Googletest export

Create new Mocking Reference

PiperOrigin-RevId: 376951575
pull/3421/head
Abseil Team 4 years ago committed by Andy Soffer
parent 2bd3481666
commit 5f6a14c846
  1. 2
      docs/_data/navigation.yml
  2. 167
      docs/gmock_cheat_sheet.md
  3. 2
      docs/gmock_cook_book.md
  4. 587
      docs/reference/mocking.md

@ -21,6 +21,8 @@ nav:
url: "/gmock_cheat_sheet.html"
- section: "References"
items:
- title: "Mocking Reference"
url: "/reference/mocking.html"
- title: "Assertions"
url: "/reference/assertions.html"
- title: "Matchers"

@ -133,22 +133,8 @@ gMock has a **built-in default action** for any function that returns `void`,
`bool`, a numeric value, or a pointer. In C++11, it will additionally returns
the default-constructed value, if one exists for the given type.
To customize the default action for functions with return type *`T`*:
```cpp
using ::testing::DefaultValue;
// Sets the default value to be returned. T must be CopyConstructible.
DefaultValue<T>::Set(value);
// Sets a factory. Will be invoked on demand. T must be MoveConstructible.
// T MakeT();
DefaultValue<T>::SetFactory(&MakeT);
// ... use the mocks ...
// Resets the default value.
DefaultValue<T>::Clear();
```
Example usage:
To customize the default action for functions with return type `T`, use
[`DefaultValue<T>`](reference/mocking.md#DefaultValue). For example:
```cpp
// Sets the default action for return type std::unique_ptr<Buzz> to
@ -172,55 +158,15 @@ Example usage:
```
To customize the default action for a particular method of a specific mock
object, use `ON_CALL()`. `ON_CALL()` has a similar syntax to `EXPECT_CALL()`,
but it is used for setting default behaviors (when you do not require that the
mock method is called). See [here](gmock_cook_book.md#UseOnCall) for a more
detailed discussion.
```cpp
ON_CALL(mock-object, method(matchers))
.With(multi-argument-matcher) ?
.WillByDefault(action);
```
object, use [`ON_CALL`](reference/mocking.md#ON_CALL). `ON_CALL` has a similar
syntax to `EXPECT_CALL`, but it is used for setting default behaviors when you
do not require that the mock method is called. See
[Knowing When to Expect](gmock_cook_book.md#UseOnCall) for a more detailed
discussion.
## Setting Expectations {#ExpectCall}
`EXPECT_CALL()` sets **expectations** on a mock method (How will it be called?
What will it do?):
```cpp
EXPECT_CALL(mock-object, method (matchers)?)
.With(multi-argument-matcher) ?
.Times(cardinality) ?
.InSequence(sequences) *
.After(expectations) *
.WillOnce(action) *
.WillRepeatedly(action) ?
.RetiresOnSaturation(); ?
```
For each item above, `?` means it can be used at most once, while `*` means it
can be used any number of times.
In order to pass, `EXPECT_CALL` must be used before the calls are actually made.
The `(matchers)` is a comma-separated list of matchers that correspond to each
of the arguments of `method`, and sets the expectation only for calls of
`method` that matches all of the matchers.
If `(matchers)` is omitted, the expectation is the same as if the matchers were
set to anything matchers (for example, `(_, _, _, _)` for a four-arg method).
If `Times()` is omitted, the cardinality is assumed to be:
* `Times(1)` when there is neither `WillOnce()` nor `WillRepeatedly()`;
* `Times(n)` when there are `n` `WillOnce()`s but no `WillRepeatedly()`, where
`n` >= 1; or
* `Times(AtLeast(n))` when there are `n` `WillOnce()`s and a
`WillRepeatedly()`, where `n` >= 0.
A method with no `EXPECT_CALL()` is free to be invoked *any number of times*,
and the default action will be taken each time.
See [`EXPECT_CALL`](reference/mocking.md#EXPECT_CALL) in the Mocking Reference.
## Matchers {#MatcherList}
@ -232,99 +178,16 @@ See the [Actions Reference](reference/actions.md).
## Cardinalities {#CardinalityList}
These are used in `Times()` to specify how many times a mock function will be
called:
| | |
| :---------------- | :----------------------------------------------------- |
| `AnyNumber()` | The function can be called any number of times. |
| `AtLeast(n)` | The call is expected at least `n` times. |
| `AtMost(n)` | The call is expected at most `n` times. |
| `Between(m, n)` | The call is expected between `m` and `n` (inclusive) times. |
| `Exactly(n) or n` | The call is expected exactly `n` times. In particular, the call should never happen when `n` is 0. |
See the [`Times` clause](reference/mocking.md#EXPECT_CALL.Times) of
`EXPECT_CALL` in the Mocking Reference.
## Expectation Order
By default, the expectations can be matched in *any* order. If some or all
expectations must be matched in a given order, there are two ways to specify it.
They can be used either independently or together.
### The After Clause {#AfterClause}
```cpp
using ::testing::Expectation;
...
Expectation init_x = EXPECT_CALL(foo, InitX());
Expectation init_y = EXPECT_CALL(foo, InitY());
EXPECT_CALL(foo, Bar())
.After(init_x, init_y);
```
says that `Bar()` can be called only after both `InitX()` and `InitY()` have
been called.
If you don't know how many pre-requisites an expectation has when you write it,
you can use an `ExpectationSet` to collect them:
```cpp
using ::testing::ExpectationSet;
...
ExpectationSet all_inits;
for (int i = 0; i < element_count; i++) {
all_inits += EXPECT_CALL(foo, InitElement(i));
}
EXPECT_CALL(foo, Bar())
.After(all_inits);
```
says that `Bar()` can be called only after all elements have been initialized
(but we don't care about which elements get initialized before the others).
Modifying an `ExpectationSet` after using it in an `.After()` doesn't affect the
meaning of the `.After()`.
### Sequences {#UsingSequences}
When you have a long chain of sequential expectations, it's easier to specify
the order using **sequences**, which don't require you to give each expectation
in the chain a different name. *All expected calls* in the same sequence must
occur in the order they are specified.
```cpp
using ::testing::Return;
using ::testing::Sequence;
Sequence s1, s2;
...
EXPECT_CALL(foo, Reset())
.InSequence(s1, s2)
.WillOnce(Return(true));
EXPECT_CALL(foo, GetSize())
.InSequence(s1)
.WillOnce(Return(1));
EXPECT_CALL(foo, Describe(A<const char*>()))
.InSequence(s2)
.WillOnce(Return("dummy"));
```
says that `Reset()` must be called before *both* `GetSize()` *and* `Describe()`,
and the latter two can occur in any order.
To put many expectations in a sequence conveniently:
```cpp
using ::testing::InSequence;
{
InSequence seq;
EXPECT_CALL(...)...;
EXPECT_CALL(...)...;
...
EXPECT_CALL(...)...;
}
```
says that all expected calls in the scope of `seq` must occur in strict order.
The name `seq` is irrelevant.
By default, expectations can be matched in *any* order. If some or all
expectations must be matched in a given order, you can use the
[`After` clause](reference/mocking.md#EXPECT_CALL.After) or
[`InSequence` clause](reference/mocking.md#EXPECT_CALL.InSequence) of
`EXPECT_CALL`, or use an [`InSequence` object](reference/mocking.md#InSequence).
## Verifying and Resetting a Mock

@ -1711,7 +1711,7 @@ the test should reflect our real intent, instead of being overly constraining.
gMock allows you to impose an arbitrary DAG (directed acyclic graph) on the
calls. One way to express the DAG is to use the
[After](gmock_cheat_sheet.md#AfterClause) clause of `EXPECT_CALL`.
[`After` clause](reference/mocking.md#EXPECT_CALL.After) of `EXPECT_CALL`.
Another way is via the `InSequence()` clause (not the same as the `InSequence`
class), which we borrowed from jMock 2. It's less flexible than `After()`, but

@ -0,0 +1,587 @@
# Mocking Reference
This page lists the facilities provided by GoogleTest for creating and working
with mock objects. To use them, include the header
`gmock/gmock.h`.
## Macros {#macros}
GoogleTest defines the following macros for working with mocks.
### MOCK_METHOD {#MOCK_METHOD}
`MOCK_METHOD(`*`return_type`*`,`*`method_name`*`, (`*`args...`*`));` \
`MOCK_METHOD(`*`return_type`*`,`*`method_name`*`, (`*`args...`*`),
(`*`specs...`*`));`
Defines a mock method *`method_name`* with arguments `(`*`args...`*`)` and
return type *`return_type`* within a mock class.
The parameters of `MOCK_METHOD` mirror the method declaration. The optional
fourth parameter *`specs...`* is a comma-separated list of qualifiers. The
following qualifiers are accepted:
| Qualifier | Meaning |
| -------------------------- | -------------------------------------------- |
| `const` | Makes the mocked method a `const` method. Required if overriding a `const` method. |
| `override` | Marks the method with `override`. Recommended if overriding a `virtual` method. |
| `noexcept` | Marks the method with `noexcept`. Required if overriding a `noexcept` method. |
| `Calltype(`*`calltype`*`)` | Sets the call type for the method, for example `Calltype(STDMETHODCALLTYPE)`. Useful on Windows. |
| `ref(`*`qualifier`*`)` | Marks the method with the given reference qualifier, for example `ref(&)` or `ref(&&)`. Required if overriding a method that has a reference qualifier. |
Note that commas in arguments prevent `MOCK_METHOD` from parsing the arguments
correctly if they are not appropriately surrounded by parentheses. See the
following example:
```cpp
class MyMock {
public:
// The following 2 lines will not compile due to commas in the arguments:
MOCK_METHOD(std::pair<bool, int>, GetPair, ()); // Error!
MOCK_METHOD(bool, CheckMap, (std::map<int, double>, bool)); // Error!
// One solution - wrap arguments that contain commas in parentheses:
MOCK_METHOD((std::pair<bool, int>), GetPair, ());
MOCK_METHOD(bool, CheckMap, ((std::map<int, double>), bool));
// Another solution - use type aliases:
using BoolAndInt = std::pair<bool, int>;
MOCK_METHOD(BoolAndInt, GetPair, ());
using MapIntDouble = std::map<int, double>;
MOCK_METHOD(bool, CheckMap, (MapIntDouble, bool));
};
```
`MOCK_METHOD` must be used in the `public:` section of a mock class definition,
regardless of whether the method being mocked is `public`, `protected`, or
`private` in the base class.
### EXPECT_CALL {#EXPECT_CALL}
`EXPECT_CALL(`*`mock_object`*`,`*`method_name`*`(`*`matchers...`*`))`
Creates an [expectation](../gmock_for_dummies.md#setting-expectations) that the
method *`method_name`* of the object *`mock_object`* is called with arguments
that match the given matchers *`matchers...`*. `EXPECT_CALL` must precede any
code that exercises the mock object.
The parameter *`matchers...`* is a comma-separated list of
[matchers](../gmock_for_dummies.md#matchers-what-arguments-do-we-expect) that
correspond to each argument of the method *`method_name`*. The expectation will
apply only to calls of *`method_name`* whose arguments match all of the
matchers. If `(`*`matchers...`*`)` is omitted, the expectation behaves as if
each argument's matcher were a [wildcard matcher (`_`)](matchers.md#wildcard).
See the [Matchers Reference](matchers.md) for a list of all built-in matchers.
The following chainable clauses can be used to modify the expectation, and they
must be used in the following order:
```cpp
EXPECT_CALL(mock_object, method_name(matchers...))
.With(multi_argument_matcher) // Can be used at most once
.Times(cardinality) // Can be used at most once
.InSequence(sequences...) // Can be used any number of times
.After(expectations...) // Can be used any number of times
.WillOnce(action) // Can be used any number of times
.WillRepeatedly(action) // Can be used at most once
.RetiresOnSaturation(); // Can be used at most once
```
See details for each modifier clause below.
#### With {#EXPECT_CALL.With}
`.With(`*`multi_argument_matcher`*`)`
Restricts the expectation to apply only to mock function calls whose arguments
as a whole match the multi-argument matcher *`multi_argument_matcher`*.
GoogleTest passes all of the arguments as one tuple into the matcher. The
parameter *`multi_argument_matcher`* must thus be a matcher of type
`Matcher<std::tuple<A1, ..., An>>`, where `A1, ..., An` are the types of the
function arguments.
For example, the following code sets the expectation that
`my_mock.SetPosition()` is called with any two arguments, the first argument
being less than the second:
```cpp
using ::testing::_;
using ::testing::Lt;
...
EXPECT_CALL(my_mock, SetPosition(_, _))
.With(Lt());
```
GoogleTest provides some built-in matchers for 2-tuples, including the `Lt()`
matcher above. See [Multi-argument Matchers](matchers.md#MultiArgMatchers).
The `With` clause can be used at most once on an expectation and must be the
first clause.
#### Times {#EXPECT_CALL.Times}
`.Times(`*`cardinality`*`)`
Specifies how many times the mock function call is expected.
The parameter *`cardinality`* represents the number of expected calls and can be
one of the following, all defined in the `::testing` namespace:
| Cardinality | Meaning |
| ------------------- | --------------------------------------------------- |
| `AnyNumber()` | The function can be called any number of times. |
| `AtLeast(n)` | The function call is expected at least *n* times. |
| `AtMost(n)` | The function call is expected at most *n* times. |
| `Between(m, n)` | The function call is expected between *m* and *n* times, inclusive. |
| `Exactly(n)` or `n` | The function call is expected exactly *n* times. If *n* is 0, the call should never happen. |
If the `Times` clause is omitted, GoogleTest infers the cardinality as follows:
* If neither [`WillOnce`](#EXPECT_CALL.WillOnce) nor
[`WillRepeatedly`](#EXPECT_CALL.WillRepeatedly) are specified, the inferred
cardinality is `Times(1)`.
* If there are *n* `WillOnce` clauses and no `WillRepeatedly` clause, where
*n* >= 1, the inferred cardinality is `Times(n)`.
* If there are *n* `WillOnce` clauses and one `WillRepeatedly` clause, where
*n* >= 0, the inferred cardinality is `Times(AtLeast(n))`.
The `Times` clause can be used at most once on an expectation.
#### InSequence {#EXPECT_CALL.InSequence}
`.InSequence(`*`sequences...`*`)`
Specifies that the mock function call is expected in a certain sequence.
The parameter *`sequences...`* is any number of [`Sequence`](#Sequence) objects.
Expected calls assigned to the same sequence are expected to occur in the order
the expectations are declared.
For example, the following code sets the expectation that the `Reset()` method
of `my_mock` is called before both `GetSize()` and `Describe()`, and `GetSize()`
and `Describe()` can occur in any order relative to each other:
```cpp
using ::testing::Sequence;
Sequence s1, s2;
...
EXPECT_CALL(my_mock, Reset())
.InSequence(s1, s2);
EXPECT_CALL(my_mock, GetSize())
.InSequence(s1);
EXPECT_CALL(my_mock, Describe())
.InSequence(s2);
```
The `InSequence` clause can be used any number of times on an expectation.
See also the [`InSequence` class](#InSequence).
#### After {#EXPECT_CALL.After}
`.After(`*`expectations...`*`)`
Specifies that the mock function call is expected to occur after one or more
other calls.
The parameter *`expectations...`* can be up to five
[`Expectation`](#Expectation) or [`ExpectationSet`](#ExpectationSet) objects.
The mock function call is expected to occur after all of the given expectations.
For example, the following code sets the expectation that the `Describe()`
method of `my_mock` is called only after both `InitX()` and `InitY()` have been
called.
```cpp
using ::testing::Expectation;
...
Expectation init_x = EXPECT_CALL(my_mock, InitX());
Expectation init_y = EXPECT_CALL(my_mock, InitY());
EXPECT_CALL(my_mock, Describe())
.After(init_x, init_y);
```
The `ExpectationSet` object is helpful when the number of prerequisites for an
expectation is large or variable, for example:
```cpp
using ::testing::ExpectationSet;
...
ExpectationSet all_inits;
// Collect all expectations of InitElement() calls
for (int i = 0; i < element_count; i++) {
all_inits += EXPECT_CALL(my_mock, InitElement(i));
}
EXPECT_CALL(my_mock, Describe())
.After(all_inits); // Expect Describe() call after all InitElement() calls
```
The `After` clause can be used any number of times on an expectation.
#### WillOnce {#EXPECT_CALL.WillOnce}
`.WillOnce(`*`action`*`)`
Specifies the mock function's actual behavior when invoked, for a single
matching function call.
The parameter *`action`* represents the
[action](../gmock_for_dummies.md#actions-what-should-it-do) that the function
call will perform. See the [Actions Reference](actions.md) for a list of
built-in actions.
The use of `WillOnce` implicitly sets a cardinality on the expectation when
`Times` is not specified. See [`Times`](#EXPECT_CALL.Times).
Each matching function call will perform the next action in the order declared.
For example, the following code specifies that `my_mock.GetNumber()` is expected
to be called exactly 3 times and will return `1`, `2`, and `3` respectively on
the first, second, and third calls:
```cpp
using ::testing::Return;
...
EXPECT_CALL(my_mock, GetNumber())
.WillOnce(Return(1))
.WillOnce(Return(2))
.WillOnce(Return(3));
```
The `WillOnce` clause can be used any number of times on an expectation.
#### WillRepeatedly {#EXPECT_CALL.WillRepeatedly}
`.WillRepeatedly(`*`action`*`)`
Specifies the mock function's actual behavior when invoked, for all subsequent
matching function calls. Takes effect after the actions specified in the
[`WillOnce`](#EXPECT_CALL.WillOnce) clauses, if any, have been performed.
The parameter *`action`* represents the
[action](../gmock_for_dummies.md#actions-what-should-it-do) that the function
call will perform. See the [Actions Reference](actions.md) for a list of
built-in actions.
The use of `WillRepeatedly` implicitly sets a cardinality on the expectation
when `Times` is not specified. See [`Times`](#EXPECT_CALL.Times).
If any `WillOnce` clauses have been specified, matching function calls will
perform those actions before the action specified by `WillRepeatedly`. See the
following example:
```cpp
using ::testing::Return;
...
EXPECT_CALL(my_mock, GetName())
.WillRepeatedly(Return("John Doe")); // Return "John Doe" on all calls
EXPECT_CALL(my_mock, GetNumber())
.WillOnce(Return(42)) // Return 42 on the first call
.WillRepeatedly(Return(7)); // Return 7 on all subsequent calls
```
The `WillRepeatedly` clause can be used at most once on an expectation.
#### RetiresOnSaturation {#EXPECT_CALL.RetiresOnSaturation}
`.RetiresOnSaturation()`
Indicates that the expectation will no longer be active after the expected
number of matching function calls has been reached.
The `RetiresOnSaturation` clause is only meaningful for expectations with an
upper-bounded cardinality. The expectation will *retire* (no longer match any
function calls) after it has been *saturated* (the upper bound has been
reached). See the following example:
```cpp
using ::testing::_;
using ::testing::AnyNumber;
...
EXPECT_CALL(my_mock, SetNumber(_)) // Expectation 1
.Times(AnyNumber());
EXPECT_CALL(my_mock, SetNumber(7)) // Expectation 2
.Times(2)
.RetiresOnSaturation();
```
In the above example, the first two calls to `my_mock.SetNumber(7)` match
expectation 2, which then becomes inactive and no longer matches any calls. A
third call to `my_mock.SetNumber(7)` would then match expectation 1. Without
`RetiresOnSaturation()` on expectation 2, a third call to `my_mock.SetNumber(7)`
would match expectation 2 again, producing a failure since the limit of 2 calls
was exceeded.
The `RetiresOnSaturation` clause can be used at most once on an expectation and
must be the last clause.
### ON_CALL {#ON_CALL}
`ON_CALL(`*`mock_object`*`,`*`method_name`*`(`*`matchers...`*`))`
Defines what happens when the method *`method_name`* of the object
*`mock_object`* is called with arguments that match the given matchers
*`matchers...`*. Requires a modifier clause to specify the method's behavior.
*Does not* set any expectations that the method will be called.
The parameter *`matchers...`* is a comma-separated list of
[matchers](../gmock_for_dummies.md#matchers-what-arguments-do-we-expect) that
correspond to each argument of the method *`method_name`*. The `ON_CALL`
specification will apply only to calls of *`method_name`* whose arguments match
all of the matchers. If `(`*`matchers...`*`)` is omitted, the behavior is as if
each argument's matcher were a [wildcard matcher (`_`)](matchers.md#wildcard).
See the [Matchers Reference](matchers.md) for a list of all built-in matchers.
The following chainable clauses can be used to set the method's behavior, and
they must be used in the following order:
```cpp
ON_CALL(mock_object, method_name(matchers...))
.With(multi_argument_matcher) // Can be used at most once
.WillByDefault(action); // Required
```
See details for each modifier clause below.
#### With {#ON_CALL.With}
`.With(`*`multi_argument_matcher`*`)`
Restricts the specification to only mock function calls whose arguments as a
whole match the multi-argument matcher *`multi_argument_matcher`*.
GoogleTest passes all of the arguments as one tuple into the matcher. The
parameter *`multi_argument_matcher`* must thus be a matcher of type
`Matcher<std::tuple<A1, ..., An>>`, where `A1, ..., An` are the types of the
function arguments.
For example, the following code sets the default behavior when
`my_mock.SetPosition()` is called with any two arguments, the first argument
being less than the second:
```cpp
using ::testing::_;
using ::testing::Lt;
using ::testing::Return;
...
ON_CALL(my_mock, SetPosition(_, _))
.With(Lt())
.WillByDefault(Return(true));
```
GoogleTest provides some built-in matchers for 2-tuples, including the `Lt()`
matcher above. See [Multi-argument Matchers](matchers.md#MultiArgMatchers).
The `With` clause can be used at most once with each `ON_CALL` statement.
#### WillByDefault {#ON_CALL.WillByDefault}
`.WillByDefault(`*`action`*`)`
Specifies the default behavior of a matching mock function call.
The parameter *`action`* represents the
[action](../gmock_for_dummies.md#actions-what-should-it-do) that the function
call will perform. See the [Actions Reference](actions.md) for a list of
built-in actions.
For example, the following code specifies that by default, a call to
`my_mock.Greet()` will return `"hello"`:
```cpp
using ::testing::Return;
...
ON_CALL(my_mock, Greet())
.WillByDefault(Return("hello"));
```
The action specified by `WillByDefault` is superseded by the actions specified
on a matching `EXPECT_CALL` statement, if any. See the
[`WillOnce`](#EXPECT_CALL.WillOnce) and
[`WillRepeatedly`](#EXPECT_CALL.WillRepeatedly) clauses of `EXPECT_CALL`.
The `WillByDefault` clause must be used exactly once with each `ON_CALL`
statement.
## Classes {#classes}
GoogleTest defines the following classes for working with mocks.
### DefaultValue {#DefaultValue}
`::testing::DefaultValue<T>`
Allows a user to specify the default value for a type `T` that is both copyable
and publicly destructible (i.e. anything that can be used as a function return
type). For mock functions with a return type of `T`, this default value is
returned from function calls that do not specify an action.
Provides the static methods `Set()`, `SetFactory()`, and `Clear()` to manage the
default value:
```cpp
// Sets the default value to be returned. T must be copy constructible.
DefaultValue<T>::Set(value);
// Sets a factory. Will be invoked on demand. T must be move constructible.
T MakeT();
DefaultValue<T>::SetFactory(&MakeT);
// Unsets the default value.
DefaultValue<T>::Clear();
```
### NiceMock {#NiceMock}
`::testing::NiceMock<T>`
Represents a mock object that suppresses warnings on
[uninteresting calls](../gmock_cook_book.md#uninteresting-vs-unexpected). The
template parameter `T` is any mock class, except for another `NiceMock`,
`NaggyMock`, or `StrictMock`.
Usage of `NiceMock<T>` is analogous to usage of `T`. `NiceMock<T>` is a subclass
of `T`, so it can be used wherever an object of type `T` is accepted. In
addition, `NiceMock<T>` can be constructed with any arguments that a constructor
of `T` accepts.
For example, the following code suppresses warnings on the mock `my_mock` of
type `MockClass` if a method other than `DoSomething()` is called:
```cpp
using ::testing::NiceMock;
...
NiceMock<MockClass> my_mock("some", "args");
EXPECT_CALL(my_mock, DoSomething());
... code that uses my_mock ...
```
`NiceMock<T>` only works for mock methods defined using the `MOCK_METHOD` macro
directly in the definition of class `T`. If a mock method is defined in a base
class of `T`, a warning might still be generated.
`NiceMock<T>` might not work correctly if the destructor of `T` is not virtual.
### NaggyMock {#NaggyMock}
`::testing::NaggyMock<T>`
Represents a mock object that generates warnings on
[uninteresting calls](../gmock_cook_book.md#uninteresting-vs-unexpected). The
template parameter `T` is any mock class, except for another `NiceMock`,
`NaggyMock`, or `StrictMock`.
Usage of `NaggyMock<T>` is analogous to usage of `T`. `NaggyMock<T>` is a
subclass of `T`, so it can be used wherever an object of type `T` is accepted.
In addition, `NaggyMock<T>` can be constructed with any arguments that a
constructor of `T` accepts.
For example, the following code generates warnings on the mock `my_mock` of type
`MockClass` if a method other than `DoSomething()` is called:
```cpp
using ::testing::NaggyMock;
...
NaggyMock<MockClass> my_mock("some", "args");
EXPECT_CALL(my_mock, DoSomething());
... code that uses my_mock ...
```
Mock objects of type `T` by default behave the same way as `NaggyMock<T>`.
### StrictMock {#StrictMock}
`::testing::StrictMock<T>`
Represents a mock object that generates test failures on
[uninteresting calls](../gmock_cook_book.md#uninteresting-vs-unexpected). The
template parameter `T` is any mock class, except for another `NiceMock`,
`NaggyMock`, or `StrictMock`.
Usage of `StrictMock<T>` is analogous to usage of `T`. `StrictMock<T>` is a
subclass of `T`, so it can be used wherever an object of type `T` is accepted.
In addition, `StrictMock<T>` can be constructed with any arguments that a
constructor of `T` accepts.
For example, the following code generates a test failure on the mock `my_mock`
of type `MockClass` if a method other than `DoSomething()` is called:
```cpp
using ::testing::StrictMock;
...
StrictMock<MockClass> my_mock("some", "args");
EXPECT_CALL(my_mock, DoSomething());
... code that uses my_mock ...
```
`StrictMock<T>` only works for mock methods defined using the `MOCK_METHOD`
macro directly in the definition of class `T`. If a mock method is defined in a
base class of `T`, a failure might not be generated.
`StrictMock<T>` might not work correctly if the destructor of `T` is not
virtual.
### Sequence {#Sequence}
`::testing::Sequence`
Represents a chronological sequence of expectations. See the
[`InSequence`](#EXPECT_CALL.InSequence) clause of `EXPECT_CALL` for usage.
### InSequence {#InSequence}
`::testing::InSequence`
An object of this type causes all expectations encountered in its scope to be
put in an anonymous sequence.
This allows more convenient expression of multiple expectations in a single
sequence:
```cpp
using ::testing::InSequence;
{
InSequence seq;
// The following are expected to occur in the order declared.
EXPECT_CALL(...);
EXPECT_CALL(...);
...
EXPECT_CALL(...);
}
```
The name of the `InSequence` object does not matter.
### Expectation {#Expectation}
`::testing::Expectation`
Represents a mock function call expectation as created by
[`EXPECT_CALL`](#EXPECT_CALL):
```cpp
using ::testing::Expectation;
Expectation my_expectation = EXPECT_CALL(...);
```
Useful for specifying sequences of expectations; see the
[`After`](#EXPECT_CALL.After) clause of `EXPECT_CALL`.
### ExpectationSet {#ExpectationSet}
`::testing::ExpectationSet`
Represents a set of mock function call expectations.
Use the `+=` operator to add [`Expectation`](#Expectation) objects to the set:
```cpp
using ::testing::ExpectationSet;
ExpectationSet my_expectations;
my_expectations += EXPECT_CALL(...);
```
Useful for specifying sequences of expectations; see the
[`After`](#EXPECT_CALL.After) clause of `EXPECT_CALL`.
Loading…
Cancel
Save