// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // // Tests for Google Test itself. This verifies that the basic constructs of // Google Test work. #include #include // Indicates that this translation unit is part of Google Test's // implementation. It must come before gtest-internal-inl.h is // included, or there will be a compiler error. This trick is to // prevent a user from accidentally including gtest-internal-inl.h in // his code. #define GTEST_IMPLEMENTATION #include "src/gtest-internal-inl.h" #undef GTEST_IMPLEMENTATION #include #ifdef GTEST_OS_LINUX #include #include #include #include #include #include #include #endif // GTEST_OS_LINUX namespace testing { namespace internal { const char* FormatTimeInMillisAsSeconds(TimeInMillis ms); bool ParseInt32Flag(const char* str, const char* flag, Int32* value); } // namespace internal } // namespace testing using testing::internal::FormatTimeInMillisAsSeconds; using testing::internal::ParseInt32Flag; namespace testing { GTEST_DECLARE_string(output); GTEST_DECLARE_string(color); namespace internal { bool ShouldUseColor(bool stdout_is_tty); } // namespace internal } // namespace testing using testing::AssertionFailure; using testing::AssertionResult; using testing::AssertionSuccess; using testing::DoubleLE; using testing::FloatLE; using testing::GTEST_FLAG(break_on_failure); using testing::GTEST_FLAG(catch_exceptions); using testing::GTEST_FLAG(color); using testing::GTEST_FLAG(filter); using testing::GTEST_FLAG(list_tests); using testing::GTEST_FLAG(output); using testing::GTEST_FLAG(print_time); using testing::GTEST_FLAG(repeat); using testing::GTEST_FLAG(show_internal_stack_frames); using testing::GTEST_FLAG(stack_trace_depth); using testing::IsNotSubstring; using testing::IsSubstring; using testing::Message; using testing::ScopedFakeTestPartResultReporter; using testing::Test; using testing::TestPartResult; using testing::TestPartResultArray; using testing::TPRT_FATAL_FAILURE; using testing::TPRT_NONFATAL_FAILURE; using testing::TPRT_SUCCESS; using testing::UnitTest; using testing::internal::AppendUserMessage; using testing::internal::CodePointToUtf8; using testing::internal::EqFailure; using testing::internal::FloatingPoint; using testing::internal::GTestFlagSaver; using testing::internal::Int32; using testing::internal::List; using testing::internal::ShouldUseColor; using testing::internal::StreamableToString; using testing::internal::String; using testing::internal::TestProperty; using testing::internal::TestResult; using testing::internal::UnitTestImpl; using testing::internal::WideStringToUtf8; // This line tests that we can define tests in an unnamed namespace. namespace { // Tests FormatTimeInMillisAsSeconds(). TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) { EXPECT_STREQ("0", FormatTimeInMillisAsSeconds(0)); } TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) { EXPECT_STREQ("0.003", FormatTimeInMillisAsSeconds(3)); EXPECT_STREQ("0.01", FormatTimeInMillisAsSeconds(10)); EXPECT_STREQ("0.2", FormatTimeInMillisAsSeconds(200)); EXPECT_STREQ("1.2", FormatTimeInMillisAsSeconds(1200)); EXPECT_STREQ("3", FormatTimeInMillisAsSeconds(3000)); } TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) { EXPECT_STREQ("-0.003", FormatTimeInMillisAsSeconds(-3)); EXPECT_STREQ("-0.01", FormatTimeInMillisAsSeconds(-10)); EXPECT_STREQ("-0.2", FormatTimeInMillisAsSeconds(-200)); EXPECT_STREQ("-1.2", FormatTimeInMillisAsSeconds(-1200)); EXPECT_STREQ("-3", FormatTimeInMillisAsSeconds(-3000)); } #ifndef __SYMBIAN32__ // NULL testing does not work with Symbian compilers. // Tests that GTEST_IS_NULL_LITERAL(x) is true when x is a null // pointer literal. TEST(NullLiteralTest, IsTrueForNullLiterals) { EXPECT_TRUE(GTEST_IS_NULL_LITERAL(NULL)); EXPECT_TRUE(GTEST_IS_NULL_LITERAL(0)); EXPECT_TRUE(GTEST_IS_NULL_LITERAL(1 - 1)); EXPECT_TRUE(GTEST_IS_NULL_LITERAL(0U)); EXPECT_TRUE(GTEST_IS_NULL_LITERAL(0L)); EXPECT_TRUE(GTEST_IS_NULL_LITERAL(false)); EXPECT_TRUE(GTEST_IS_NULL_LITERAL(true && false)); } // Tests that GTEST_IS_NULL_LITERAL(x) is false when x is not a null // pointer literal. TEST(NullLiteralTest, IsFalseForNonNullLiterals) { EXPECT_FALSE(GTEST_IS_NULL_LITERAL(1)); EXPECT_FALSE(GTEST_IS_NULL_LITERAL(0.0)); EXPECT_FALSE(GTEST_IS_NULL_LITERAL('a')); EXPECT_FALSE(GTEST_IS_NULL_LITERAL(static_cast(NULL))); } #endif // __SYMBIAN32__ // // Tests CodePointToUtf8(). // Tests that the NUL character L'\0' is encoded correctly. TEST(CodePointToUtf8Test, CanEncodeNul) { char buffer[32]; EXPECT_STREQ("", CodePointToUtf8(L'\0', buffer)); } // Tests that ASCII characters are encoded correctly. TEST(CodePointToUtf8Test, CanEncodeAscii) { char buffer[32]; EXPECT_STREQ("a", CodePointToUtf8(L'a', buffer)); EXPECT_STREQ("Z", CodePointToUtf8(L'Z', buffer)); EXPECT_STREQ("&", CodePointToUtf8(L'&', buffer)); EXPECT_STREQ("\x7F", CodePointToUtf8(L'\x7F', buffer)); } // Tests that Unicode code-points that have 8 to 11 bits are encoded // as 110xxxxx 10xxxxxx. TEST(CodePointToUtf8Test, CanEncode8To11Bits) { char buffer[32]; // 000 1101 0011 => 110-00011 10-010011 EXPECT_STREQ("\xC3\x93", CodePointToUtf8(L'\xD3', buffer)); // 101 0111 0110 => 110-10101 10-110110 EXPECT_STREQ("\xD5\xB6", CodePointToUtf8(L'\x576', buffer)); } // Tests that Unicode code-points that have 12 to 16 bits are encoded // as 1110xxxx 10xxxxxx 10xxxxxx. TEST(CodePointToUtf8Test, CanEncode12To16Bits) { char buffer[32]; // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011 EXPECT_STREQ("\xE0\xA3\x93", CodePointToUtf8(L'\x8D3', buffer)); // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101 EXPECT_STREQ("\xEC\x9D\x8D", CodePointToUtf8(L'\xC74D', buffer)); } #ifndef GTEST_WIDE_STRING_USES_UTF16_ // Tests in this group require a wchar_t to hold > 16 bits, and thus // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is // 16-bit wide. This code may not compile on those systems. // Tests that Unicode code-points that have 17 to 21 bits are encoded // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. TEST(CodePointToUtf8Test, CanEncode17To21Bits) { char buffer[32]; // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011 EXPECT_STREQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3', buffer)); // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000 EXPECT_STREQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400', buffer)); // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100 EXPECT_STREQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634', buffer)); } // Tests that encoding an invalid code-point generates the expected result. TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) { char buffer[32]; EXPECT_STREQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD', buffer)); } #endif // GTEST_WIDE_STRING_USES_UTF16_ // Tests WideStringToUtf8(). // Tests that the NUL character L'\0' is encoded correctly. TEST(WideStringToUtf8Test, CanEncodeNul) { EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str()); EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str()); } // Tests that ASCII strings are encoded correctly. TEST(WideStringToUtf8Test, CanEncodeAscii) { EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str()); EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str()); EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str()); EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str()); } // Tests that Unicode code-points that have 8 to 11 bits are encoded // as 110xxxxx 10xxxxxx. TEST(WideStringToUtf8Test, CanEncode8To11Bits) { // 000 1101 0011 => 110-00011 10-010011 EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str()); EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str()); // 101 0111 0110 => 110-10101 10-110110 EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(L"\x576", 1).c_str()); EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(L"\x576", -1).c_str()); } // Tests that Unicode code-points that have 12 to 16 bits are encoded // as 1110xxxx 10xxxxxx 10xxxxxx. TEST(WideStringToUtf8Test, CanEncode12To16Bits) { // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011 EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(L"\x8D3", 1).c_str()); EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(L"\x8D3", -1).c_str()); // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101 EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(L"\xC74D", 1).c_str()); EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(L"\xC74D", -1).c_str()); } // Tests that the conversion stops when the function encounters \0 character. TEST(WideStringToUtf8Test, StopsOnNulCharacter) { EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str()); } // Tests that the conversion stops when the function reaches the limit // specified by the 'length' parameter. TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) { EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str()); } #ifndef GTEST_WIDE_STRING_USES_UTF16_ // Tests that Unicode code-points that have 17 to 21 bits are encoded // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile // on the systems using UTF-16 encoding. TEST(WideStringToUtf8Test, CanEncode17To21Bits) { // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011 EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str()); EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str()); // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100 EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str()); EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str()); } // Tests that encoding an invalid code-point generates the expected result. TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) { EXPECT_STREQ("(Invalid Unicode 0xABCDFF)", WideStringToUtf8(L"\xABCDFF", -1).c_str()); } #else // Tests that surrogate pairs are encoded correctly on the systems using // UTF-16 encoding in the wide strings. TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) { EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(L"\xD801\xDC00", -1).c_str()); } // Tests that encoding an invalid UTF-16 surrogate pair // generates the expected result. TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) { // Leading surrogate is at the end of the string. EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(L"\xD800", -1).c_str()); // Leading surrogate is not followed by the trailing surrogate. EXPECT_STREQ("\xED\xA0\x80$", WideStringToUtf8(L"\xD800$", -1).c_str()); // Trailing surrogate appearas without a leading surrogate. EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(L"\xDC00PQR", -1).c_str()); } #endif // GTEST_WIDE_STRING_USES_UTF16_ // Tests that codepoint concatenation works correctly. #ifndef GTEST_WIDE_STRING_USES_UTF16_ TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) { EXPECT_STREQ( "\xF4\x88\x98\xB4" "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93" "\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634\xC74D\n\x576\x8D3\x108634", -1).c_str()); } #else TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) { EXPECT_STREQ( "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93", WideStringToUtf8(L"\xC74D\n\x576\x8D3", -1).c_str()); } #endif // GTEST_WIDE_STRING_USES_UTF16_ // Tests the List template class. // Tests List::PushFront(). TEST(ListTest, PushFront) { List a; ASSERT_EQ(0u, a.size()); // Calls PushFront() on an empty list. a.PushFront(1); ASSERT_EQ(1u, a.size()); EXPECT_EQ(1, a.Head()->element()); ASSERT_EQ(a.Head(), a.Last()); // Calls PushFront() on a singleton list. a.PushFront(2); ASSERT_EQ(2u, a.size()); EXPECT_EQ(2, a.Head()->element()); EXPECT_EQ(1, a.Last()->element()); // Calls PushFront() on a list with more than one elements. a.PushFront(3); ASSERT_EQ(3u, a.size()); EXPECT_EQ(3, a.Head()->element()); EXPECT_EQ(2, a.Head()->next()->element()); EXPECT_EQ(1, a.Last()->element()); } // Tests List::PopFront(). TEST(ListTest, PopFront) { List a; // Popping on an empty list should fail. EXPECT_FALSE(a.PopFront(NULL)); // Popping again on an empty list should fail, and the result element // shouldn't be overwritten. int element = 1; EXPECT_FALSE(a.PopFront(&element)); EXPECT_EQ(1, element); a.PushFront(2); a.PushFront(3); // PopFront() should pop the element in the front of the list. EXPECT_TRUE(a.PopFront(&element)); EXPECT_EQ(3, element); // After popping the last element, the list should be empty. EXPECT_TRUE(a.PopFront(NULL)); EXPECT_EQ(0u, a.size()); } // Tests inserting at the beginning using List::InsertAfter(). TEST(ListTest, InsertAfterAtBeginning) { List a; ASSERT_EQ(0u, a.size()); // Inserts into an empty list. a.InsertAfter(NULL, 1); ASSERT_EQ(1u, a.size()); EXPECT_EQ(1, a.Head()->element()); ASSERT_EQ(a.Head(), a.Last()); // Inserts at the beginning of a singleton list. a.InsertAfter(NULL, 2); ASSERT_EQ(2u, a.size()); EXPECT_EQ(2, a.Head()->element()); EXPECT_EQ(1, a.Last()->element()); // Inserts at the beginning of a list with more than one elements. a.InsertAfter(NULL, 3); ASSERT_EQ(3u, a.size()); EXPECT_EQ(3, a.Head()->element()); EXPECT_EQ(2, a.Head()->next()->element()); EXPECT_EQ(1, a.Last()->element()); } // Tests inserting at a location other than the beginning using // List::InsertAfter(). TEST(ListTest, InsertAfterNotAtBeginning) { // Prepares a singleton list. List a; a.PushBack(1); // Inserts at the end of a singleton list. a.InsertAfter(a.Last(), 2); ASSERT_EQ(2u, a.size()); EXPECT_EQ(1, a.Head()->element()); EXPECT_EQ(2, a.Last()->element()); // Inserts at the end of a list with more than one elements. a.InsertAfter(a.Last(), 3); ASSERT_EQ(3u, a.size()); EXPECT_EQ(1, a.Head()->element()); EXPECT_EQ(2, a.Head()->next()->element()); EXPECT_EQ(3, a.Last()->element()); // Inserts in the middle of a list. a.InsertAfter(a.Head(), 4); ASSERT_EQ(4u, a.size()); EXPECT_EQ(1, a.Head()->element()); EXPECT_EQ(4, a.Head()->next()->element()); EXPECT_EQ(2, a.Head()->next()->next()->element()); EXPECT_EQ(3, a.Last()->element()); } // Tests the String class. // Tests String's constructors. TEST(StringTest, Constructors) { // Default ctor. String s1; // We aren't using EXPECT_EQ(NULL, s1.c_str()) because comparing // pointers with NULL isn't supported on all platforms. EXPECT_TRUE(NULL == s1.c_str()); // Implicitly constructs from a C-string. String s2 = "Hi"; EXPECT_STREQ("Hi", s2.c_str()); // Constructs from a C-string and a length. String s3("hello", 3); EXPECT_STREQ("hel", s3.c_str()); // Copy ctor. String s4 = s3; EXPECT_STREQ("hel", s4.c_str()); } // Tests String::ShowCString(). TEST(StringTest, ShowCString) { EXPECT_STREQ("(null)", String::ShowCString(NULL)); EXPECT_STREQ("", String::ShowCString("")); EXPECT_STREQ("foo", String::ShowCString("foo")); } // Tests String::ShowCStringQuoted(). TEST(StringTest, ShowCStringQuoted) { EXPECT_STREQ("(null)", String::ShowCStringQuoted(NULL).c_str()); EXPECT_STREQ("\"\"", String::ShowCStringQuoted("").c_str()); EXPECT_STREQ("\"foo\"", String::ShowCStringQuoted("foo").c_str()); } // Tests String::operator==(). TEST(StringTest, Equals) { const String null(NULL); EXPECT_TRUE(null == NULL); // NOLINT EXPECT_FALSE(null == ""); // NOLINT EXPECT_FALSE(null == "bar"); // NOLINT const String empty(""); EXPECT_FALSE(empty == NULL); // NOLINT EXPECT_TRUE(empty == ""); // NOLINT EXPECT_FALSE(empty == "bar"); // NOLINT const String foo("foo"); EXPECT_FALSE(foo == NULL); // NOLINT EXPECT_FALSE(foo == ""); // NOLINT EXPECT_FALSE(foo == "bar"); // NOLINT EXPECT_TRUE(foo == "foo"); // NOLINT } // Tests String::operator!=(). TEST(StringTest, NotEquals) { const String null(NULL); EXPECT_FALSE(null != NULL); // NOLINT EXPECT_TRUE(null != ""); // NOLINT EXPECT_TRUE(null != "bar"); // NOLINT const String empty(""); EXPECT_TRUE(empty != NULL); // NOLINT EXPECT_FALSE(empty != ""); // NOLINT EXPECT_TRUE(empty != "bar"); // NOLINT const String foo("foo"); EXPECT_TRUE(foo != NULL); // NOLINT EXPECT_TRUE(foo != ""); // NOLINT EXPECT_TRUE(foo != "bar"); // NOLINT EXPECT_FALSE(foo != "foo"); // NOLINT } // Tests String::EndsWith(). TEST(StringTest, EndsWith) { EXPECT_TRUE(String("foobar").EndsWith("bar")); EXPECT_TRUE(String("foobar").EndsWith("")); EXPECT_TRUE(String("").EndsWith("")); EXPECT_FALSE(String("foobar").EndsWith("foo")); EXPECT_FALSE(String("").EndsWith("foo")); } // Tests String::EndsWithCaseInsensitive(). TEST(StringTest, EndsWithCaseInsensitive) { EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("BAR")); EXPECT_TRUE(String("foobaR").EndsWithCaseInsensitive("bar")); EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("")); EXPECT_TRUE(String("").EndsWithCaseInsensitive("")); EXPECT_FALSE(String("Foobar").EndsWithCaseInsensitive("foo")); EXPECT_FALSE(String("foobar").EndsWithCaseInsensitive("Foo")); EXPECT_FALSE(String("").EndsWithCaseInsensitive("foo")); } // Tests String::CaseInsensitiveWideCStringEquals TEST(StringTest, CaseInsensitiveWideCStringEquals) { EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL)); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(NULL, L"")); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", NULL)); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(NULL, L"foobar")); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", NULL)); EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar")); EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR")); EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar")); } // Tests that NULL can be assigned to a String. TEST(StringTest, CanBeAssignedNULL) { const String src(NULL); String dest; dest = src; EXPECT_STREQ(NULL, dest.c_str()); } // Tests that the empty string "" can be assigned to a String. TEST(StringTest, CanBeAssignedEmpty) { const String src(""); String dest; dest = src; EXPECT_STREQ("", dest.c_str()); } // Tests that a non-empty string can be assigned to a String. TEST(StringTest, CanBeAssignedNonEmpty) { const String src("hello"); String dest; dest = src; EXPECT_STREQ("hello", dest.c_str()); } // Tests that a String can be assigned to itself. TEST(StringTest, CanBeAssignedSelf) { String dest("hello"); dest = dest; EXPECT_STREQ("hello", dest.c_str()); } #ifdef GTEST_OS_WINDOWS // Tests String::ShowWideCString(). TEST(StringTest, ShowWideCString) { EXPECT_STREQ("(null)", String::ShowWideCString(NULL).c_str()); EXPECT_STREQ("", String::ShowWideCString(L"").c_str()); EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str()); } // Tests String::ShowWideCStringQuoted(). TEST(StringTest, ShowWideCStringQuoted) { EXPECT_STREQ("(null)", String::ShowWideCStringQuoted(NULL).c_str()); EXPECT_STREQ("L\"\"", String::ShowWideCStringQuoted(L"").c_str()); EXPECT_STREQ("L\"foo\"", String::ShowWideCStringQuoted(L"foo").c_str()); } #ifdef _WIN32_WCE TEST(StringTest, AnsiAndUtf16Null) { EXPECT_EQ(NULL, String::AnsiToUtf16(NULL)); EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL)); } TEST(StringTest, AnsiAndUtf16ConvertBasic) { const char* ansi = String::Utf16ToAnsi(L"str"); EXPECT_STREQ("str", ansi); delete [] ansi; const WCHAR* utf16 = String::AnsiToUtf16("str"); EXPECT_TRUE(wcsncmp(L"str", utf16, 3) == 0); delete [] utf16; } TEST(StringTest, AnsiAndUtf16ConvertPathChars) { const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?"); EXPECT_STREQ(".:\\ \"*?", ansi); delete [] ansi; const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?"); EXPECT_TRUE(wcsncmp(L".:\\ \"*?", utf16, 3) == 0); delete [] utf16; } #endif // _WIN32_WCE #endif // GTEST_OS_WINDOWS // Tests TestProperty construction. TEST(TestPropertyTest, StringValue) { TestProperty property("key", "1"); EXPECT_STREQ("key", property.key()); EXPECT_STREQ("1", property.value()); } // Tests TestProperty replacing a value. TEST(TestPropertyTest, ReplaceStringValue) { TestProperty property("key", "1"); EXPECT_STREQ("1", property.value()); property.SetValue("2"); EXPECT_STREQ("2", property.value()); } // Tests the TestPartResult class. // The test fixture for testing TestPartResult. class TestPartResultTest : public Test { protected: TestPartResultTest() : r1_(TPRT_SUCCESS, "foo/bar.cc", 10, "Success!"), r2_(TPRT_NONFATAL_FAILURE, "foo/bar.cc", -1, "Failure!"), r3_(TPRT_FATAL_FAILURE, NULL, -1, "Failure!") {} TestPartResult r1_, r2_, r3_; }; // Tests TestPartResult::type() TEST_F(TestPartResultTest, type) { EXPECT_EQ(TPRT_SUCCESS, r1_.type()); EXPECT_EQ(TPRT_NONFATAL_FAILURE, r2_.type()); EXPECT_EQ(TPRT_FATAL_FAILURE, r3_.type()); } // Tests TestPartResult::file_name() TEST_F(TestPartResultTest, file_name) { EXPECT_STREQ("foo/bar.cc", r1_.file_name()); EXPECT_STREQ(NULL, r3_.file_name()); } // Tests TestPartResult::line_number() TEST_F(TestPartResultTest, line_number) { EXPECT_EQ(10, r1_.line_number()); EXPECT_EQ(-1, r2_.line_number()); } // Tests TestPartResult::message() TEST_F(TestPartResultTest, message) { EXPECT_STREQ("Success!", r1_.message()); } // Tests TestPartResult::passed() TEST_F(TestPartResultTest, Passed) { EXPECT_TRUE(r1_.passed()); EXPECT_FALSE(r2_.passed()); EXPECT_FALSE(r3_.passed()); } // Tests TestPartResult::failed() TEST_F(TestPartResultTest, Failed) { EXPECT_FALSE(r1_.failed()); EXPECT_TRUE(r2_.failed()); EXPECT_TRUE(r3_.failed()); } // Tests TestPartResult::fatally_failed() TEST_F(TestPartResultTest, FatallyFailed) { EXPECT_FALSE(r1_.fatally_failed()); EXPECT_FALSE(r2_.fatally_failed()); EXPECT_TRUE(r3_.fatally_failed()); } // Tests TestPartResult::nonfatally_failed() TEST_F(TestPartResultTest, NonfatallyFailed) { EXPECT_FALSE(r1_.nonfatally_failed()); EXPECT_TRUE(r2_.nonfatally_failed()); EXPECT_FALSE(r3_.nonfatally_failed()); } // Tests the TestPartResultArray class. class TestPartResultArrayTest : public Test { protected: TestPartResultArrayTest() : r1_(TPRT_NONFATAL_FAILURE, "foo/bar.cc", -1, "Failure 1"), r2_(TPRT_FATAL_FAILURE, "foo/bar.cc", -1, "Failure 2") {} const TestPartResult r1_, r2_; }; // Tests that TestPartResultArray initially has size 0. TEST_F(TestPartResultArrayTest, InitialSizeIsZero) { TestPartResultArray results; EXPECT_EQ(0, results.size()); } // Tests that TestPartResultArray contains the given TestPartResult // after one Append() operation. TEST_F(TestPartResultArrayTest, ContainsGivenResultAfterAppend) { TestPartResultArray results; results.Append(r1_); EXPECT_EQ(1, results.size()); EXPECT_STREQ("Failure 1", results.GetTestPartResult(0).message()); } // Tests that TestPartResultArray contains the given TestPartResults // after two Append() operations. TEST_F(TestPartResultArrayTest, ContainsGivenResultsAfterTwoAppends) { TestPartResultArray results; results.Append(r1_); results.Append(r2_); EXPECT_EQ(2, results.size()); EXPECT_STREQ("Failure 1", results.GetTestPartResult(0).message()); EXPECT_STREQ("Failure 2", results.GetTestPartResult(1).message()); } void ScopedFakeTestPartResultReporterTestHelper() { FAIL() << "Expected fatal failure."; } // Tests that ScopedFakeTestPartResultReporter intercepts test // failures. TEST(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) { TestPartResultArray results; { ScopedFakeTestPartResultReporter reporter(&results); ADD_FAILURE() << "Expected non-fatal failure."; ScopedFakeTestPartResultReporterTestHelper(); } EXPECT_EQ(2, results.size()); EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed()); EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed()); } // Tests the TestResult class // The test fixture for testing TestResult. class TestResultTest : public Test { protected: typedef List TPRList; // We make use of 2 TestPartResult objects, TestPartResult * pr1, * pr2; // ... and 3 TestResult objects. TestResult * r0, * r1, * r2; virtual void SetUp() { // pr1 is for success. pr1 = new TestPartResult(TPRT_SUCCESS, "foo/bar.cc", 10, "Success!"); // pr2 is for fatal failure. pr2 = new TestPartResult(TPRT_FATAL_FAILURE, "foo/bar.cc", -1, // This line number means "unknown" "Failure!"); // Creates the TestResult objects. r0 = new TestResult(); r1 = new TestResult(); r2 = new TestResult(); // In order to test TestResult, we need to modify its internal // state, in particular the TestPartResult list it holds. // test_part_results() returns a const reference to this list. // We cast it to a non-const object s.t. it can be modified (yes, // this is a hack). TPRList * list1, * list2; list1 = const_cast *>( & r1->test_part_results()); list2 = const_cast *>( & r2->test_part_results()); // r0 is an empty TestResult. // r1 contains a single SUCCESS TestPartResult. list1->PushBack(*pr1); // r2 contains a SUCCESS, and a FAILURE. list2->PushBack(*pr1); list2->PushBack(*pr2); } virtual void TearDown() { delete pr1; delete pr2; delete r0; delete r1; delete r2; } }; // Tests TestResult::test_part_results() TEST_F(TestResultTest, test_part_results) { ASSERT_EQ(0u, r0->test_part_results().size()); ASSERT_EQ(1u, r1->test_part_results().size()); ASSERT_EQ(2u, r2->test_part_results().size()); } // Tests TestResult::successful_part_count() TEST_F(TestResultTest, successful_part_count) { ASSERT_EQ(0u, r0->successful_part_count()); ASSERT_EQ(1u, r1->successful_part_count()); ASSERT_EQ(1u, r2->successful_part_count()); } // Tests TestResult::failed_part_count() TEST_F(TestResultTest, failed_part_count) { ASSERT_EQ(0u, r0->failed_part_count()); ASSERT_EQ(0u, r1->failed_part_count()); ASSERT_EQ(1u, r2->failed_part_count()); } // Tests TestResult::total_part_count() TEST_F(TestResultTest, total_part_count) { ASSERT_EQ(0u, r0->total_part_count()); ASSERT_EQ(1u, r1->total_part_count()); ASSERT_EQ(2u, r2->total_part_count()); } // Tests TestResult::Passed() TEST_F(TestResultTest, Passed) { ASSERT_TRUE(r0->Passed()); ASSERT_TRUE(r1->Passed()); ASSERT_FALSE(r2->Passed()); } // Tests TestResult::Failed() TEST_F(TestResultTest, Failed) { ASSERT_FALSE(r0->Failed()); ASSERT_FALSE(r1->Failed()); ASSERT_TRUE(r2->Failed()); } // Tests TestResult::test_properties() has no properties when none are added. TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) { TestResult test_result; ASSERT_EQ(0u, test_result.test_properties().size()); } // Tests TestResult::test_properties() has the expected property when added. TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) { TestResult test_result; TestProperty property("key_1", "1"); test_result.RecordProperty(property); const List& properties = test_result.test_properties(); ASSERT_EQ(1u, properties.size()); TestProperty actual_property = properties.Head()->element(); EXPECT_STREQ("key_1", actual_property.key()); EXPECT_STREQ("1", actual_property.value()); } // Tests TestResult::test_properties() has multiple properties when added. TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) { TestResult test_result; TestProperty property_1("key_1", "1"); TestProperty property_2("key_2", "2"); test_result.RecordProperty(property_1); test_result.RecordProperty(property_2); const List& properties = test_result.test_properties(); ASSERT_EQ(2u, properties.size()); TestProperty actual_property_1 = properties.Head()->element(); EXPECT_STREQ("key_1", actual_property_1.key()); EXPECT_STREQ("1", actual_property_1.value()); TestProperty actual_property_2 = properties.Last()->element(); EXPECT_STREQ("key_2", actual_property_2.key()); EXPECT_STREQ("2", actual_property_2.value()); } // Tests TestResult::test_properties() overrides values for duplicate keys. TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) { TestResult test_result; TestProperty property_1_1("key_1", "1"); TestProperty property_2_1("key_2", "2"); TestProperty property_1_2("key_1", "12"); TestProperty property_2_2("key_2", "22"); test_result.RecordProperty(property_1_1); test_result.RecordProperty(property_2_1); test_result.RecordProperty(property_1_2); test_result.RecordProperty(property_2_2); const List& properties = test_result.test_properties(); ASSERT_EQ(2u, properties.size()); TestProperty actual_property_1 = properties.Head()->element(); EXPECT_STREQ("key_1", actual_property_1.key()); EXPECT_STREQ("12", actual_property_1.value()); TestProperty actual_property_2 = properties.Last()->element(); EXPECT_STREQ("key_2", actual_property_2.key()); EXPECT_STREQ("22", actual_property_2.value()); } // When a property using a reserved key is supplied to this function, it tests // that a non-fatal failure is added, a fatal failure is not added, and that the // property is not recorded. void ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char* key) { TestResult test_result; TestProperty property("name", "1"); EXPECT_NONFATAL_FAILURE(test_result.RecordProperty(property), "Reserved key"); ASSERT_TRUE(test_result.test_properties().IsEmpty()) << "Not recorded"; } // Attempting to recording a property with the Reserved literal "name" // should add a non-fatal failure and the property should not be recorded. TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledName) { ExpectNonFatalFailureRecordingPropertyWithReservedKey("name"); } // Attempting to recording a property with the Reserved literal "status" // should add a non-fatal failure and the property should not be recorded. TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledStatus) { ExpectNonFatalFailureRecordingPropertyWithReservedKey("status"); } // Attempting to recording a property with the Reserved literal "time" // should add a non-fatal failure and the property should not be recorded. TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledTime) { ExpectNonFatalFailureRecordingPropertyWithReservedKey("time"); } // Attempting to recording a property with the Reserved literal "classname" // should add a non-fatal failure and the property should not be recorded. TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledClassname) { ExpectNonFatalFailureRecordingPropertyWithReservedKey("classname"); } // Tests that GTestFlagSaver works on Windows and Mac. class GTestFlagSaverTest : public Test { protected: // Saves the Google Test flags such that we can restore them later, and // then sets them to their default values. This will be called // before the first test in this test case is run. static void SetUpTestCase() { saver_ = new GTestFlagSaver; GTEST_FLAG(break_on_failure) = false; GTEST_FLAG(catch_exceptions) = false; GTEST_FLAG(color) = "auto"; GTEST_FLAG(filter) = ""; GTEST_FLAG(list_tests) = false; GTEST_FLAG(output) = ""; GTEST_FLAG(print_time) = false; GTEST_FLAG(repeat) = 1; } // Restores the Google Test flags that the tests have modified. This will // be called after the last test in this test case is run. static void TearDownTestCase() { delete saver_; saver_ = NULL; } // Verifies that the Google Test flags have their default values, and then // modifies each of them. void VerifyAndModifyFlags() { EXPECT_FALSE(GTEST_FLAG(break_on_failure)); EXPECT_FALSE(GTEST_FLAG(catch_exceptions)); EXPECT_STREQ("auto", GTEST_FLAG(color).c_str()); EXPECT_STREQ("", GTEST_FLAG(filter).c_str()); EXPECT_FALSE(GTEST_FLAG(list_tests)); EXPECT_STREQ("", GTEST_FLAG(output).c_str()); EXPECT_FALSE(GTEST_FLAG(print_time)); EXPECT_EQ(1, GTEST_FLAG(repeat)); GTEST_FLAG(break_on_failure) = true; GTEST_FLAG(catch_exceptions) = true; GTEST_FLAG(color) = "no"; GTEST_FLAG(filter) = "abc"; GTEST_FLAG(list_tests) = true; GTEST_FLAG(output) = "xml:foo.xml"; GTEST_FLAG(print_time) = true; GTEST_FLAG(repeat) = 100; } private: // For saving Google Test flags during this test case. static GTestFlagSaver* saver_; }; GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL; // Google Test doesn't guarantee the order of tests. The following two // tests are designed to work regardless of their order. // Modifies the Google Test flags in the test body. TEST_F(GTestFlagSaverTest, ModifyGTestFlags) { VerifyAndModifyFlags(); } // Verifies that the Google Test flags in the body of the previous test were // restored to their original values. TEST_F(GTestFlagSaverTest, VerifyGTestFlags) { VerifyAndModifyFlags(); } // Sets an environment variable with the given name to the given // value. If the value argument is "", unsets the environment // variable. The caller must ensure that both arguments are not NULL. static void SetEnv(const char* name, const char* value) { #ifdef _WIN32_WCE // Environment variables are not supported on Windows CE. return; #elif defined(GTEST_OS_WINDOWS) // If we are on Windows proper. _putenv((Message() << name << "=" << value).GetString().c_str()); #else if (*value == '\0') { unsetenv(name); } else { setenv(name, value, 1); } #endif } #ifndef _WIN32_WCE // Environment variables are not supported on Windows CE. using testing::internal::Int32FromGTestEnv; // Tests Int32FromGTestEnv(). // Tests that Int32FromGTestEnv() returns the default value when the // environment variable is not set. TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) { SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", ""); EXPECT_EQ(10, Int32FromGTestEnv("temp", 10)); } // Tests that Int32FromGTestEnv() returns the default value when the // environment variable overflows as an Int32. TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) { printf("(expecting 2 warnings)\n"); SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "12345678987654321"); EXPECT_EQ(20, Int32FromGTestEnv("temp", 20)); SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "-12345678987654321"); EXPECT_EQ(30, Int32FromGTestEnv("temp", 30)); } // Tests that Int32FromGTestEnv() returns the default value when the // environment variable does not represent a valid decimal integer. TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) { printf("(expecting 2 warnings)\n"); SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "A1"); EXPECT_EQ(40, Int32FromGTestEnv("temp", 40)); SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "12X"); EXPECT_EQ(50, Int32FromGTestEnv("temp", 50)); } // Tests that Int32FromGTestEnv() parses and returns the value of the // environment variable when it represents a valid decimal integer in // the range of an Int32. TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) { SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "123"); EXPECT_EQ(123, Int32FromGTestEnv("temp", 0)); SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "-321"); EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0)); } #endif // !defined(_WIN32_WCE) // Tests ParseInt32Flag(). // Tests that ParseInt32Flag() returns false and doesn't change the // output value when the flag has wrong format TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) { Int32 value = 123; EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value)); EXPECT_EQ(123, value); EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value)); EXPECT_EQ(123, value); } // Tests that ParseInt32Flag() returns false and doesn't change the // output value when the flag overflows as an Int32. TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) { printf("(expecting 2 warnings)\n"); Int32 value = 123; EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value)); EXPECT_EQ(123, value); EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value)); EXPECT_EQ(123, value); } // Tests that ParseInt32Flag() returns false and doesn't change the // output value when the flag does not represent a valid decimal // integer. TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) { printf("(expecting 2 warnings)\n"); Int32 value = 123; EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value)); EXPECT_EQ(123, value); EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value)); EXPECT_EQ(123, value); } // Tests that ParseInt32Flag() parses the value of the flag and // returns true when the flag represents a valid decimal integer in // the range of an Int32. TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) { Int32 value = 123; EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX "abc=456", "abc", &value)); EXPECT_EQ(456, value); EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX "abc=-789", "abc", &value)); EXPECT_EQ(-789, value); } // For the same reason we are not explicitly testing everything in the // Test class, there are no separate tests for the following classes // (except for some trivial cases): // // TestCase, UnitTest, UnitTestResultPrinter. // // Similarly, there are no separate tests for the following macros: // // TEST, TEST_F, RUN_ALL_TESTS TEST(UnitTestTest, CanGetOriginalWorkingDir) { ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL); EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), ""); } // This group of tests is for predicate assertions (ASSERT_PRED*, etc) // of various arities. They do not attempt to be exhaustive. Rather, // view them as smoke tests that can be easily reviewed and verified. // A more complete set of tests for predicate assertions can be found // in gtest_pred_impl_unittest.cc. // First, some predicates and predicate-formatters needed by the tests. // Returns true iff the argument is an even number. bool IsEven(int n) { return (n % 2) == 0; } // A functor that returns true iff the argument is an even number. struct IsEvenFunctor { bool operator()(int n) { return IsEven(n); } }; // A predicate-formatter function that asserts the argument is an even // number. AssertionResult AssertIsEven(const char* expr, int n) { if (IsEven(n)) { return AssertionSuccess(); } Message msg; msg << expr << " evaluates to " << n << ", which is not even."; return AssertionFailure(msg); } // A predicate-formatter functor that asserts the argument is an even // number. struct AssertIsEvenFunctor { AssertionResult operator()(const char* expr, int n) { return AssertIsEven(expr, n); } }; // Returns true iff the sum of the arguments is an even number. bool SumIsEven2(int n1, int n2) { return IsEven(n1 + n2); } // A functor that returns true iff the sum of the arguments is an even // number. struct SumIsEven3Functor { bool operator()(int n1, int n2, int n3) { return IsEven(n1 + n2 + n3); } }; // A predicate-formatter function that asserts the sum of the // arguments is an even number. AssertionResult AssertSumIsEven4( const char* e1, const char* e2, const char* e3, const char* e4, int n1, int n2, int n3, int n4) { const int sum = n1 + n2 + n3 + n4; if (IsEven(sum)) { return AssertionSuccess(); } Message msg; msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << ") evaluates to " << sum << ", which is not even."; return AssertionFailure(msg); } // A predicate-formatter functor that asserts the sum of the arguments // is an even number. struct AssertSumIsEven5Functor { AssertionResult operator()( const char* e1, const char* e2, const char* e3, const char* e4, const char* e5, int n1, int n2, int n3, int n4, int n5) { const int sum = n1 + n2 + n3 + n4 + n5; if (IsEven(sum)) { return AssertionSuccess(); } Message msg; msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5 << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5 << ") evaluates to " << sum << ", which is not even."; return AssertionFailure(msg); } }; // Tests unary predicate assertions. // Tests unary predicate assertions that don't use a custom formatter. TEST(Pred1Test, WithoutFormat) { // Success cases. EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!"; ASSERT_PRED1(IsEven, 4); // Failure cases. EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED1(IsEven, 5) << "This failure is expected."; }, "This failure is expected."); EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5), "evaluates to false"); } // Tests unary predicate assertions that use a custom formatter. TEST(Pred1Test, WithFormat) { // Success cases. EXPECT_PRED_FORMAT1(AssertIsEven, 2); ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4) << "This failure is UNEXPECTED!"; // Failure cases. const int n = 5; EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n), "n evaluates to 5, which is not even."); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected."; }, "This failure is expected."); } // Tests that unary predicate assertions evaluates their arguments // exactly once. TEST(Pred1Test, SingleEvaluationOnFailure) { // A success case. static int n = 0; EXPECT_PRED1(IsEven, n++); EXPECT_EQ(1, n) << "The argument is not evaluated exactly once."; // A failure case. EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++) << "This failure is expected."; }, "This failure is expected."); EXPECT_EQ(2, n) << "The argument is not evaluated exactly once."; } // Tests predicate assertions whose arity is >= 2. // Tests predicate assertions that don't use a custom formatter. TEST(PredTest, WithoutFormat) { // Success cases. ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!"; EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8); // Failure cases. const int n1 = 1; const int n2 = 2; EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected."; }, "This failure is expected."); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4); }, "evaluates to false"); } // Tests predicate assertions that use a custom formatter. TEST(PredTest, WithFormat) { // Success cases. ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) << "This failure is UNEXPECTED!"; EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10); // Failure cases. const int n1 = 1; const int n2 = 2; const int n3 = 4; const int n4 = 6; EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4); }, "evaluates to 13, which is not even."); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8) << "This failure is expected."; }, "This failure is expected."); } // Tests that predicate assertions evaluates their arguments // exactly once. TEST(PredTest, SingleEvaluationOnFailure) { // A success case. int n1 = 0; int n2 = 0; EXPECT_PRED2(SumIsEven2, n1++, n2++); EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; // Another success case. n1 = n2 = 0; int n3 = 0; int n4 = 0; int n5 = 0; ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), n1++, n2++, n3++, n4++, n5++) << "This failure is UNEXPECTED!"; EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once."; EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once."; // A failure case. n1 = n2 = n3 = 0; EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++) << "This failure is expected."; }, "This failure is expected."); EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; // Another failure case. n1 = n2 = n3 = n4 = 0; EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++); }, "evaluates to 1, which is not even."); EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once."; } // Some helper functions for testing using overloaded/template // functions with ASSERT_PREDn and EXPECT_PREDn. bool IsPositive(int n) { return n > 0; } bool IsPositive(double x) { return x > 0; } template bool IsNegative(T x) { return x < 0; } template bool GreaterThan(T1 x1, T2 x2) { return x1 > x2; } // Tests that overloaded functions can be used in *_PRED* as long as // their types are explicitly specified. TEST(PredicateAssertionTest, AcceptsOverloadedFunction) { EXPECT_PRED1(static_cast(IsPositive), 5); // NOLINT ASSERT_PRED1(static_cast(IsPositive), 6.0); // NOLINT } // Tests that template functions can be used in *_PRED* as long as // their types are explicitly specified. TEST(PredicateAssertionTest, AcceptsTemplateFunction) { EXPECT_PRED1(IsNegative, -5); // Makes sure that we can handle templates with more than one // parameter. ASSERT_PRED2((GreaterThan), 5, 0); } // Some helper functions for testing using overloaded/template // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn. AssertionResult IsPositiveFormat(const char* expr, int n) { return n > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); } AssertionResult IsPositiveFormat(const char* expr, double x) { return x > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); } template AssertionResult IsNegativeFormat(const char* expr, T x) { return x < 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); } template AssertionResult EqualsFormat(const char* expr1, const char* expr2, const T1& x1, const T2& x2) { return x1 == x2 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); } // Tests that overloaded functions can be used in *_PRED_FORMAT* // without explictly specifying their types. TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) { EXPECT_PRED_FORMAT1(IsPositiveFormat, 5); ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0); } // Tests that template functions can be used in *_PRED_FORMAT* without // explicitly specifying their types. TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) { EXPECT_PRED_FORMAT1(IsNegativeFormat, -5); ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3); } // Tests string assertions. // Tests ASSERT_STREQ with non-NULL arguments. TEST(StringAssertionTest, ASSERT_STREQ) { const char * const p1 = "good"; ASSERT_STREQ(p1, p1); // Let p2 have the same content as p1, but be at a different address. const char p2[] = "good"; ASSERT_STREQ(p1, p2); EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"), "Expected: \"bad\""); } // Tests ASSERT_STREQ with NULL arguments. TEST(StringAssertionTest, ASSERT_STREQ_Null) { ASSERT_STREQ(static_cast(NULL), NULL); EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"), "non-null"); } // Tests ASSERT_STREQ with NULL arguments. TEST(StringAssertionTest, ASSERT_STREQ_Null2) { EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL), "non-null"); } // Tests ASSERT_STRNE. TEST(StringAssertionTest, ASSERT_STRNE) { ASSERT_STRNE("hi", "Hi"); ASSERT_STRNE("Hi", NULL); ASSERT_STRNE(NULL, "Hi"); ASSERT_STRNE("", NULL); ASSERT_STRNE(NULL, ""); ASSERT_STRNE("", "Hi"); ASSERT_STRNE("Hi", ""); EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"), "\"Hi\" vs \"Hi\""); } // Tests ASSERT_STRCASEEQ. TEST(StringAssertionTest, ASSERT_STRCASEEQ) { ASSERT_STRCASEEQ("hi", "Hi"); ASSERT_STRCASEEQ(static_cast(NULL), NULL); ASSERT_STRCASEEQ("", ""); EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"), "(ignoring case)"); } // Tests ASSERT_STRCASENE. TEST(StringAssertionTest, ASSERT_STRCASENE) { ASSERT_STRCASENE("hi1", "Hi2"); ASSERT_STRCASENE("Hi", NULL); ASSERT_STRCASENE(NULL, "Hi"); ASSERT_STRCASENE("", NULL); ASSERT_STRCASENE(NULL, ""); ASSERT_STRCASENE("", "Hi"); ASSERT_STRCASENE("Hi", ""); EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"), "(ignoring case)"); } // Tests *_STREQ on wide strings. TEST(StringAssertionTest, STREQ_Wide) { // NULL strings. ASSERT_STREQ(static_cast(NULL), NULL); // Empty strings. ASSERT_STREQ(L"", L""); // Non-null vs NULL. EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL), "non-null"); // Equal strings. EXPECT_STREQ(L"Hi", L"Hi"); // Unequal strings. EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"), "Abc"); // Strings containing wide characters. EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"), "abc"); } // Tests *_STRNE on wide strings. TEST(StringAssertionTest, STRNE_Wide) { // NULL strings. EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_STRNE(static_cast(NULL), NULL); }, ""); // Empty strings. EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""), "L\"\""); // Non-null vs NULL. ASSERT_STRNE(L"non-null", NULL); // Equal strings. EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"), "L\"Hi\""); // Unequal strings. EXPECT_STRNE(L"abc", L"Abc"); // Strings containing wide characters. EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"), "abc"); } // Tests for ::testing::IsSubstring(). // Tests that IsSubstring() returns the correct result when the input // argument type is const char*. TEST(IsSubstringTest, ReturnsCorrectResultForCString) { EXPECT_FALSE(IsSubstring("", "", NULL, "a")); EXPECT_FALSE(IsSubstring("", "", "b", NULL)); EXPECT_FALSE(IsSubstring("", "", "needle", "haystack")); EXPECT_TRUE(IsSubstring("", "", static_cast(NULL), NULL)); EXPECT_TRUE(IsSubstring("", "", "needle", "two needles")); } // Tests that IsSubstring() returns the correct result when the input // argument type is const wchar_t*. TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) { EXPECT_FALSE(IsSubstring("", "", NULL, L"a")); EXPECT_FALSE(IsSubstring("", "", L"b", NULL)); EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack")); EXPECT_TRUE(IsSubstring("", "", static_cast(NULL), NULL)); EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles")); } // Tests that IsSubstring() generates the correct message when the input // argument type is const char*. TEST(IsSubstringTest, GeneratesCorrectMessageForCString) { EXPECT_STREQ("Value of: needle_expr\n" " Actual: \"needle\"\n" "Expected: a substring of haystack_expr\n" "Which is: \"haystack\"", IsSubstring("needle_expr", "haystack_expr", "needle", "haystack").failure_message()); } #if GTEST_HAS_STD_STRING // Tests that IsSubstring returns the correct result when the input // argument type is ::std::string. TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) { EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob")); EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world"))); } #endif // GTEST_HAS_STD_STRING #if GTEST_HAS_STD_WSTRING // Tests that IsSubstring returns the correct result when the input // argument type is ::std::wstring. TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) { EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles")); EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack"))); } // Tests that IsSubstring() generates the correct message when the input // argument type is ::std::wstring. TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) { EXPECT_STREQ("Value of: needle_expr\n" " Actual: L\"needle\"\n" "Expected: a substring of haystack_expr\n" "Which is: L\"haystack\"", IsSubstring( "needle_expr", "haystack_expr", ::std::wstring(L"needle"), L"haystack").failure_message()); } #endif // GTEST_HAS_STD_WSTRING // Tests for ::testing::IsNotSubstring(). // Tests that IsNotSubstring() returns the correct result when the input // argument type is const char*. TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) { EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack")); EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles")); } // Tests that IsNotSubstring() returns the correct result when the input // argument type is const wchar_t*. TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) { EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack")); EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles")); } // Tests that IsNotSubstring() generates the correct message when the input // argument type is const wchar_t*. TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) { EXPECT_STREQ("Value of: needle_expr\n" " Actual: L\"needle\"\n" "Expected: not a substring of haystack_expr\n" "Which is: L\"two needles\"", IsNotSubstring( "needle_expr", "haystack_expr", L"needle", L"two needles").failure_message()); } #if GTEST_HAS_STD_STRING // Tests that IsNotSubstring returns the correct result when the input // argument type is ::std::string. TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) { EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob")); EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world"))); } // Tests that IsNotSubstring() generates the correct message when the input // argument type is ::std::string. TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) { EXPECT_STREQ("Value of: needle_expr\n" " Actual: \"needle\"\n" "Expected: not a substring of haystack_expr\n" "Which is: \"two needles\"", IsNotSubstring( "needle_expr", "haystack_expr", ::std::string("needle"), "two needles").failure_message()); } #endif // GTEST_HAS_STD_STRING #if GTEST_HAS_STD_WSTRING // Tests that IsNotSubstring returns the correct result when the input // argument type is ::std::wstring. TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) { EXPECT_FALSE( IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles")); EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack"))); } #endif // GTEST_HAS_STD_WSTRING // Tests floating-point assertions. template class FloatingPointTest : public Test { protected: typedef typename testing::internal::FloatingPoint Floating; typedef typename Floating::Bits Bits; virtual void SetUp() { const size_t max_ulps = Floating::kMaxUlps; // The bits that represent 0.0. const Bits zero_bits = Floating(0).bits(); // Makes some numbers close to 0.0. close_to_positive_zero_ = Floating::ReinterpretBits(zero_bits + max_ulps/2); close_to_negative_zero_ = -Floating::ReinterpretBits( zero_bits + max_ulps - max_ulps/2); further_from_negative_zero_ = -Floating::ReinterpretBits( zero_bits + max_ulps + 1 - max_ulps/2); // The bits that represent 1.0. const Bits one_bits = Floating(1).bits(); // Makes some numbers close to 1.0. close_to_one_ = Floating::ReinterpretBits(one_bits + max_ulps); further_from_one_ = Floating::ReinterpretBits(one_bits + max_ulps + 1); // +infinity. infinity_ = Floating::Infinity(); // The bits that represent +infinity. const Bits infinity_bits = Floating(infinity_).bits(); // Makes some numbers close to infinity. close_to_infinity_ = Floating::ReinterpretBits(infinity_bits - max_ulps); further_from_infinity_ = Floating::ReinterpretBits( infinity_bits - max_ulps - 1); // Makes some NAN's. nan1_ = Floating::ReinterpretBits(Floating::kExponentBitMask | 1); nan2_ = Floating::ReinterpretBits(Floating::kExponentBitMask | 200); } void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); } // Pre-calculated numbers to be used by the tests. static RawType close_to_positive_zero_; static RawType close_to_negative_zero_; static RawType further_from_negative_zero_; static RawType close_to_one_; static RawType further_from_one_; static RawType infinity_; static RawType close_to_infinity_; static RawType further_from_infinity_; static RawType nan1_; static RawType nan2_; }; template RawType FloatingPointTest::close_to_positive_zero_; template RawType FloatingPointTest::close_to_negative_zero_; template RawType FloatingPointTest::further_from_negative_zero_; template RawType FloatingPointTest::close_to_one_; template RawType FloatingPointTest::further_from_one_; template RawType FloatingPointTest::infinity_; template RawType FloatingPointTest::close_to_infinity_; template RawType FloatingPointTest::further_from_infinity_; template RawType FloatingPointTest::nan1_; template RawType FloatingPointTest::nan2_; // Instantiates FloatingPointTest for testing *_FLOAT_EQ. typedef FloatingPointTest FloatTest; // Tests that the size of Float::Bits matches the size of float. TEST_F(FloatTest, Size) { TestSize(); } // Tests comparing with +0 and -0. TEST_F(FloatTest, Zeros) { EXPECT_FLOAT_EQ(0.0, -0.0); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0), "1.0"); EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5), "1.5"); } // Tests comparing numbers close to 0. // // This ensures that *_FLOAT_EQ handles the sign correctly and no // overflow occurs when comparing numbers whose absolute value is very // small. TEST_F(FloatTest, AlmostZeros) { EXPECT_FLOAT_EQ(0.0, close_to_positive_zero_); EXPECT_FLOAT_EQ(-0.0, close_to_negative_zero_); EXPECT_FLOAT_EQ(close_to_positive_zero_, close_to_negative_zero_); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_FLOAT_EQ(close_to_positive_zero_, further_from_negative_zero_); }, "further_from_negative_zero_"); } // Tests comparing numbers close to each other. TEST_F(FloatTest, SmallDiff) { EXPECT_FLOAT_EQ(1.0, close_to_one_); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, further_from_one_), "further_from_one_"); } // Tests comparing numbers far apart. TEST_F(FloatTest, LargeDiff) { EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0), "3.0"); } // Tests comparing with infinity. // // This ensures that no overflow occurs when comparing numbers whose // absolute value is very large. TEST_F(FloatTest, Infinity) { EXPECT_FLOAT_EQ(infinity_, close_to_infinity_); EXPECT_FLOAT_EQ(-infinity_, -close_to_infinity_); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(infinity_, -infinity_), "-infinity_"); // This is interesting as the representations of infinity_ and nan1_ // are only 1 DLP apart. EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(infinity_, nan1_), "nan1_"); } // Tests that comparing with NAN always returns false. TEST_F(FloatTest, NaN) { EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(nan1_, nan1_), "nan1_"); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(nan1_, nan2_), "nan2_"); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, nan1_), "nan1_"); EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(nan1_, infinity_), "infinity_"); } // Tests that *_FLOAT_EQ are reflexive. TEST_F(FloatTest, Reflexive) { EXPECT_FLOAT_EQ(0.0, 0.0); EXPECT_FLOAT_EQ(1.0, 1.0); ASSERT_FLOAT_EQ(infinity_, infinity_); } // Tests that *_FLOAT_EQ are commutative. TEST_F(FloatTest, Commutative) { // We already tested EXPECT_FLOAT_EQ(1.0, close_to_one_). EXPECT_FLOAT_EQ(close_to_one_, 1.0); // We already tested EXPECT_FLOAT_EQ(1.0, further_from_one_). EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(further_from_one_, 1.0), "1.0"); } // Tests EXPECT_NEAR. TEST_F(FloatTest, EXPECT_NEAR) { EXPECT_NEAR(-1.0f, -1.1f, 0.2f); EXPECT_NEAR(2.0f, 3.0f, 1.0f); EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.2f, 0.1f), // NOLINT "The difference between 1.0f and 1.2f is 0.2, " "which exceeds 0.1f"); // To work around a bug in gcc 2.95.0, there is intentionally no // space after the first comma in the previous line. } // Tests ASSERT_NEAR. TEST_F(FloatTest, ASSERT_NEAR) { ASSERT_NEAR(-1.0f, -1.1f, 0.2f); ASSERT_NEAR(2.0f, 3.0f, 1.0f); EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.2f, 0.1f), // NOLINT "The difference between 1.0f and 1.2f is 0.2, " "which exceeds 0.1f"); // To work around a bug in gcc 2.95.0, there is intentionally no // space after the first comma in the previous line. } // Tests the cases where FloatLE() should succeed. TEST_F(FloatTest, FloatLESucceeds) { EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f); // When val1 < val2, ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f); // val1 == val2, // or when val1 is greater than, but almost equals to, val2. EXPECT_PRED_FORMAT2(FloatLE, close_to_positive_zero_, 0.0f); } // Tests the cases where FloatLE() should fail. TEST_F(FloatTest, FloatLEFails) { // When val1 is greater than val2 by a large margin, EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f), "(2.0f) <= (1.0f)"); // or by a small yet non-negligible margin, EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(FloatLE, further_from_one_, 1.0f); }, "(further_from_one_) <= (1.0f)"); // or when either val1 or val2 is NaN. EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(FloatLE, nan1_, infinity_); }, "(nan1_) <= (infinity_)"); EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(FloatLE, -infinity_, nan1_); }, "(-infinity_) <= (nan1_)"); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT2(FloatLE, nan1_, nan1_); }, "(nan1_) <= (nan1_)"); } // Instantiates FloatingPointTest for testing *_DOUBLE_EQ. typedef FloatingPointTest DoubleTest; // Tests that the size of Double::Bits matches the size of double. TEST_F(DoubleTest, Size) { TestSize(); } // Tests comparing with +0 and -0. TEST_F(DoubleTest, Zeros) { EXPECT_DOUBLE_EQ(0.0, -0.0); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0), "1.0"); EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0), "1.0"); } // Tests comparing numbers close to 0. // // This ensures that *_DOUBLE_EQ handles the sign correctly and no // overflow occurs when comparing numbers whose absolute value is very // small. TEST_F(DoubleTest, AlmostZeros) { EXPECT_DOUBLE_EQ(0.0, close_to_positive_zero_); EXPECT_DOUBLE_EQ(-0.0, close_to_negative_zero_); EXPECT_DOUBLE_EQ(close_to_positive_zero_, close_to_negative_zero_); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_DOUBLE_EQ(close_to_positive_zero_, further_from_negative_zero_); }, "further_from_negative_zero_"); } // Tests comparing numbers close to each other. TEST_F(DoubleTest, SmallDiff) { EXPECT_DOUBLE_EQ(1.0, close_to_one_); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, further_from_one_), "further_from_one_"); } // Tests comparing numbers far apart. TEST_F(DoubleTest, LargeDiff) { EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0), "3.0"); } // Tests comparing with infinity. // // This ensures that no overflow occurs when comparing numbers whose // absolute value is very large. TEST_F(DoubleTest, Infinity) { EXPECT_DOUBLE_EQ(infinity_, close_to_infinity_); EXPECT_DOUBLE_EQ(-infinity_, -close_to_infinity_); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(infinity_, -infinity_), "-infinity_"); // This is interesting as the representations of infinity_ and nan1_ // are only 1 DLP apart. EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(infinity_, nan1_), "nan1_"); } // Tests that comparing with NAN always returns false. TEST_F(DoubleTest, NaN) { EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(nan1_, nan1_), "nan1_"); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(nan1_, nan2_), "nan2_"); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, nan1_), "nan1_"); EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(nan1_, infinity_), "infinity_"); } // Tests that *_DOUBLE_EQ are reflexive. TEST_F(DoubleTest, Reflexive) { EXPECT_DOUBLE_EQ(0.0, 0.0); EXPECT_DOUBLE_EQ(1.0, 1.0); ASSERT_DOUBLE_EQ(infinity_, infinity_); } // Tests that *_DOUBLE_EQ are commutative. TEST_F(DoubleTest, Commutative) { // We already tested EXPECT_DOUBLE_EQ(1.0, close_to_one_). EXPECT_DOUBLE_EQ(close_to_one_, 1.0); // We already tested EXPECT_DOUBLE_EQ(1.0, further_from_one_). EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(further_from_one_, 1.0), "1.0"); } // Tests EXPECT_NEAR. TEST_F(DoubleTest, EXPECT_NEAR) { EXPECT_NEAR(-1.0, -1.1, 0.2); EXPECT_NEAR(2.0, 3.0, 1.0); #ifdef __SYMBIAN32__ // Symbian STLport has currently a buggy floating point output. // TODO(mikie): fix STLport. EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.2, 0.1), // NOLINT "The difference between 1.0 and 1.2 is 0.19999:, " "which exceeds 0.1"); #else // !__SYMBIAN32__ EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.2, 0.1), // NOLINT "The difference between 1.0 and 1.2 is 0.2, " "which exceeds 0.1"); // To work around a bug in gcc 2.95.0, there is intentionally no // space after the first comma in the previous statement. #endif // __SYMBIAN32__ } // Tests ASSERT_NEAR. TEST_F(DoubleTest, ASSERT_NEAR) { ASSERT_NEAR(-1.0, -1.1, 0.2); ASSERT_NEAR(2.0, 3.0, 1.0); #ifdef __SYMBIAN32__ // Symbian STLport has currently a buggy floating point output. // TODO(mikie): fix STLport. EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.2, 0.1), // NOLINT "The difference between 1.0 and 1.2 is 0.19999:, " "which exceeds 0.1"); #else // ! __SYMBIAN32__ EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.2, 0.1), // NOLINT "The difference between 1.0 and 1.2 is 0.2, " "which exceeds 0.1"); // To work around a bug in gcc 2.95.0, there is intentionally no // space after the first comma in the previous statement. #endif // __SYMBIAN32__ } // Tests the cases where DoubleLE() should succeed. TEST_F(DoubleTest, DoubleLESucceeds) { EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0); // When val1 < val2, ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0); // val1 == val2, // or when val1 is greater than, but almost equals to, val2. EXPECT_PRED_FORMAT2(DoubleLE, close_to_positive_zero_, 0.0); } // Tests the cases where DoubleLE() should fail. TEST_F(DoubleTest, DoubleLEFails) { // When val1 is greater than val2 by a large margin, EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0), "(2.0) <= (1.0)"); // or by a small yet non-negligible margin, EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(DoubleLE, further_from_one_, 1.0); }, "(further_from_one_) <= (1.0)"); // or when either val1 or val2 is NaN. EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(DoubleLE, nan1_, infinity_); }, "(nan1_) <= (infinity_)"); EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(DoubleLE, -infinity_, nan1_); }, " (-infinity_) <= (nan1_)"); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT2(DoubleLE, nan1_, nan1_); }, "(nan1_) <= (nan1_)"); } // Verifies that a test or test case whose name starts with DISABLED_ is // not run. // A test whose name starts with DISABLED_. // Should not run. TEST(DisabledTest, DISABLED_TestShouldNotRun) { FAIL() << "Unexpected failure: Disabled test should not be run."; } // A test whose name does not start with DISABLED_. // Should run. TEST(DisabledTest, NotDISABLED_TestShouldRun) { EXPECT_EQ(1, 1); } // A test case whose name starts with DISABLED_. // Should not run. TEST(DISABLED_TestCase, TestShouldNotRun) { FAIL() << "Unexpected failure: Test in disabled test case should not be run."; } // A test case and test whose names start with DISABLED_. // Should not run. TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) { FAIL() << "Unexpected failure: Test in disabled test case should not be run."; } // Check that when all tests in a test case are disabled, SetupTestCase() and // TearDownTestCase() are not called. class DisabledTestsTest : public Test { protected: static void SetUpTestCase() { FAIL() << "Unexpected failure: All tests disabled in test case. " "SetupTestCase() should not be called."; } static void TearDownTestCase() { FAIL() << "Unexpected failure: All tests disabled in test case. " "TearDownTestCase() should not be called."; } }; TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) { FAIL() << "Unexpected failure: Disabled test should not be run."; } TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) { FAIL() << "Unexpected failure: Disabled test should not be run."; } // Tests that disabled typed tests aren't run. #ifdef GTEST_HAS_TYPED_TEST template class TypedTest : public Test { }; typedef testing::Types NumericTypes; TYPED_TEST_CASE(TypedTest, NumericTypes); TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) { FAIL() << "Unexpected failure: Disabled typed test should not run."; } template class DISABLED_TypedTest : public Test { }; TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes); TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) { FAIL() << "Unexpected failure: Disabled typed test should not run."; } #endif // GTEST_HAS_TYPED_TEST // Tests that disabled type-parameterized tests aren't run. #ifdef GTEST_HAS_TYPED_TEST_P template class TypedTestP : public Test { }; TYPED_TEST_CASE_P(TypedTestP); TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) { FAIL() << "Unexpected failure: " << "Disabled type-parameterized test should not run."; } REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun); INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes); template class DISABLED_TypedTestP : public Test { }; TYPED_TEST_CASE_P(DISABLED_TypedTestP); TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) { FAIL() << "Unexpected failure: " << "Disabled type-parameterized test should not run."; } REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun); INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes); #endif // GTEST_HAS_TYPED_TEST_P // Tests that assertion macros evaluate their arguments exactly once. class SingleEvaluationTest : public Test { protected: SingleEvaluationTest() { p1_ = s1_; p2_ = s2_; a_ = 0; b_ = 0; } // This helper function is needed by the FailedASSERT_STREQ test // below. static void CompareAndIncrementCharPtrs() { ASSERT_STREQ(p1_++, p2_++); } // This helper function is needed by the FailedASSERT_NE test below. static void CompareAndIncrementInts() { ASSERT_NE(a_++, b_++); } static const char* const s1_; static const char* const s2_; static const char* p1_; static const char* p2_; static int a_; static int b_; }; const char* const SingleEvaluationTest::s1_ = "01234"; const char* const SingleEvaluationTest::s2_ = "abcde"; const char* SingleEvaluationTest::p1_; const char* SingleEvaluationTest::p2_; int SingleEvaluationTest::a_; int SingleEvaluationTest::b_; // Tests that when ASSERT_STREQ fails, it evaluates its arguments // exactly once. TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) { EXPECT_FATAL_FAILURE(CompareAndIncrementCharPtrs(), "p2_++"); EXPECT_EQ(s1_ + 1, p1_); EXPECT_EQ(s2_ + 1, p2_); } // Tests that string assertion arguments are evaluated exactly once. TEST_F(SingleEvaluationTest, ASSERT_STR) { // successful EXPECT_STRNE EXPECT_STRNE(p1_++, p2_++); EXPECT_EQ(s1_ + 1, p1_); EXPECT_EQ(s2_ + 1, p2_); // failed EXPECT_STRCASEEQ EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++), "ignoring case"); EXPECT_EQ(s1_ + 2, p1_); EXPECT_EQ(s2_ + 2, p2_); } // Tests that when ASSERT_NE fails, it evaluates its arguments exactly // once. TEST_F(SingleEvaluationTest, FailedASSERT_NE) { EXPECT_FATAL_FAILURE(CompareAndIncrementInts(), "(a_++) != (b_++)"); EXPECT_EQ(1, a_); EXPECT_EQ(1, b_); } // Tests that assertion arguments are evaluated exactly once. TEST_F(SingleEvaluationTest, OtherCases) { // successful EXPECT_TRUE EXPECT_TRUE(0 == a_++); // NOLINT EXPECT_EQ(1, a_); // failed EXPECT_TRUE EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++"); EXPECT_EQ(2, a_); // successful EXPECT_GT EXPECT_GT(a_++, b_++); EXPECT_EQ(3, a_); EXPECT_EQ(1, b_); // failed EXPECT_LT EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)"); EXPECT_EQ(4, a_); EXPECT_EQ(2, b_); // successful ASSERT_TRUE ASSERT_TRUE(0 < a_++); // NOLINT EXPECT_EQ(5, a_); // successful ASSERT_GT ASSERT_GT(a_++, b_++); EXPECT_EQ(6, a_); EXPECT_EQ(3, b_); } #if GTEST_HAS_EXCEPTIONS void ThrowAnInteger() { throw 1; } // Tests that assertion arguments are evaluated exactly once. TEST_F(SingleEvaluationTest, ExceptionTests) { // successful EXPECT_THROW EXPECT_THROW({ // NOLINT a_++; ThrowAnInteger(); }, int); EXPECT_EQ(1, a_); // failed EXPECT_THROW, throws different EXPECT_NONFATAL_FAILURE(EXPECT_THROW({ // NOLINT a_++; ThrowAnInteger(); }, bool), "throws a different type"); EXPECT_EQ(2, a_); // failed EXPECT_THROW, throws nothing EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing"); EXPECT_EQ(3, a_); // successful EXPECT_NO_THROW EXPECT_NO_THROW(a_++); EXPECT_EQ(4, a_); // failed EXPECT_NO_THROW EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({ // NOLINT a_++; ThrowAnInteger(); }), "it throws"); EXPECT_EQ(5, a_); // successful EXPECT_ANY_THROW EXPECT_ANY_THROW({ // NOLINT a_++; ThrowAnInteger(); }); EXPECT_EQ(6, a_); // failed EXPECT_ANY_THROW EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't"); EXPECT_EQ(7, a_); } #endif // GTEST_HAS_EXCEPTIONS // Tests non-string assertions. // Tests EqFailure(), used for implementing *EQ* assertions. TEST(AssertionTest, EqFailure) { const String foo_val("5"), bar_val("6"); const String msg1( EqFailure("foo", "bar", foo_val, bar_val, false) .failure_message()); EXPECT_STREQ( "Value of: bar\n" " Actual: 6\n" "Expected: foo\n" "Which is: 5", msg1.c_str()); const String msg2( EqFailure("foo", "6", foo_val, bar_val, false) .failure_message()); EXPECT_STREQ( "Value of: 6\n" "Expected: foo\n" "Which is: 5", msg2.c_str()); const String msg3( EqFailure("5", "bar", foo_val, bar_val, false) .failure_message()); EXPECT_STREQ( "Value of: bar\n" " Actual: 6\n" "Expected: 5", msg3.c_str()); const String msg4( EqFailure("5", "6", foo_val, bar_val, false).failure_message()); EXPECT_STREQ( "Value of: 6\n" "Expected: 5", msg4.c_str()); const String msg5( EqFailure("foo", "bar", String("\"x\""), String("\"y\""), true).failure_message()); EXPECT_STREQ( "Value of: bar\n" " Actual: \"y\"\n" "Expected: foo (ignoring case)\n" "Which is: \"x\"", msg5.c_str()); } // Tests AppendUserMessage(), used for implementing the *EQ* macros. TEST(AssertionTest, AppendUserMessage) { const String foo("foo"); Message msg; EXPECT_STREQ("foo", AppendUserMessage(foo, msg).c_str()); msg << "bar"; EXPECT_STREQ("foo\nbar", AppendUserMessage(foo, msg).c_str()); } // Tests ASSERT_TRUE. TEST(AssertionTest, ASSERT_TRUE) { ASSERT_TRUE(2 > 1); // NOLINT EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1), "2 < 1"); } // Tests ASSERT_FALSE. TEST(AssertionTest, ASSERT_FALSE) { ASSERT_FALSE(2 < 1); // NOLINT EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1), "Value of: 2 > 1\n" " Actual: true\n" "Expected: false"); } // Tests using ASSERT_EQ on double values. The purpose is to make // sure that the specialization we did for integer and anonymous enums // isn't used for double arguments. TEST(ExpectTest, ASSERT_EQ_Double) { // A success. ASSERT_EQ(5.6, 5.6); // A failure. EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2), "5.1"); } // Tests ASSERT_EQ. TEST(AssertionTest, ASSERT_EQ) { ASSERT_EQ(5, 2 + 3); EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3), "Value of: 2*3\n" " Actual: 6\n" "Expected: 5"); } // Tests ASSERT_EQ(NULL, pointer). #ifndef __SYMBIAN32__ // The NULL-detection template magic fails to compile with // the Nokia compiler and crashes the ARM compiler, hence // not testing on Symbian. TEST(AssertionTest, ASSERT_EQ_NULL) { // A success. const char* p = NULL; ASSERT_EQ(NULL, p); // A failure. static int n = 0; EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n), "Value of: &n\n"); } #endif // __SYMBIAN32__ // Tests ASSERT_EQ(0, non_pointer). Since the literal 0 can be // treated as a null pointer by the compiler, we need to make sure // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as // ASSERT_EQ(static_cast(NULL), non_pointer). TEST(ExpectTest, ASSERT_EQ_0) { int n = 0; // A success. ASSERT_EQ(0, n); // A failure. EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6), "Expected: 0"); } // Tests ASSERT_NE. TEST(AssertionTest, ASSERT_NE) { ASSERT_NE(6, 7); EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'), "Expected: ('a') != ('a'), " "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)"); } // Tests ASSERT_LE. TEST(AssertionTest, ASSERT_LE) { ASSERT_LE(2, 3); ASSERT_LE(2, 2); EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0"); } // Tests ASSERT_LT. TEST(AssertionTest, ASSERT_LT) { ASSERT_LT(2, 3); EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2"); } // Tests ASSERT_GE. TEST(AssertionTest, ASSERT_GE) { ASSERT_GE(2, 1); ASSERT_GE(2, 2); EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3"); } // Tests ASSERT_GT. TEST(AssertionTest, ASSERT_GT) { ASSERT_GT(2, 1); EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2"); } #if GTEST_HAS_EXCEPTIONS // Tests ASSERT_THROW. TEST(AssertionTest, ASSERT_THROW) { ASSERT_THROW(ThrowAnInteger(), int); EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool), "Expected: ThrowAnInteger() throws an exception of type"\ " bool.\n Actual: it throws a different type."); EXPECT_FATAL_FAILURE(ASSERT_THROW(1, bool), "Expected: 1 throws an exception of type bool.\n"\ " Actual: it throws nothing."); } // Tests ASSERT_NO_THROW. TEST(AssertionTest, ASSERT_NO_THROW) { ASSERT_NO_THROW(1); EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()), "Expected: ThrowAnInteger() doesn't throw an exception."\ "\n Actual: it throws."); } // Tests ASSERT_ANY_THROW. TEST(AssertionTest, ASSERT_ANY_THROW) { ASSERT_ANY_THROW(ThrowAnInteger()); EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(1), "Expected: 1 throws an exception.\n Actual: it "\ "doesn't."); } #endif // GTEST_HAS_EXCEPTIONS // Makes sure we deal with the precedence of <<. This test should // compile. TEST(AssertionTest, AssertPrecedence) { ASSERT_EQ(1 < 2, true); ASSERT_EQ(true && false, false); } // A subroutine used by the following test. void TestEq1(int x) { ASSERT_EQ(1, x); } // Tests calling a test subroutine that's not part of a fixture. TEST(AssertionTest, NonFixtureSubroutine) { EXPECT_FATAL_FAILURE(TestEq1(2), "Value of: x"); } // An uncopyable class. class Uncopyable { public: explicit Uncopyable(int value) : value_(value) {} int value() const { return value_; } bool operator==(const Uncopyable& rhs) const { return value() == rhs.value(); } private: // This constructor deliberately has no implementation, as we don't // want this class to be copyable. Uncopyable(const Uncopyable&); // NOLINT int value_; }; ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) { return os << value.value(); } bool IsPositiveUncopyable(const Uncopyable& x) { return x.value() > 0; } // A subroutine used by the following test. void TestAssertNonPositive() { Uncopyable y(-1); ASSERT_PRED1(IsPositiveUncopyable, y); } // A subroutine used by the following test. void TestAssertEqualsUncopyable() { Uncopyable x(5); Uncopyable y(-1); ASSERT_EQ(x, y); } // Tests that uncopyable objects can be used in assertions. TEST(AssertionTest, AssertWorksWithUncopyableObject) { Uncopyable x(5); ASSERT_PRED1(IsPositiveUncopyable, x); ASSERT_EQ(x, x); EXPECT_FATAL_FAILURE(TestAssertNonPositive(), "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1"); EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(), "Value of: y\n Actual: -1\nExpected: x\nWhich is: 5"); } // Tests that uncopyable objects can be used in expects. TEST(AssertionTest, ExpectWorksWithUncopyableObject) { Uncopyable x(5); EXPECT_PRED1(IsPositiveUncopyable, x); Uncopyable y(-1); EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y), "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1"); EXPECT_EQ(x, x); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "Value of: y\n Actual: -1\nExpected: x\nWhich is: 5"); } // The version of gcc used in XCode 2.2 has a bug and doesn't allow // anonymous enums in assertions. Therefore the following test is // done only on Linux and Windows. #if defined(GTEST_OS_LINUX) || defined(GTEST_OS_WINDOWS) // Tests using assertions with anonymous enums. enum { CASE_A = -1, #ifdef GTEST_OS_LINUX // We want to test the case where the size of the anonymous enum is // larger than sizeof(int), to make sure our implementation of the // assertions doesn't truncate the enums. However, MSVC // (incorrectly) doesn't allow an enum value to exceed the range of // an int, so this has to be conditionally compiled. // // On Linux, CASE_B and CASE_A have the same value when truncated to // int size. We want to test whether this will confuse the // assertions. CASE_B = testing::internal::kMaxBiggestInt, #else CASE_B = INT_MAX, #endif // GTEST_OS_LINUX }; TEST(AssertionTest, AnonymousEnum) { #ifdef GTEST_OS_LINUX EXPECT_EQ(static_cast(CASE_A), static_cast(CASE_B)); #endif // GTEST_OS_LINUX EXPECT_EQ(CASE_A, CASE_A); EXPECT_NE(CASE_A, CASE_B); EXPECT_LT(CASE_A, CASE_B); EXPECT_LE(CASE_A, CASE_B); EXPECT_GT(CASE_B, CASE_A); EXPECT_GE(CASE_A, CASE_A); EXPECT_NONFATAL_FAILURE(EXPECT_GE(CASE_A, CASE_B), "(CASE_A) >= (CASE_B)"); ASSERT_EQ(CASE_A, CASE_A); ASSERT_NE(CASE_A, CASE_B); ASSERT_LT(CASE_A, CASE_B); ASSERT_LE(CASE_A, CASE_B); ASSERT_GT(CASE_B, CASE_A); ASSERT_GE(CASE_A, CASE_A); EXPECT_FATAL_FAILURE(ASSERT_EQ(CASE_A, CASE_B), "Value of: CASE_B"); } #endif // defined(GTEST_OS_LINUX) || defined(GTEST_OS_WINDOWS) #if defined(GTEST_OS_WINDOWS) static HRESULT UnexpectedHRESULTFailure() { return E_UNEXPECTED; } static HRESULT OkHRESULTSuccess() { return S_OK; } static HRESULT FalseHRESULTSuccess() { return S_FALSE; } // HRESULT assertion tests test both zero and non-zero // success codes as well as failure message for each. // // Windows CE doesn't support message texts. TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) { EXPECT_HRESULT_SUCCEEDED(S_OK); EXPECT_HRESULT_SUCCEEDED(S_FALSE); EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()), "Expected: (UnexpectedHRESULTFailure()) succeeds.\n" " Actual: 0x8000FFFF"); } TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) { ASSERT_HRESULT_SUCCEEDED(S_OK); ASSERT_HRESULT_SUCCEEDED(S_FALSE); EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()), "Expected: (UnexpectedHRESULTFailure()) succeeds.\n" " Actual: 0x8000FFFF"); } TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) { EXPECT_HRESULT_FAILED(E_UNEXPECTED); EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()), "Expected: (OkHRESULTSuccess()) fails.\n" " Actual: 0x00000000"); EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()), "Expected: (FalseHRESULTSuccess()) fails.\n" " Actual: 0x00000001"); } TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) { ASSERT_HRESULT_FAILED(E_UNEXPECTED); EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()), "Expected: (OkHRESULTSuccess()) fails.\n" " Actual: 0x00000000"); EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()), "Expected: (FalseHRESULTSuccess()) fails.\n" " Actual: 0x00000001"); } // Tests that streaming to the HRESULT macros works. TEST(HRESULTAssertionTest, Streaming) { EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure"; ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure"; EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure"; ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure"; EXPECT_NONFATAL_FAILURE( EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE( ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure", "expected failure"); EXPECT_NONFATAL_FAILURE( EXPECT_HRESULT_FAILED(S_OK) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE( ASSERT_HRESULT_FAILED(S_OK) << "expected failure", "expected failure"); } #endif // defined(GTEST_OS_WINDOWS) // Tests that the assertion macros behave like single statements. TEST(AssertionSyntaxTest, BehavesLikeSingleStatement) { if (false) ASSERT_TRUE(false) << "This should never be executed; " "It's a compilation test only."; if (true) EXPECT_FALSE(false); else ; if (false) ASSERT_LT(1, 3); if (false) ; else EXPECT_GT(3, 2) << ""; #if GTEST_HAS_EXCEPTIONS if (false) EXPECT_THROW(1, bool); if (true) EXPECT_THROW(ThrowAnInteger(), int); else ; if (false) EXPECT_NO_THROW(ThrowAnInteger()); if (true) EXPECT_NO_THROW(1); else ; if (false) EXPECT_ANY_THROW(1); if (true) EXPECT_ANY_THROW(ThrowAnInteger()); else ; #endif // GTEST_HAS_EXCEPTIONS } // Tests that the assertion macros work well with switch statements. TEST(AssertionSyntaxTest, WorksWithSwitch) { switch (0) { case 1: break; default: ASSERT_TRUE(true); } switch (0) case 0: EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case"; // Binary assertions are implemented using a different code path // than the Boolean assertions. Hence we test them separately. switch (0) { case 1: default: ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler"; } switch (0) case 0: EXPECT_NE(1, 2); } #if GTEST_HAS_EXCEPTIONS void ThrowAString() { throw "String"; } // Test that the exception assertion macros compile and work with const // type qualifier. TEST(AssertionSyntaxTest, WorksWithConst) { ASSERT_THROW(ThrowAString(), const char*); EXPECT_THROW(ThrowAString(), const char*); } #endif // GTEST_HAS_EXCEPTIONS } // namespace // Returns the number of successful parts in the current test. static size_t GetSuccessfulPartCount() { return UnitTest::GetInstance()->impl()->current_test_result()-> successful_part_count(); } namespace testing { // Tests that Google Test tracks SUCCEED*. TEST(SuccessfulAssertionTest, SUCCEED) { SUCCEED(); SUCCEED() << "OK"; EXPECT_EQ(2u, GetSuccessfulPartCount()); } // Tests that Google Test doesn't track successful EXPECT_*. TEST(SuccessfulAssertionTest, EXPECT) { EXPECT_TRUE(true); EXPECT_EQ(0u, GetSuccessfulPartCount()); } // Tests that Google Test doesn't track successful EXPECT_STR*. TEST(SuccessfulAssertionTest, EXPECT_STR) { EXPECT_STREQ("", ""); EXPECT_EQ(0u, GetSuccessfulPartCount()); } // Tests that Google Test doesn't track successful ASSERT_*. TEST(SuccessfulAssertionTest, ASSERT) { ASSERT_TRUE(true); EXPECT_EQ(0u, GetSuccessfulPartCount()); } // Tests that Google Test doesn't track successful ASSERT_STR*. TEST(SuccessfulAssertionTest, ASSERT_STR) { ASSERT_STREQ("", ""); EXPECT_EQ(0u, GetSuccessfulPartCount()); } } // namespace testing namespace { // Tests EXPECT_TRUE. TEST(ExpectTest, EXPECT_TRUE) { EXPECT_TRUE(2 > 1); // NOLINT EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1), "Value of: 2 < 1\n" " Actual: false\n" "Expected: true"); EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3), "2 > 3"); } // Tests EXPECT_FALSE. TEST(ExpectTest, EXPECT_FALSE) { EXPECT_FALSE(2 < 1); // NOLINT EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1), "Value of: 2 > 1\n" " Actual: true\n" "Expected: false"); EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3), "2 < 3"); } // Tests EXPECT_EQ. TEST(ExpectTest, EXPECT_EQ) { EXPECT_EQ(5, 2 + 3); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3), "Value of: 2*3\n" " Actual: 6\n" "Expected: 5"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3), "2 - 3"); } // Tests using EXPECT_EQ on double values. The purpose is to make // sure that the specialization we did for integer and anonymous enums // isn't used for double arguments. TEST(ExpectTest, EXPECT_EQ_Double) { // A success. EXPECT_EQ(5.6, 5.6); // A failure. EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2), "5.1"); } #ifndef __SYMBIAN32__ // Tests EXPECT_EQ(NULL, pointer). TEST(ExpectTest, EXPECT_EQ_NULL) { // A success. const char* p = NULL; EXPECT_EQ(NULL, p); // A failure. int n = 0; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n), "Value of: &n\n"); } #endif // __SYMBIAN32__ // Tests EXPECT_EQ(0, non_pointer). Since the literal 0 can be // treated as a null pointer by the compiler, we need to make sure // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as // EXPECT_EQ(static_cast(NULL), non_pointer). TEST(ExpectTest, EXPECT_EQ_0) { int n = 0; // A success. EXPECT_EQ(0, n); // A failure. EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6), "Expected: 0"); } // Tests EXPECT_NE. TEST(ExpectTest, EXPECT_NE) { EXPECT_NE(6, 7); EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'), "Expected: ('a') != ('a'), " "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)"); EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2), "2"); char* const p0 = NULL; EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0), "p0"); // Only way to get the Nokia compiler to compile the cast // is to have a separate void* variable first. Putting // the two casts on the same line doesn't work, neither does // a direct C-style to char*. void* pv1 = (void*)0x1234; // NOLINT char* const p1 = reinterpret_cast(pv1); EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1), "p1"); } // Tests EXPECT_LE. TEST(ExpectTest, EXPECT_LE) { EXPECT_LE(2, 3); EXPECT_LE(2, 2); EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0"); EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9), "(1.1) <= (0.9)"); } // Tests EXPECT_LT. TEST(ExpectTest, EXPECT_LT) { EXPECT_LT(2, 3); EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2"); EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1), "(2) < (1)"); } // Tests EXPECT_GE. TEST(ExpectTest, EXPECT_GE) { EXPECT_GE(2, 1); EXPECT_GE(2, 2); EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3"); EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1), "(0.9) >= (1.1)"); } // Tests EXPECT_GT. TEST(ExpectTest, EXPECT_GT) { EXPECT_GT(2, 1); EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2"); EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3), "(2) > (3)"); } #if GTEST_HAS_EXCEPTIONS // Tests EXPECT_THROW. TEST(ExpectTest, EXPECT_THROW) { EXPECT_THROW(ThrowAnInteger(), int); EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool), "Expected: ThrowAnInteger() throws an exception of "\ "type bool.\n Actual: it throws a different type."); EXPECT_NONFATAL_FAILURE(EXPECT_THROW(1, bool), "Expected: 1 throws an exception of type bool.\n"\ " Actual: it throws nothing."); } // Tests EXPECT_NO_THROW. TEST(ExpectTest, EXPECT_NO_THROW) { EXPECT_NO_THROW(1); EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()), "Expected: ThrowAnInteger() doesn't throw an "\ "exception.\n Actual: it throws."); } // Tests EXPECT_ANY_THROW. TEST(ExpectTest, EXPECT_ANY_THROW) { EXPECT_ANY_THROW(ThrowAnInteger()); EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(1), "Expected: 1 throws an exception.\n Actual: it "\ "doesn't."); } #endif // GTEST_HAS_EXCEPTIONS // Make sure we deal with the precedence of <<. TEST(ExpectTest, ExpectPrecedence) { EXPECT_EQ(1 < 2, true); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false), "Value of: true && false"); } // Tests the StreamableToString() function. // Tests using StreamableToString() on a scalar. TEST(StreamableToStringTest, Scalar) { EXPECT_STREQ("5", StreamableToString(5).c_str()); } // Tests using StreamableToString() on a non-char pointer. TEST(StreamableToStringTest, Pointer) { int n = 0; int* p = &n; EXPECT_STRNE("(null)", StreamableToString(p).c_str()); } // Tests using StreamableToString() on a NULL non-char pointer. TEST(StreamableToStringTest, NullPointer) { int* p = NULL; EXPECT_STREQ("(null)", StreamableToString(p).c_str()); } // Tests using StreamableToString() on a C string. TEST(StreamableToStringTest, CString) { EXPECT_STREQ("Foo", StreamableToString("Foo").c_str()); } // Tests using StreamableToString() on a NULL C string. TEST(StreamableToStringTest, NullCString) { char* p = NULL; EXPECT_STREQ("(null)", StreamableToString(p).c_str()); } // Tests using streamable values as assertion messages. #if GTEST_HAS_STD_STRING // Tests using std::string as an assertion message. TEST(StreamableTest, string) { static const std::string str( "This failure message is a std::string, and is expected."); EXPECT_FATAL_FAILURE(FAIL() << str, str.c_str()); } // Tests that we can output strings containing embedded NULs. // Limited to Linux because we can only do this with std::string's. TEST(StreamableTest, stringWithEmbeddedNUL) { static const char char_array_with_nul[] = "Here's a NUL\0 and some more string"; static const std::string string_with_nul(char_array_with_nul, sizeof(char_array_with_nul) - 1); // drops the trailing NUL EXPECT_FATAL_FAILURE(FAIL() << string_with_nul, "Here's a NUL\\0 and some more string"); } #endif // GTEST_HAS_STD_STRING // Tests that we can output a NUL char. TEST(StreamableTest, NULChar) { EXPECT_FATAL_FAILURE({ // NOLINT FAIL() << "A NUL" << '\0' << " and some more string"; }, "A NUL\\0 and some more string"); } // Tests using int as an assertion message. TEST(StreamableTest, int) { EXPECT_FATAL_FAILURE(FAIL() << 900913, "900913"); } // Tests using NULL char pointer as an assertion message. // // In MSVC, streaming a NULL char * causes access violation. Google Test // implemented a workaround (substituting "(null)" for NULL). This // tests whether the workaround works. TEST(StreamableTest, NullCharPtr) { EXPECT_FATAL_FAILURE(FAIL() << static_cast(NULL), "(null)"); } // Tests that basic IO manipulators (endl, ends, and flush) can be // streamed to testing::Message. TEST(StreamableTest, BasicIoManip) { EXPECT_FATAL_FAILURE({ // NOLINT FAIL() << "Line 1." << std::endl << "A NUL char " << std::ends << std::flush << " in line 2."; }, "Line 1.\nA NUL char \\0 in line 2."); } // Tests the macros that haven't been covered so far. void AddFailureHelper(bool* aborted) { *aborted = true; ADD_FAILURE() << "Failure"; *aborted = false; } // Tests ADD_FAILURE. TEST(MacroTest, ADD_FAILURE) { bool aborted = true; EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted), "Failure"); EXPECT_FALSE(aborted); } // Tests FAIL. TEST(MacroTest, FAIL) { EXPECT_FATAL_FAILURE(FAIL(), "Failed"); EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.", "Intentional failure."); } // Tests SUCCEED TEST(MacroTest, SUCCEED) { SUCCEED(); SUCCEED() << "Explicit success."; } // Tests for EXPECT_EQ() and ASSERT_EQ(). // // These tests fail *intentionally*, s.t. the failure messages can be // generated and tested. // // We have different tests for different argument types. // Tests using bool values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, Bool) { EXPECT_EQ(true, true); EXPECT_FATAL_FAILURE(ASSERT_EQ(false, true), "Value of: true"); } // Tests using int values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, Int) { ASSERT_EQ(32, 32); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33), "33"); } // Tests using time_t values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, Time_T) { EXPECT_EQ(static_cast(0), static_cast(0)); EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast(0), static_cast(1234)), "1234"); } // Tests using char values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, Char) { ASSERT_EQ('z', 'z'); const char ch = 'b'; EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch), "ch"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch), "ch"); } // Tests using wchar_t values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, WideChar) { EXPECT_EQ(L'b', L'b'); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'), "Value of: L'x'\n" " Actual: L'x' (120, 0x78)\n" "Expected: L'\0'\n" "Which is: L'\0' (0, 0x0)"); static wchar_t wchar; wchar = L'b'; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar), "wchar"); wchar = L'\x8119'; EXPECT_FATAL_FAILURE(ASSERT_EQ(L'\x8120', wchar), "Value of: wchar"); } #if GTEST_HAS_STD_STRING // Tests using ::std::string values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, StdString) { // Compares a const char* to an std::string that has identical // content. ASSERT_EQ("Test", ::std::string("Test")); // Compares two identical std::strings. static const ::std::string str1("A * in the middle"); static const ::std::string str2(str1); EXPECT_EQ(str1, str2); // Compares a const char* to an std::string that has different // content EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")), "::std::string(\"test\")"); // Compares an std::string to a char* that has different content. char* const p1 = const_cast("foo"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1), "p1"); // Compares two std::strings that have different contents, one of // which having a NUL character in the middle. This should fail. static ::std::string str3(str1); str3.at(2) = '\0'; EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3), "Value of: str3\n" " Actual: \"A \\0 in the middle\""); } #endif // GTEST_HAS_STD_STRING #if GTEST_HAS_STD_WSTRING // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, StdWideString) { // Compares an std::wstring to a const wchar_t* that has identical // content. EXPECT_EQ(::std::wstring(L"Test\x8119"), L"Test\x8119"); // Compares two identical std::wstrings. const ::std::wstring wstr1(L"A * in the middle"); const ::std::wstring wstr2(wstr1); ASSERT_EQ(wstr1, wstr2); // Compares an std::wstring to a const wchar_t* that has different // content. EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_EQ(::std::wstring(L"Test\x8119"), L"Test\x8120"); }, "L\"Test\\x8120\""); // Compares two std::wstrings that have different contents, one of // which having a NUL character in the middle. ::std::wstring wstr3(wstr1); wstr3.at(2) = L'\0'; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3), "wstr3"); // Compares a wchar_t* to an std::wstring that has different // content. EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_EQ(const_cast(L"foo"), ::std::wstring(L"bar")); }, ""); } #endif // GTEST_HAS_STD_WSTRING #if GTEST_HAS_GLOBAL_STRING // Tests using ::string values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, GlobalString) { // Compares a const char* to a ::string that has identical content. EXPECT_EQ("Test", ::string("Test")); // Compares two identical ::strings. const ::string str1("A * in the middle"); const ::string str2(str1); ASSERT_EQ(str1, str2); // Compares a ::string to a const char* that has different content. EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"), "test"); // Compares two ::strings that have different contents, one of which // having a NUL character in the middle. ::string str3(str1); str3.at(2) = '\0'; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3), "str3"); // Compares a ::string to a char* that has different content. EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_EQ(::string("bar"), const_cast("foo")); }, ""); } #endif // GTEST_HAS_GLOBAL_STRING #if GTEST_HAS_GLOBAL_WSTRING // Tests using ::wstring values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, GlobalWideString) { // Compares a const wchar_t* to a ::wstring that has identical content. ASSERT_EQ(L"Test\x8119", ::wstring(L"Test\x8119")); // Compares two identical ::wstrings. static const ::wstring wstr1(L"A * in the middle"); static const ::wstring wstr2(wstr1); EXPECT_EQ(wstr1, wstr2); // Compares a const wchar_t* to a ::wstring that has different // content. EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_EQ(L"Test\x8120", ::wstring(L"Test\x8119")); }, "Test\\x8119"); // Compares a wchar_t* to a ::wstring that has different content. wchar_t* const p1 = const_cast(L"foo"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")), "bar"); // Compares two ::wstrings that have different contents, one of which // having a NUL character in the middle. static ::wstring wstr3; wstr3 = wstr1; wstr3.at(2) = L'\0'; EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3), "wstr3"); } #endif // GTEST_HAS_GLOBAL_WSTRING // Tests using char pointers in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, CharPointer) { char* const p0 = NULL; // Only way to get the Nokia compiler to compile the cast // is to have a separate void* variable first. Putting // the two casts on the same line doesn't work, neither does // a direct C-style to char*. void* pv1 = (void*)0x1234; // NOLINT void* pv2 = (void*)0xABC0; // NOLINT char* const p1 = reinterpret_cast(pv1); char* const p2 = reinterpret_cast(pv2); ASSERT_EQ(p1, p1); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), "Value of: p2"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), "p2"); EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast(0x1234), reinterpret_cast(0xABC0)), "ABC0"); } // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, WideCharPointer) { wchar_t* const p0 = NULL; // Only way to get the Nokia compiler to compile the cast // is to have a separate void* variable first. Putting // the two casts on the same line doesn't work, neither does // a direct C-style to char*. void* pv1 = (void*)0x1234; // NOLINT void* pv2 = (void*)0xABC0; // NOLINT wchar_t* const p1 = reinterpret_cast(pv1); wchar_t* const p2 = reinterpret_cast(pv2); EXPECT_EQ(p0, p0); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), "Value of: p2"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), "p2"); void* pv3 = (void*)0x1234; // NOLINT void* pv4 = (void*)0xABC0; // NOLINT const wchar_t* p3 = reinterpret_cast(pv3); const wchar_t* p4 = reinterpret_cast(pv4); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4), "p4"); } // Tests using other types of pointers in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, OtherPointer) { ASSERT_EQ(static_cast(NULL), static_cast(NULL)); EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast(NULL), reinterpret_cast(0x1234)), "0x1234"); } // Tests the FRIEND_TEST macro. // This class has a private member we want to test. We will test it // both in a TEST and in a TEST_F. class Foo { public: Foo() {} private: int Bar() const { return 1; } // Declares the friend tests that can access the private member // Bar(). FRIEND_TEST(FRIEND_TEST_Test, TEST); FRIEND_TEST(FRIEND_TEST_Test2, TEST_F); }; // Tests that the FRIEND_TEST declaration allows a TEST to access a // class's private members. This should compile. TEST(FRIEND_TEST_Test, TEST) { ASSERT_EQ(1, Foo().Bar()); } // The fixture needed to test using FRIEND_TEST with TEST_F. class FRIEND_TEST_Test2 : public Test { protected: Foo foo; }; // Tests that the FRIEND_TEST declaration allows a TEST_F to access a // class's private members. This should compile. TEST_F(FRIEND_TEST_Test2, TEST_F) { ASSERT_EQ(1, foo.Bar()); } // Tests the life cycle of Test objects. // The test fixture for testing the life cycle of Test objects. // // This class counts the number of live test objects that uses this // fixture. class TestLifeCycleTest : public Test { protected: // Constructor. Increments the number of test objects that uses // this fixture. TestLifeCycleTest() { count_++; } // Destructor. Decrements the number of test objects that uses this // fixture. ~TestLifeCycleTest() { count_--; } // Returns the number of live test objects that uses this fixture. int count() const { return count_; } private: static int count_; }; int TestLifeCycleTest::count_ = 0; // Tests the life cycle of test objects. TEST_F(TestLifeCycleTest, Test1) { // There should be only one test object in this test case that's // currently alive. ASSERT_EQ(1, count()); } // Tests the life cycle of test objects. TEST_F(TestLifeCycleTest, Test2) { // After Test1 is done and Test2 is started, there should still be // only one live test object, as the object for Test1 should've been // deleted. ASSERT_EQ(1, count()); } } // namespace // Tests streaming a user type whose definition and operator << are // both in the global namespace. class Base { public: explicit Base(int x) : x_(x) {} int x() const { return x_; } private: int x_; }; std::ostream& operator<<(std::ostream& os, const Base& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const Base* pointer) { return os << "(" << pointer->x() << ")"; } TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) { Message msg; Base a(1); msg << a << &a; // Uses ::operator<<. EXPECT_STREQ("1(1)", msg.GetString().c_str()); } // Tests streaming a user type whose definition and operator<< are // both in an unnamed namespace. namespace { class MyTypeInUnnamedNameSpace : public Base { public: explicit MyTypeInUnnamedNameSpace(int x): Base(x) {} }; std::ostream& operator<<(std::ostream& os, const MyTypeInUnnamedNameSpace& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const MyTypeInUnnamedNameSpace* pointer) { return os << "(" << pointer->x() << ")"; } } // namespace TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) { Message msg; MyTypeInUnnamedNameSpace a(1); msg << a << &a; // Uses ::operator<<. EXPECT_STREQ("1(1)", msg.GetString().c_str()); } // Tests streaming a user type whose definition and operator<< are // both in a user namespace. namespace namespace1 { class MyTypeInNameSpace1 : public Base { public: explicit MyTypeInNameSpace1(int x): Base(x) {} }; std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1* pointer) { return os << "(" << pointer->x() << ")"; } } // namespace namespace1 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) { Message msg; namespace1::MyTypeInNameSpace1 a(1); msg << a << &a; // Uses namespace1::operator<<. EXPECT_STREQ("1(1)", msg.GetString().c_str()); } // Tests streaming a user type whose definition is in a user namespace // but whose operator<< is in the global namespace. namespace namespace2 { class MyTypeInNameSpace2 : public ::Base { public: explicit MyTypeInNameSpace2(int x): Base(x) {} }; } // namespace namespace2 std::ostream& operator<<(std::ostream& os, const namespace2::MyTypeInNameSpace2& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const namespace2::MyTypeInNameSpace2* pointer) { return os << "(" << pointer->x() << ")"; } TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) { Message msg; namespace2::MyTypeInNameSpace2 a(1); msg << a << &a; // Uses ::operator<<. EXPECT_STREQ("1(1)", msg.GetString().c_str()); } // Tests streaming NULL pointers to testing::Message. TEST(MessageTest, NullPointers) { Message msg; char* const p1 = NULL; unsigned char* const p2 = NULL; int* p3 = NULL; double* p4 = NULL; bool* p5 = NULL; Message* p6 = NULL; msg << p1 << p2 << p3 << p4 << p5 << p6; ASSERT_STREQ("(null)(null)(null)(null)(null)(null)", msg.GetString().c_str()); } // Tests streaming wide strings to testing::Message. TEST(MessageTest, WideStrings) { // Streams a NULL of type const wchar_t*. const wchar_t* const_wstr = NULL; EXPECT_STREQ("(null)", (Message() << const_wstr).GetString().c_str()); // Streams a NULL of type wchar_t*. wchar_t* wstr = NULL; EXPECT_STREQ("(null)", (Message() << wstr).GetString().c_str()); // Streams a non-NULL of type const wchar_t*. const_wstr = L"abc\x8119"; EXPECT_STREQ("abc\xe8\x84\x99", (Message() << const_wstr).GetString().c_str()); // Streams a non-NULL of type wchar_t*. wstr = const_cast(const_wstr); EXPECT_STREQ("abc\xe8\x84\x99", (Message() << wstr).GetString().c_str()); } // This line tests that we can define tests in the testing namespace. namespace testing { // Tests the TestInfo class. class TestInfoTest : public Test { protected: static TestInfo * GetTestInfo(const char* test_name) { return UnitTest::GetInstance()->impl()-> GetTestCase("TestInfoTest", "", NULL, NULL)-> GetTestInfo(test_name); } static const TestResult* GetTestResult( const TestInfo* test_info) { return test_info->result(); } }; // Tests TestInfo::test_case_name() and TestInfo::name(). TEST_F(TestInfoTest, Names) { TestInfo * const test_info = GetTestInfo("Names"); ASSERT_STREQ("TestInfoTest", test_info->test_case_name()); ASSERT_STREQ("Names", test_info->name()); } // Tests TestInfo::result(). TEST_F(TestInfoTest, result) { TestInfo * const test_info = GetTestInfo("result"); // Initially, there is no TestPartResult for this test. ASSERT_EQ(0u, GetTestResult(test_info)->total_part_count()); // After the previous assertion, there is still none. ASSERT_EQ(0u, GetTestResult(test_info)->total_part_count()); } // Tests setting up and tearing down a test case. class SetUpTestCaseTest : public Test { protected: // This will be called once before the first test in this test case // is run. static void SetUpTestCase() { printf("Setting up the test case . . .\n"); // Initializes some shared resource. In this simple example, we // just create a C string. More complex stuff can be done if // desired. shared_resource_ = "123"; // Increments the number of test cases that have been set up. counter_++; // SetUpTestCase() should be called only once. EXPECT_EQ(1, counter_); } // This will be called once after the last test in this test case is // run. static void TearDownTestCase() { printf("Tearing down the test case . . .\n"); // Decrements the number of test cases that have been set up. counter_--; // TearDownTestCase() should be called only once. EXPECT_EQ(0, counter_); // Cleans up the shared resource. shared_resource_ = NULL; } // This will be called before each test in this test case. virtual void SetUp() { // SetUpTestCase() should be called only once, so counter_ should // always be 1. EXPECT_EQ(1, counter_); } // Number of test cases that have been set up. static int counter_; // Some resource to be shared by all tests in this test case. static const char* shared_resource_; }; int SetUpTestCaseTest::counter_ = 0; const char* SetUpTestCaseTest::shared_resource_ = NULL; // A test that uses the shared resource. TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(NULL, shared_resource_); } // Another test that uses the shared resource. TEST_F(SetUpTestCaseTest, Test2) { EXPECT_STREQ("123", shared_resource_); } // The InitGoogleTestTest test case tests testing::InitGoogleTest(). // The Flags struct stores a copy of all Google Test flags. struct Flags { // Constructs a Flags struct where each flag has its default value. Flags() : break_on_failure(false), catch_exceptions(false), filter(""), list_tests(false), output(""), print_time(false), repeat(1) {} // Factory methods. // Creates a Flags struct where the gtest_break_on_failure flag has // the given value. static Flags BreakOnFailure(bool break_on_failure) { Flags flags; flags.break_on_failure = break_on_failure; return flags; } // Creates a Flags struct where the gtest_catch_exceptions flag has // the given value. static Flags CatchExceptions(bool catch_exceptions) { Flags flags; flags.catch_exceptions = catch_exceptions; return flags; } // Creates a Flags struct where the gtest_filter flag has the given // value. static Flags Filter(const char* filter) { Flags flags; flags.filter = filter; return flags; } // Creates a Flags struct where the gtest_list_tests flag has the // given value. static Flags ListTests(bool list_tests) { Flags flags; flags.list_tests = list_tests; return flags; } // Creates a Flags struct where the gtest_output flag has the given // value. static Flags Output(const char* output) { Flags flags; flags.output = output; return flags; } // Creates a Flags struct where the gtest_print_time flag has the given // value. static Flags PrintTime(bool print_time) { Flags flags; flags.print_time = print_time; return flags; } // Creates a Flags struct where the gtest_repeat flag has the given // value. static Flags Repeat(Int32 repeat) { Flags flags; flags.repeat = repeat; return flags; } // These fields store the flag values. bool break_on_failure; bool catch_exceptions; const char* filter; bool list_tests; const char* output; bool print_time; Int32 repeat; }; // Fixture for testing InitGoogleTest(). class InitGoogleTestTest : public Test { protected: // Clears the flags before each test. virtual void SetUp() { GTEST_FLAG(break_on_failure) = false; GTEST_FLAG(catch_exceptions) = false; GTEST_FLAG(filter) = ""; GTEST_FLAG(list_tests) = false; GTEST_FLAG(output) = ""; GTEST_FLAG(print_time) = false; GTEST_FLAG(repeat) = 1; } // Asserts that two narrow or wide string arrays are equal. template static void AssertStringArrayEq(size_t size1, CharType** array1, size_t size2, CharType** array2) { ASSERT_EQ(size1, size2) << " Array sizes different."; for (size_t i = 0; i != size1; i++) { ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i; } } // Verifies that the flag values match the expected values. static void CheckFlags(const Flags& expected) { EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure)); EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions)); EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str()); EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests)); EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str()); EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time)); EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat)); } // Parses a command line (specified by argc1 and argv1), then // verifies that the flag values are expected and that the // recognized flags are removed from the command line. template static void TestParsingFlags(int argc1, const CharType** argv1, int argc2, const CharType** argv2, const Flags& expected) { // Parses the command line. InitGoogleTest(&argc1, const_cast(argv1)); // Verifies the flag values. CheckFlags(expected); // Verifies that the recognized flags are removed from the command // line. AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2); } // This macro wraps TestParsingFlags s.t. the user doesn't need // to specify the array sizes. #define TEST_PARSING_FLAGS(argv1, argv2, expected) \ TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \ sizeof(argv2)/sizeof(*argv2) - 1, argv2, expected) }; // Tests parsing an empty command line. TEST_F(InitGoogleTestTest, Empty) { const char* argv[] = { NULL }; const char* argv2[] = { NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags()); } // Tests parsing a command line that has no flag. TEST_F(InitGoogleTestTest, NoFlag) { const char* argv[] = { "foo.exe", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags()); } // Tests parsing a bad --gtest_filter flag. TEST_F(InitGoogleTestTest, FilterBad) { const char* argv[] = { "foo.exe", "--gtest_filter", NULL }; const char* argv2[] = { "foo.exe", "--gtest_filter", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::Filter("")); } // Tests parsing an empty --gtest_filter flag. TEST_F(InitGoogleTestTest, FilterEmpty) { const char* argv[] = { "foo.exe", "--gtest_filter=", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::Filter("")); } // Tests parsing a non-empty --gtest_filter flag. TEST_F(InitGoogleTestTest, FilterNonEmpty) { const char* argv[] = { "foo.exe", "--gtest_filter=abc", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::Filter("abc")); } // Tests parsing --gtest_break_on_failure. TEST_F(InitGoogleTestTest, BreakOnFailureNoDef) { const char* argv[] = { "foo.exe", "--gtest_break_on_failure", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(true)); } // Tests parsing --gtest_break_on_failure=0. TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) { const char* argv[] = { "foo.exe", "--gtest_break_on_failure=0", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(false)); } // Tests parsing --gtest_break_on_failure=f. TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) { const char* argv[] = { "foo.exe", "--gtest_break_on_failure=f", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(false)); } // Tests parsing --gtest_break_on_failure=F. TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) { const char* argv[] = { "foo.exe", "--gtest_break_on_failure=F", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(false)); } // Tests parsing a --gtest_break_on_failure flag that has a "true" // definition. TEST_F(InitGoogleTestTest, BreakOnFailureTrue) { const char* argv[] = { "foo.exe", "--gtest_break_on_failure=1", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(true)); } // Tests parsing --gtest_catch_exceptions. TEST_F(InitGoogleTestTest, CatchExceptions) { const char* argv[] = { "foo.exe", "--gtest_catch_exceptions", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::CatchExceptions(true)); } // Tests having the same flag twice with different values. The // expected behavior is that the one coming last takes precedence. TEST_F(InitGoogleTestTest, DuplicatedFlags) { const char* argv[] = { "foo.exe", "--gtest_filter=a", "--gtest_filter=b", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::Filter("b")); } // Tests having an unrecognized flag on the command line. TEST_F(InitGoogleTestTest, UnrecognizedFlag) { const char* argv[] = { "foo.exe", "--gtest_break_on_failure", "bar", // Unrecognized by Google Test. "--gtest_filter=b", NULL }; const char* argv2[] = { "foo.exe", "bar", NULL }; Flags flags; flags.break_on_failure = true; flags.filter = "b"; TEST_PARSING_FLAGS(argv, argv2, flags); } // Tests having a --gtest_list_tests flag TEST_F(InitGoogleTestTest, ListTestsFlag) { const char* argv[] = { "foo.exe", "--gtest_list_tests", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(true)); } // Tests having a --gtest_list_tests flag with a "true" value TEST_F(InitGoogleTestTest, ListTestsTrue) { const char* argv[] = { "foo.exe", "--gtest_list_tests=1", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(true)); } // Tests having a --gtest_list_tests flag with a "false" value TEST_F(InitGoogleTestTest, ListTestsFalse) { const char* argv[] = { "foo.exe", "--gtest_list_tests=0", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(false)); } // Tests parsing --gtest_list_tests=f. TEST_F(InitGoogleTestTest, ListTestsFalse_f) { const char* argv[] = { "foo.exe", "--gtest_list_tests=f", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(false)); } // Tests parsing --gtest_break_on_failure=F. TEST_F(InitGoogleTestTest, ListTestsFalse_F) { const char* argv[] = { "foo.exe", "--gtest_list_tests=F", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(false)); } // Tests parsing --gtest_output (invalid). TEST_F(InitGoogleTestTest, OutputEmpty) { const char* argv[] = { "foo.exe", "--gtest_output", NULL }; const char* argv2[] = { "foo.exe", "--gtest_output", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags()); } // Tests parsing --gtest_output=xml TEST_F(InitGoogleTestTest, OutputXml) { const char* argv[] = { "foo.exe", "--gtest_output=xml", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::Output("xml")); } // Tests parsing --gtest_output=xml:file TEST_F(InitGoogleTestTest, OutputXmlFile) { const char* argv[] = { "foo.exe", "--gtest_output=xml:file", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::Output("xml:file")); } // Tests parsing --gtest_output=xml:directory/path/ TEST_F(InitGoogleTestTest, OutputXmlDirectory) { const char* argv[] = { "foo.exe", "--gtest_output=xml:directory/path/", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::Output("xml:directory/path/")); } // Tests having a --gtest_print_time flag TEST_F(InitGoogleTestTest, PrintTimeFlag) { const char* argv[] = { "foo.exe", "--gtest_print_time", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(true)); } // Tests having a --gtest_print_time flag with a "true" value TEST_F(InitGoogleTestTest, PrintTimeTrue) { const char* argv[] = { "foo.exe", "--gtest_print_time=1", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(true)); } // Tests having a --gtest_print_time flag with a "false" value TEST_F(InitGoogleTestTest, PrintTimeFalse) { const char* argv[] = { "foo.exe", "--gtest_print_time=0", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(false)); } // Tests parsing --gtest_print_time=f. TEST_F(InitGoogleTestTest, PrintTimeFalse_f) { const char* argv[] = { "foo.exe", "--gtest_print_time=f", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(false)); } // Tests parsing --gtest_print_time=F. TEST_F(InitGoogleTestTest, PrintTimeFalse_F) { const char* argv[] = { "foo.exe", "--gtest_print_time=F", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(false)); } // Tests parsing --gtest_repeat=number TEST_F(InitGoogleTestTest, Repeat) { const char* argv[] = { "foo.exe", "--gtest_repeat=1000", NULL }; const char* argv2[] = { "foo.exe", NULL }; TEST_PARSING_FLAGS(argv, argv2, Flags::Repeat(1000)); } #ifdef GTEST_OS_WINDOWS // Tests parsing wide strings. TEST_F(InitGoogleTestTest, WideStrings) { const wchar_t* argv[] = { L"foo.exe", L"--gtest_filter=Foo*", L"--gtest_list_tests=1", L"--gtest_break_on_failure", L"--non_gtest_flag", NULL }; const wchar_t* argv2[] = { L"foo.exe", L"--non_gtest_flag", NULL }; Flags expected_flags; expected_flags.break_on_failure = true; expected_flags.filter = "Foo*"; expected_flags.list_tests = true; TEST_PARSING_FLAGS(argv, argv2, expected_flags); } #endif // GTEST_OS_WINDOWS // Tests current_test_info() in UnitTest. class CurrentTestInfoTest : public Test { protected: // Tests that current_test_info() returns NULL before the first test in // the test case is run. static void SetUpTestCase() { // There should be no tests running at this point. const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); EXPECT_EQ(NULL, test_info) << "There should be no tests running at this point."; } // Tests that current_test_info() returns NULL after the last test in // the test case has run. static void TearDownTestCase() { const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); EXPECT_EQ(NULL, test_info) << "There should be no tests running at this point."; } }; // Tests that current_test_info() returns TestInfo for currently running // test by checking the expected test name against the actual one. TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) { const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); ASSERT_TRUE(NULL != test_info) << "There is a test running so we should have a valid TestInfo."; EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name()) << "Expected the name of the currently running test case."; EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name()) << "Expected the name of the currently running test."; } // Tests that current_test_info() returns TestInfo for currently running // test by checking the expected test name against the actual one. We // use this test to see that the TestInfo object actually changed from // the previous invocation. TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) { const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); ASSERT_TRUE(NULL != test_info) << "There is a test running so we should have a valid TestInfo."; EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name()) << "Expected the name of the currently running test case."; EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name()) << "Expected the name of the currently running test."; } } // namespace testing // These two lines test that we can define tests in a namespace that // has the name "testing" and is nested in another namespace. namespace my_namespace { namespace testing { // Makes sure that TEST knows to use ::testing::Test instead of // ::my_namespace::testing::Test. class Test {}; // Makes sure that an assertion knows to use ::testing::Message instead of // ::my_namespace::testing::Message. class Message {}; // Makes sure that an assertion knows to use // ::testing::AssertionResult instead of // ::my_namespace::testing::AssertionResult. class AssertionResult {}; // Tests that an assertion that should succeed works as expected. TEST(NestedTestingNamespaceTest, Success) { EXPECT_EQ(1, 1) << "This shouldn't fail."; } // Tests that an assertion that should fail works as expected. TEST(NestedTestingNamespaceTest, Failure) { EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.", "This failure is expected."); } } // namespace testing } // namespace my_namespace // Tests that one can call superclass SetUp and TearDown methods-- // that is, that they are not private. // No tests are based on this fixture; the test "passes" if it compiles // successfully. class ProtectedFixtureMethodsTest : public Test { protected: virtual void SetUp() { Test::SetUp(); } virtual void TearDown() { Test::TearDown(); } }; // StreamingAssertionsTest tests the streaming versions of a representative // sample of assertions. TEST(StreamingAssertionsTest, Unconditional) { SUCCEED() << "expected success"; EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(FAIL() << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, Truth) { EXPECT_TRUE(true) << "unexpected failure"; ASSERT_TRUE(true) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, Truth2) { EXPECT_FALSE(false) << "unexpected failure"; ASSERT_FALSE(false) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, IntegerEquals) { EXPECT_EQ(1, 1) << "unexpected failure"; ASSERT_EQ(1, 1) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, IntegerLessThan) { EXPECT_LT(1, 2) << "unexpected failure"; ASSERT_LT(1, 2) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, StringsEqual) { EXPECT_STREQ("foo", "foo") << "unexpected failure"; ASSERT_STREQ("foo", "foo") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, StringsNotEqual) { EXPECT_STRNE("foo", "bar") << "unexpected failure"; ASSERT_STRNE("foo", "bar") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) { EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure"; ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) { EXPECT_STRCASENE("foo", "bar") << "unexpected failure"; ASSERT_STRCASENE("foo", "bar") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, FloatingPointEquals) { EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure"; ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure", "expected failure"); } #if GTEST_HAS_EXCEPTIONS TEST(StreamingAssertionsTest, Throw) { EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure"; ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, NoThrow) { EXPECT_NO_THROW(1) << "unexpected failure"; ASSERT_NO_THROW(1) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, AnyThrow) { EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure"; ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(1) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(1) << "expected failure", "expected failure"); } #endif // GTEST_HAS_EXCEPTIONS // Tests that Google Test correctly decides whether to use colors in the output. TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) { GTEST_FLAG(color) = "yes"; SetEnv("TERM", "xterm"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. SetEnv("TERM", "dumb"); // TERM doesn't support colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. } TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) { SetEnv("TERM", "dumb"); // TERM doesn't support colors. GTEST_FLAG(color) = "True"; EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. GTEST_FLAG(color) = "t"; EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. GTEST_FLAG(color) = "1"; EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. } TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) { GTEST_FLAG(color) = "no"; SetEnv("TERM", "xterm"); // TERM supports colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY. SetEnv("TERM", "dumb"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY. } TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) { SetEnv("TERM", "xterm"); // TERM supports colors. GTEST_FLAG(color) = "F"; EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. GTEST_FLAG(color) = "0"; EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. GTEST_FLAG(color) = "unknown"; EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. } TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) { GTEST_FLAG(color) = "auto"; SetEnv("TERM", "xterm"); // TERM supports colors. EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. } TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) { GTEST_FLAG(color) = "auto"; #ifdef GTEST_OS_WINDOWS // On Windows, we ignore the TERM variable as it's usually not set. SetEnv("TERM", "dumb"); EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", ""); EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm"); EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. #else // On non-Windows platforms, we rely on TERM to determine if the // terminal supports colors. SetEnv("TERM", "dumb"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "emacs"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "vt100"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm-mono"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm-color"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. #endif // GTEST_OS_WINDOWS } #ifndef __SYMBIAN32__ // We will want to integrate running the unittests to a different // main application on Symbian. int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); #ifdef GTEST_HAS_DEATH_TEST if (!testing::internal::GTEST_FLAG(internal_run_death_test).empty()) { // Skip the usual output capturing if we're running as the child // process of an threadsafe-style death test. freopen("/dev/null", "w", stdout); } #endif // GTEST_HAS_DEATH_TEST // Runs all tests using Google Test. return RUN_ALL_TESTS(); } #endif // __SYMBIAN32_