #1 matches but whose match quantity of 1 does not " |
|
"match", |
|
Explain(m, a)); |
|
|
|
m = Contains(GreaterThan(0)).Times(2); |
|
EXPECT_EQ("whose elements (0, 1) match and whose match quantity of 2 matches", |
|
Explain(m, a)); |
|
|
|
m = Contains(GreaterThan(10)).Times(Gt(1)); |
|
EXPECT_EQ( |
|
"has no element that matches and whose match quantity of 0 does not " |
|
"match", |
|
Explain(m, a)); |
|
|
|
m = Contains(GreaterThan(0)).Times(GreaterThan<size_t>(5)); |
|
EXPECT_EQ( |
|
"whose elements (0, 1) match but whose match quantity of 2 does not " |
|
"match, which is 3 less than 5", |
|
Explain(m, a)); |
|
} |
|
|
|
TEST(ContainsTimes, DescribesItselfCorrectly) { |
|
Matcher<vector<int>> m = Contains(1).Times(2); |
|
EXPECT_EQ("quantity of elements that match is equal to 1 is equal to 2", |
|
Describe(m)); |
|
|
|
Matcher<vector<int>> m2 = Not(m); |
|
EXPECT_EQ("quantity of elements that match is equal to 1 isn't equal to 2", |
|
Describe(m2)); |
|
} |
|
|
|
// Tests AllOfArray() |
|
|
|
TEST(AllOfArrayTest, BasicForms) { |
|
// Iterator |
|
std::vector<int> v0{}; |
|
std::vector<int> v1{1}; |
|
std::vector<int> v2{2, 3}; |
|
std::vector<int> v3{4, 4, 4}; |
|
EXPECT_THAT(0, AllOfArray(v0.begin(), v0.end())); |
|
EXPECT_THAT(1, AllOfArray(v1.begin(), v1.end())); |
|
EXPECT_THAT(2, Not(AllOfArray(v1.begin(), v1.end()))); |
|
EXPECT_THAT(3, Not(AllOfArray(v2.begin(), v2.end()))); |
|
EXPECT_THAT(4, AllOfArray(v3.begin(), v3.end())); |
|
// Pointer + size |
|
int ar[6] = {1, 2, 3, 4, 4, 4}; |
|
EXPECT_THAT(0, AllOfArray(ar, 0)); |
|
EXPECT_THAT(1, AllOfArray(ar, 1)); |
|
EXPECT_THAT(2, Not(AllOfArray(ar, 1))); |
|
EXPECT_THAT(3, Not(AllOfArray(ar + 1, 3))); |
|
EXPECT_THAT(4, AllOfArray(ar + 3, 3)); |
|
// Array |
|
// int ar0[0]; Not usable |
|
int ar1[1] = {1}; |
|
int ar2[2] = {2, 3}; |
|
int ar3[3] = {4, 4, 4}; |
|
// EXPECT_THAT(0, Not(AllOfArray(ar0))); // Cannot work |
|
EXPECT_THAT(1, AllOfArray(ar1)); |
|
EXPECT_THAT(2, Not(AllOfArray(ar1))); |
|
EXPECT_THAT(3, Not(AllOfArray(ar2))); |
|
EXPECT_THAT(4, AllOfArray(ar3)); |
|
// Container |
|
EXPECT_THAT(0, AllOfArray(v0)); |
|
EXPECT_THAT(1, AllOfArray(v1)); |
|
EXPECT_THAT(2, Not(AllOfArray(v1))); |
|
EXPECT_THAT(3, Not(AllOfArray(v2))); |
|
EXPECT_THAT(4, AllOfArray(v3)); |
|
// Initializer |
|
EXPECT_THAT(0, AllOfArray<int>({})); // Requires template arg. |
|
EXPECT_THAT(1, AllOfArray({1})); |
|
EXPECT_THAT(2, Not(AllOfArray({1}))); |
|
EXPECT_THAT(3, Not(AllOfArray({2, 3}))); |
|
EXPECT_THAT(4, AllOfArray({4, 4, 4})); |
|
} |
|
|
|
TEST(AllOfArrayTest, Matchers) { |
|
// vector |
|
std::vector<Matcher<int>> matchers{Ge(1), Lt(2)}; |
|
EXPECT_THAT(0, Not(AllOfArray(matchers))); |
|
EXPECT_THAT(1, AllOfArray(matchers)); |
|
EXPECT_THAT(2, Not(AllOfArray(matchers))); |
|
// initializer_list |
|
EXPECT_THAT(0, Not(AllOfArray({Ge(0), Ge(1)}))); |
|
EXPECT_THAT(1, AllOfArray({Ge(0), Ge(1)})); |
|
} |
|
|
|
INSTANTIATE_GTEST_MATCHER_TEST_P(AnyOfArrayTest); |
|
|
|
TEST(AnyOfArrayTest, BasicForms) { |
|
// Iterator |
|
std::vector<int> v0{}; |
|
std::vector<int> v1{1}; |
|
std::vector<int> v2{2, 3}; |
|
EXPECT_THAT(0, Not(AnyOfArray(v0.begin(), v0.end()))); |
|
EXPECT_THAT(1, AnyOfArray(v1.begin(), v1.end())); |
|
EXPECT_THAT(2, Not(AnyOfArray(v1.begin(), v1.end()))); |
|
EXPECT_THAT(3, AnyOfArray(v2.begin(), v2.end())); |
|
EXPECT_THAT(4, Not(AnyOfArray(v2.begin(), v2.end()))); |
|
// Pointer + size |
|
int ar[3] = {1, 2, 3}; |
|
EXPECT_THAT(0, Not(AnyOfArray(ar, 0))); |
|
EXPECT_THAT(1, AnyOfArray(ar, 1)); |
|
EXPECT_THAT(2, Not(AnyOfArray(ar, 1))); |
|
EXPECT_THAT(3, AnyOfArray(ar + 1, 2)); |
|
EXPECT_THAT(4, Not(AnyOfArray(ar + 1, 2))); |
|
// Array |
|
// int ar0[0]; Not usable |
|
int ar1[1] = {1}; |
|
int ar2[2] = {2, 3}; |
|
// EXPECT_THAT(0, Not(AnyOfArray(ar0))); // Cannot work |
|
EXPECT_THAT(1, AnyOfArray(ar1)); |
|
EXPECT_THAT(2, Not(AnyOfArray(ar1))); |
|
EXPECT_THAT(3, AnyOfArray(ar2)); |
|
EXPECT_THAT(4, Not(AnyOfArray(ar2))); |
|
// Container |
|
EXPECT_THAT(0, Not(AnyOfArray(v0))); |
|
EXPECT_THAT(1, AnyOfArray(v1)); |
|
EXPECT_THAT(2, Not(AnyOfArray(v1))); |
|
EXPECT_THAT(3, AnyOfArray(v2)); |
|
EXPECT_THAT(4, Not(AnyOfArray(v2))); |
|
// Initializer |
|
EXPECT_THAT(0, Not(AnyOfArray<int>({}))); // Requires template arg. |
|
EXPECT_THAT(1, AnyOfArray({1})); |
|
EXPECT_THAT(2, Not(AnyOfArray({1}))); |
|
EXPECT_THAT(3, AnyOfArray({2, 3})); |
|
EXPECT_THAT(4, Not(AnyOfArray({2, 3}))); |
|
} |
|
|
|
TEST(AnyOfArrayTest, Matchers) { |
|
// We negate test AllOfArrayTest.Matchers. |
|
// vector |
|
std::vector<Matcher<int>> matchers{Lt(1), Ge(2)}; |
|
EXPECT_THAT(0, AnyOfArray(matchers)); |
|
EXPECT_THAT(1, Not(AnyOfArray(matchers))); |
|
EXPECT_THAT(2, AnyOfArray(matchers)); |
|
// initializer_list |
|
EXPECT_THAT(0, AnyOfArray({Lt(0), Lt(1)})); |
|
EXPECT_THAT(1, Not(AllOfArray({Lt(0), Lt(1)}))); |
|
} |
|
|
|
TEST_P(AnyOfArrayTestP, ExplainsMatchResultCorrectly) { |
|
// AnyOfArray and AllOfArray use the same underlying template-template, |
|
// thus it is sufficient to test one here. |
|
const std::vector<int> v0{}; |
|
const std::vector<int> v1{1}; |
|
const std::vector<int> v2{2, 3}; |
|
const Matcher<int> m0 = AnyOfArray(v0); |
|
const Matcher<int> m1 = AnyOfArray(v1); |
|
const Matcher<int> m2 = AnyOfArray(v2); |
|
EXPECT_EQ("", Explain(m0, 0)); |
|
EXPECT_EQ("which matches (is equal to 1)", Explain(m1, 1)); |
|
EXPECT_EQ("isn't equal to 1", Explain(m1, 2)); |
|
EXPECT_EQ("which matches (is equal to 3)", Explain(m2, 3)); |
|
EXPECT_EQ("isn't equal to 2, and isn't equal to 3", Explain(m2, 4)); |
|
EXPECT_EQ("()", Describe(m0)); |
|
EXPECT_EQ("(is equal to 1)", Describe(m1)); |
|
EXPECT_EQ("(is equal to 2) or (is equal to 3)", Describe(m2)); |
|
EXPECT_EQ("()", DescribeNegation(m0)); |
|
EXPECT_EQ("(isn't equal to 1)", DescribeNegation(m1)); |
|
EXPECT_EQ("(isn't equal to 2) and (isn't equal to 3)", DescribeNegation(m2)); |
|
// Explain with matchers |
|
const Matcher<int> g1 = AnyOfArray({GreaterThan(1)}); |
|
const Matcher<int> g2 = AnyOfArray({GreaterThan(1), GreaterThan(2)}); |
|
// Explains the first positive match and all prior negative matches... |
|
EXPECT_EQ("which is 1 less than 1", Explain(g1, 0)); |
|
EXPECT_EQ("which is the same as 1", Explain(g1, 1)); |
|
EXPECT_EQ("which is 1 more than 1", Explain(g1, 2)); |
|
EXPECT_EQ("which is 1 less than 1, and which is 2 less than 2", |
|
Explain(g2, 0)); |
|
EXPECT_EQ("which is the same as 1, and which is 1 less than 2", |
|
Explain(g2, 1)); |
|
EXPECT_EQ("which is 1 more than 1", // Only the first |
|
Explain(g2, 2)); |
|
} |
|
|
|
MATCHER(IsNotNull, "") { return arg != nullptr; } |
|
|
|
// Verifies that a matcher defined using MATCHER() can work on |
|
// move-only types. |
|
TEST(MatcherMacroTest, WorksOnMoveOnlyType) { |
|
std::unique_ptr<int> p(new int(3)); |
|
EXPECT_THAT(p, IsNotNull()); |
|
EXPECT_THAT(std::unique_ptr<int>(), Not(IsNotNull())); |
|
} |
|
|
|
MATCHER_P(UniquePointee, pointee, "") { return *arg == pointee; } |
|
|
|
// Verifies that a matcher defined using MATCHER_P*() can work on |
|
// move-only types. |
|
TEST(MatcherPMacroTest, WorksOnMoveOnlyType) { |
|
std::unique_ptr<int> p(new int(3)); |
|
EXPECT_THAT(p, UniquePointee(3)); |
|
EXPECT_THAT(p, Not(UniquePointee(2))); |
|
} |
|
|
|
MATCHER(EnsureNoUnusedButMarkedUnusedWarning, "") { return (arg % 2) == 0; } |
|
|
|
TEST(MockMethodMockFunctionTest, EnsureNoUnusedButMarkedUnusedWarning) { |
|
#ifdef __clang__ |
|
#pragma clang diagnostic push |
|
#pragma clang diagnostic error "-Wused-but-marked-unused" |
|
#endif |
|
// https://github.com/google/googletest/issues/4055 |
|
EXPECT_THAT(0, EnsureNoUnusedButMarkedUnusedWarning()); |
|
#ifdef __clang__ |
|
#pragma clang diagnostic pop |
|
#endif |
|
} |
|
|
|
#if GTEST_HAS_EXCEPTIONS |
|
|
|
// std::function<void()> is used below for compatibility with older copies of |
|
// GCC. Normally, a raw lambda is all that is needed. |
|
|
|
// Test that examples from documentation compile |
|
TEST(ThrowsTest, Examples) { |
|
EXPECT_THAT( |
|
std::function<void()>([]() { throw std::runtime_error("message"); }), |
|
Throws<std::runtime_error>()); |
|
|
|
EXPECT_THAT( |
|
std::function<void()>([]() { throw std::runtime_error("message"); }), |
|
ThrowsMessage<std::runtime_error>(HasSubstr("message"))); |
|
} |
|
|
|
TEST(ThrowsTest, PrintsExceptionWhat) { |
|
EXPECT_THAT( |
|
std::function<void()>([]() { throw std::runtime_error("ABC123XYZ"); }), |
|
ThrowsMessage<std::runtime_error>(HasSubstr("ABC123XYZ"))); |
|
} |
|
|
|
TEST(ThrowsTest, DoesNotGenerateDuplicateCatchClauseWarning) { |
|
EXPECT_THAT(std::function<void()>([]() { throw std::exception(); }), |
|
Throws<std::exception>()); |
|
} |
|
|
|
TEST(ThrowsTest, CallableExecutedExactlyOnce) { |
|
size_t a = 0; |
|
|
|
EXPECT_THAT(std::function<void()>([&a]() { |
|
a++; |
|
throw 10; |
|
}), |
|
Throws<int>()); |
|
EXPECT_EQ(a, 1u); |
|
|
|
EXPECT_THAT(std::function<void()>([&a]() { |
|
a++; |
|
throw std::runtime_error("message"); |
|
}), |
|
Throws<std::runtime_error>()); |
|
EXPECT_EQ(a, 2u); |
|
|
|
EXPECT_THAT(std::function<void()>([&a]() { |
|
a++; |
|
throw std::runtime_error("message"); |
|
}), |
|
ThrowsMessage<std::runtime_error>(HasSubstr("message"))); |
|
EXPECT_EQ(a, 3u); |
|
|
|
EXPECT_THAT(std::function<void()>([&a]() { |
|
a++; |
|
throw std::runtime_error("message"); |
|
}), |
|
Throws<std::runtime_error>( |
|
Property(&std::runtime_error::what, HasSubstr("message")))); |
|
EXPECT_EQ(a, 4u); |
|
} |
|
|
|
TEST(ThrowsTest, Describe) { |
|
Matcher<std::function<void()>> matcher = Throws<std::runtime_error>(); |
|
std::stringstream ss; |
|
matcher.DescribeTo(&ss); |
|
auto explanation = ss.str(); |
|
EXPECT_THAT(explanation, HasSubstr("std::runtime_error")); |
|
} |
|
|
|
TEST(ThrowsTest, Success) { |
|
Matcher<std::function<void()>> matcher = Throws<std::runtime_error>(); |
|
StringMatchResultListener listener; |
|
EXPECT_TRUE(matcher.MatchAndExplain( |
|
[]() { throw std::runtime_error("error message"); }, &listener)); |
|
EXPECT_THAT(listener.str(), HasSubstr("std::runtime_error")); |
|
} |
|
|
|
TEST(ThrowsTest, FailWrongType) { |
|
Matcher<std::function<void()>> matcher = Throws<std::runtime_error>(); |
|
StringMatchResultListener listener; |
|
EXPECT_FALSE(matcher.MatchAndExplain( |
|
[]() { throw std::logic_error("error message"); }, &listener)); |
|
EXPECT_THAT(listener.str(), HasSubstr("std::logic_error")); |
|
EXPECT_THAT(listener.str(), HasSubstr("\"error message\"")); |
|
} |
|
|
|
TEST(ThrowsTest, FailWrongTypeNonStd) { |
|
Matcher<std::function<void()>> matcher = Throws<std::runtime_error>(); |
|
StringMatchResultListener listener; |
|
EXPECT_FALSE(matcher.MatchAndExplain([]() { throw 10; }, &listener)); |
|
EXPECT_THAT(listener.str(), |
|
HasSubstr("throws an exception of an unknown type")); |
|
} |
|
|
|
TEST(ThrowsTest, FailNoThrow) { |
|
Matcher<std::function<void()>> matcher = Throws<std::runtime_error>(); |
|
StringMatchResultListener listener; |
|
EXPECT_FALSE(matcher.MatchAndExplain([]() { (void)0; }, &listener)); |
|
EXPECT_THAT(listener.str(), HasSubstr("does not throw any exception")); |
|
} |
|
|
|
class ThrowsPredicateTest |
|
: public TestWithParam<Matcher<std::function<void()>>> {}; |
|
|
|
TEST_P(ThrowsPredicateTest, Describe) { |
|
Matcher<std::function<void()>> matcher = GetParam(); |
|
std::stringstream ss; |
|
matcher.DescribeTo(&ss); |
|
auto explanation = ss.str(); |
|
EXPECT_THAT(explanation, HasSubstr("std::runtime_error")); |
|
EXPECT_THAT(explanation, HasSubstr("error message")); |
|
} |
|
|
|
TEST_P(ThrowsPredicateTest, Success) { |
|
Matcher<std::function<void()>> matcher = GetParam(); |
|
StringMatchResultListener listener; |
|
EXPECT_TRUE(matcher.MatchAndExplain( |
|
[]() { throw std::runtime_error("error message"); }, &listener)); |
|
EXPECT_THAT(listener.str(), HasSubstr("std::runtime_error")); |
|
} |
|
|
|
TEST_P(ThrowsPredicateTest, FailWrongType) { |
|
Matcher<std::function<void()>> matcher = GetParam(); |
|
StringMatchResultListener listener; |
|
EXPECT_FALSE(matcher.MatchAndExplain( |
|
[]() { throw std::logic_error("error message"); }, &listener)); |
|
EXPECT_THAT(listener.str(), HasSubstr("std::logic_error")); |
|
EXPECT_THAT(listener.str(), HasSubstr("\"error message\"")); |
|
} |
|
|
|
TEST_P(ThrowsPredicateTest, FailWrongTypeNonStd) { |
|
Matcher<std::function<void()>> matcher = GetParam(); |
|
StringMatchResultListener listener; |
|
EXPECT_FALSE(matcher.MatchAndExplain([]() { throw 10; }, &listener)); |
|
EXPECT_THAT(listener.str(), |
|
HasSubstr("throws an exception of an unknown type")); |
|
} |
|
|
|
TEST_P(ThrowsPredicateTest, FailNoThrow) { |
|
Matcher<std::function<void()>> matcher = GetParam(); |
|
StringMatchResultListener listener; |
|
EXPECT_FALSE(matcher.MatchAndExplain([]() {}, &listener)); |
|
EXPECT_THAT(listener.str(), HasSubstr("does not throw any exception")); |
|
} |
|
|
|
INSTANTIATE_TEST_SUITE_P( |
|
AllMessagePredicates, ThrowsPredicateTest, |
|
Values(Matcher<std::function<void()>>( |
|
ThrowsMessage<std::runtime_error>(HasSubstr("error message"))))); |
|
|
|
// Tests that Throws<E1>(Matcher<E2>{}) compiles even when E2 != const E1&. |
|
TEST(ThrowsPredicateCompilesTest, ExceptionMatcherAcceptsBroadType) { |
|
{ |
|
Matcher<std::function<void()>> matcher = |
|
ThrowsMessage<std::runtime_error>(HasSubstr("error message")); |
|
EXPECT_TRUE( |
|
matcher.Matches([]() { throw std::runtime_error("error message"); })); |
|
EXPECT_FALSE( |
|
matcher.Matches([]() { throw std::runtime_error("wrong message"); })); |
|
} |
|
|
|
{ |
|
Matcher<uint64_t> inner = Eq(10); |
|
Matcher<std::function<void()>> matcher = Throws<uint32_t>(inner); |
|
EXPECT_TRUE(matcher.Matches([]() { throw (uint32_t)10; })); |
|
EXPECT_FALSE(matcher.Matches([]() { throw (uint32_t)11; })); |
|
} |
|
} |
|
|
|
// Tests that ThrowsMessage("message") is equivalent |
|
// to ThrowsMessage(Eq<std::string>("message")). |
|
TEST(ThrowsPredicateCompilesTest, MessageMatcherAcceptsNonMatcher) { |
|
Matcher<std::function<void()>> matcher = |
|
ThrowsMessage<std::runtime_error>("error message"); |
|
EXPECT_TRUE( |
|
matcher.Matches([]() { throw std::runtime_error("error message"); })); |
|
EXPECT_FALSE(matcher.Matches( |
|
[]() { throw std::runtime_error("wrong error message"); })); |
|
} |
|
|
|
#endif // GTEST_HAS_EXCEPTIONS |
|
|
|
} // namespace |
|
} // namespace gmock_matchers_test |
|
} // namespace testing |
|
|
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4244 4100
|
|
|