Public interface definitions of Google APIs. Topics (grpc依赖)
 
 

593 lines
26 KiB

// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
package google.cloud.aiplatform.v1beta1;
import "google/api/field_behavior.proto";
import "google/cloud/aiplatform/v1beta1/explanation_metadata.proto";
import "google/cloud/aiplatform/v1beta1/io.proto";
import "google/protobuf/struct.proto";
option csharp_namespace = "Google.Cloud.AIPlatform.V1Beta1";
option go_package = "cloud.google.com/go/aiplatform/apiv1beta1/aiplatformpb;aiplatformpb";
option java_multiple_files = true;
option java_outer_classname = "ExplanationProto";
option java_package = "com.google.cloud.aiplatform.v1beta1";
option php_namespace = "Google\\Cloud\\AIPlatform\\V1beta1";
option ruby_package = "Google::Cloud::AIPlatform::V1beta1";
// Explanation of a prediction (provided in
// [PredictResponse.predictions][google.cloud.aiplatform.v1beta1.PredictResponse.predictions])
// produced by the Model on a given
// [instance][google.cloud.aiplatform.v1beta1.ExplainRequest.instances].
message Explanation {
// Output only. Feature attributions grouped by predicted outputs.
//
// For Models that predict only one output, such as regression Models that
// predict only one score, there is only one attibution that explains the
// predicted output. For Models that predict multiple outputs, such as
// multiclass Models that predict multiple classes, each element explains one
// specific item.
// [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index]
// can be used to identify which output this attribution is explaining.
//
// If users set
// [ExplanationParameters.top_k][google.cloud.aiplatform.v1beta1.ExplanationParameters.top_k],
// the attributions are sorted by
// [instance_output_value][Attributions.instance_output_value] in descending
// order. If
// [ExplanationParameters.output_indices][google.cloud.aiplatform.v1beta1.ExplanationParameters.output_indices]
// is specified, the attributions are stored by
// [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index]
// in the same order as they appear in the output_indices.
repeated Attribution attributions = 1
[(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. List of the nearest neighbors for example-based explanations.
//
// For models deployed with the examples explanations feature enabled, the
// attributions field is empty and instead the neighbors field is populated.
repeated Neighbor neighbors = 2 [(google.api.field_behavior) = OUTPUT_ONLY];
}
// Aggregated explanation metrics for a Model over a set of instances.
message ModelExplanation {
// Output only. Aggregated attributions explaining the Model's prediction
// outputs over the set of instances. The attributions are grouped by outputs.
//
// For Models that predict only one output, such as regression Models that
// predict only one score, there is only one attibution that explains the
// predicted output. For Models that predict multiple outputs, such as
// multiclass Models that predict multiple classes, each element explains one
// specific item.
// [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index]
// can be used to identify which output this attribution is explaining.
//
// The
// [baselineOutputValue][google.cloud.aiplatform.v1beta1.Attribution.baseline_output_value],
// [instanceOutputValue][google.cloud.aiplatform.v1beta1.Attribution.instance_output_value]
// and
// [featureAttributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions]
// fields are averaged over the test data.
//
// NOTE: Currently AutoML tabular classification Models produce only one
// attribution, which averages attributions over all the classes it predicts.
// [Attribution.approximation_error][google.cloud.aiplatform.v1beta1.Attribution.approximation_error]
// is not populated.
repeated Attribution mean_attributions = 1
[(google.api.field_behavior) = OUTPUT_ONLY];
}
// Attribution that explains a particular prediction output.
message Attribution {
// Output only. Model predicted output if the input instance is constructed
// from the baselines of all the features defined in
// [ExplanationMetadata.inputs][google.cloud.aiplatform.v1beta1.ExplanationMetadata.inputs].
// The field name of the output is determined by the key in
// [ExplanationMetadata.outputs][google.cloud.aiplatform.v1beta1.ExplanationMetadata.outputs].
//
// If the Model's predicted output has multiple dimensions (rank > 1), this is
// the value in the output located by
// [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index].
//
// If there are multiple baselines, their output values are averaged.
double baseline_output_value = 1 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. Model predicted output on the corresponding [explanation
// instance][ExplainRequest.instances]. The field name of the output is
// determined by the key in
// [ExplanationMetadata.outputs][google.cloud.aiplatform.v1beta1.ExplanationMetadata.outputs].
//
// If the Model predicted output has multiple dimensions, this is the value in
// the output located by
// [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index].
double instance_output_value = 2 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. Attributions of each explained feature. Features are extracted
// from the [prediction
// instances][google.cloud.aiplatform.v1beta1.ExplainRequest.instances]
// according to [explanation metadata for
// inputs][google.cloud.aiplatform.v1beta1.ExplanationMetadata.inputs].
//
// The value is a struct, whose keys are the name of the feature. The values
// are how much the feature in the
// [instance][google.cloud.aiplatform.v1beta1.ExplainRequest.instances]
// contributed to the predicted result.
//
// The format of the value is determined by the feature's input format:
//
// * If the feature is a scalar value, the attribution value is a
// [floating number][google.protobuf.Value.number_value].
//
// * If the feature is an array of scalar values, the attribution value is
// an [array][google.protobuf.Value.list_value].
//
// * If the feature is a struct, the attribution value is a
// [struct][google.protobuf.Value.struct_value]. The keys in the
// attribution value struct are the same as the keys in the feature
// struct. The formats of the values in the attribution struct are
// determined by the formats of the values in the feature struct.
//
// The
// [ExplanationMetadata.feature_attributions_schema_uri][google.cloud.aiplatform.v1beta1.ExplanationMetadata.feature_attributions_schema_uri]
// field, pointed to by the
// [ExplanationSpec][google.cloud.aiplatform.v1beta1.ExplanationSpec] field of
// the
// [Endpoint.deployed_models][google.cloud.aiplatform.v1beta1.Endpoint.deployed_models]
// object, points to the schema file that describes the features and their
// attribution values (if it is populated).
google.protobuf.Value feature_attributions = 3
[(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. The index that locates the explained prediction output.
//
// If the prediction output is a scalar value, output_index is not populated.
// If the prediction output has multiple dimensions, the length of the
// output_index list is the same as the number of dimensions of the output.
// The i-th element in output_index is the element index of the i-th dimension
// of the output vector. Indices start from 0.
repeated int32 output_index = 4 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. The display name of the output identified by
// [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index].
// For example, the predicted class name by a multi-classification Model.
//
// This field is only populated iff the Model predicts display names as a
// separate field along with the explained output. The predicted display name
// must has the same shape of the explained output, and can be located using
// output_index.
string output_display_name = 5 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. Error of
// [feature_attributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions]
// caused by approximation used in the explanation method. Lower value means
// more precise attributions.
//
// * For Sampled Shapley
// [attribution][google.cloud.aiplatform.v1beta1.ExplanationParameters.sampled_shapley_attribution],
// increasing
// [path_count][google.cloud.aiplatform.v1beta1.SampledShapleyAttribution.path_count]
// might reduce the error.
// * For Integrated Gradients
// [attribution][google.cloud.aiplatform.v1beta1.ExplanationParameters.integrated_gradients_attribution],
// increasing
// [step_count][google.cloud.aiplatform.v1beta1.IntegratedGradientsAttribution.step_count]
// might reduce the error.
// * For [XRAI
// attribution][google.cloud.aiplatform.v1beta1.ExplanationParameters.xrai_attribution],
// increasing
// [step_count][google.cloud.aiplatform.v1beta1.XraiAttribution.step_count]
// might reduce the error.
//
// See [this introduction](/vertex-ai/docs/explainable-ai/overview)
// for more information.
double approximation_error = 6 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. Name of the explain output. Specified as the key in
// [ExplanationMetadata.outputs][google.cloud.aiplatform.v1beta1.ExplanationMetadata.outputs].
string output_name = 7 [(google.api.field_behavior) = OUTPUT_ONLY];
}
// Neighbors for example-based explanations.
message Neighbor {
// Output only. The neighbor id.
string neighbor_id = 1 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. The neighbor distance.
double neighbor_distance = 2 [(google.api.field_behavior) = OUTPUT_ONLY];
}
// Specification of Model explanation.
message ExplanationSpec {
// Required. Parameters that configure explaining of the Model's predictions.
ExplanationParameters parameters = 1 [(google.api.field_behavior) = REQUIRED];
// Optional. Metadata describing the Model's input and output for explanation.
ExplanationMetadata metadata = 2 [(google.api.field_behavior) = OPTIONAL];
}
// Parameters to configure explaining for Model's predictions.
message ExplanationParameters {
oneof method {
// An attribution method that approximates Shapley values for features that
// contribute to the label being predicted. A sampling strategy is used to
// approximate the value rather than considering all subsets of features.
// Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
SampledShapleyAttribution sampled_shapley_attribution = 1;
// An attribution method that computes Aumann-Shapley values taking
// advantage of the model's fully differentiable structure. Refer to this
// paper for more details: https://arxiv.org/abs/1703.01365
IntegratedGradientsAttribution integrated_gradients_attribution = 2;
// An attribution method that redistributes Integrated Gradients
// attribution to segmented regions, taking advantage of the model's fully
// differentiable structure. Refer to this paper for
// more details: https://arxiv.org/abs/1906.02825
//
// XRAI currently performs better on natural images, like a picture of a
// house or an animal. If the images are taken in artificial environments,
// like a lab or manufacturing line, or from diagnostic equipment, like
// x-rays or quality-control cameras, use Integrated Gradients instead.
XraiAttribution xrai_attribution = 3;
// Example-based explanations that returns the nearest neighbors from the
// provided dataset.
Examples examples = 7;
}
// If populated, returns attributions for top K indices of outputs
// (defaults to 1). Only applies to Models that predicts more than one outputs
// (e,g, multi-class Models). When set to -1, returns explanations for all
// outputs.
int32 top_k = 4;
// If populated, only returns attributions that have
// [output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index]
// contained in output_indices. It must be an ndarray of integers, with the
// same shape of the output it's explaining.
//
// If not populated, returns attributions for
// [top_k][google.cloud.aiplatform.v1beta1.ExplanationParameters.top_k]
// indices of outputs. If neither top_k nor output_indices is populated,
// returns the argmax index of the outputs.
//
// Only applicable to Models that predict multiple outputs (e,g, multi-class
// Models that predict multiple classes).
google.protobuf.ListValue output_indices = 5;
}
// An attribution method that approximates Shapley values for features that
// contribute to the label being predicted. A sampling strategy is used to
// approximate the value rather than considering all subsets of features.
message SampledShapleyAttribution {
// Required. The number of feature permutations to consider when approximating
// the Shapley values.
//
// Valid range of its value is [1, 50], inclusively.
int32 path_count = 1 [(google.api.field_behavior) = REQUIRED];
}
// An attribution method that computes the Aumann-Shapley value taking advantage
// of the model's fully differentiable structure. Refer to this paper for
// more details: https://arxiv.org/abs/1703.01365
message IntegratedGradientsAttribution {
// Required. The number of steps for approximating the path integral.
// A good value to start is 50 and gradually increase until the
// sum to diff property is within the desired error range.
//
// Valid range of its value is [1, 100], inclusively.
int32 step_count = 1 [(google.api.field_behavior) = REQUIRED];
// Config for SmoothGrad approximation of gradients.
//
// When enabled, the gradients are approximated by averaging the gradients
// from noisy samples in the vicinity of the inputs. Adding
// noise can help improve the computed gradients. Refer to this paper for more
// details: https://arxiv.org/pdf/1706.03825.pdf
SmoothGradConfig smooth_grad_config = 2;
// Config for IG with blur baseline.
//
// When enabled, a linear path from the maximally blurred image to the input
// image is created. Using a blurred baseline instead of zero (black image) is
// motivated by the BlurIG approach explained here:
// https://arxiv.org/abs/2004.03383
BlurBaselineConfig blur_baseline_config = 3;
}
// An explanation method that redistributes Integrated Gradients
// attributions to segmented regions, taking advantage of the model's fully
// differentiable structure. Refer to this paper for more details:
// https://arxiv.org/abs/1906.02825
//
// Supported only by image Models.
message XraiAttribution {
// Required. The number of steps for approximating the path integral.
// A good value to start is 50 and gradually increase until the
// sum to diff property is met within the desired error range.
//
// Valid range of its value is [1, 100], inclusively.
int32 step_count = 1 [(google.api.field_behavior) = REQUIRED];
// Config for SmoothGrad approximation of gradients.
//
// When enabled, the gradients are approximated by averaging the gradients
// from noisy samples in the vicinity of the inputs. Adding
// noise can help improve the computed gradients. Refer to this paper for more
// details: https://arxiv.org/pdf/1706.03825.pdf
SmoothGradConfig smooth_grad_config = 2;
// Config for XRAI with blur baseline.
//
// When enabled, a linear path from the maximally blurred image to the input
// image is created. Using a blurred baseline instead of zero (black image) is
// motivated by the BlurIG approach explained here:
// https://arxiv.org/abs/2004.03383
BlurBaselineConfig blur_baseline_config = 3;
}
// Config for SmoothGrad approximation of gradients.
//
// When enabled, the gradients are approximated by averaging the gradients from
// noisy samples in the vicinity of the inputs. Adding noise can help improve
// the computed gradients. Refer to this paper for more details:
// https://arxiv.org/pdf/1706.03825.pdf
message SmoothGradConfig {
// Represents the standard deviation of the gaussian kernel
// that will be used to add noise to the interpolated inputs
// prior to computing gradients.
oneof GradientNoiseSigma {
// This is a single float value and will be used to add noise to all the
// features. Use this field when all features are normalized to have the
// same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where
// features are normalized to have 0-mean and 1-variance. Learn more about
// [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization).
//
// For best results the recommended value is about 10% - 20% of the standard
// deviation of the input feature. Refer to section 3.2 of the SmoothGrad
// paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1.
//
// If the distribution is different per feature, set
// [feature_noise_sigma][google.cloud.aiplatform.v1beta1.SmoothGradConfig.feature_noise_sigma]
// instead for each feature.
float noise_sigma = 1;
// This is similar to
// [noise_sigma][google.cloud.aiplatform.v1beta1.SmoothGradConfig.noise_sigma],
// but provides additional flexibility. A separate noise sigma can be
// provided for each feature, which is useful if their distributions are
// different. No noise is added to features that are not set. If this field
// is unset,
// [noise_sigma][google.cloud.aiplatform.v1beta1.SmoothGradConfig.noise_sigma]
// will be used for all features.
FeatureNoiseSigma feature_noise_sigma = 2;
}
// The number of gradient samples to use for
// approximation. The higher this number, the more accurate the gradient
// is, but the runtime complexity increases by this factor as well.
// Valid range of its value is [1, 50]. Defaults to 3.
int32 noisy_sample_count = 3;
}
// Noise sigma by features. Noise sigma represents the standard deviation of the
// gaussian kernel that will be used to add noise to interpolated inputs prior
// to computing gradients.
message FeatureNoiseSigma {
// Noise sigma for a single feature.
message NoiseSigmaForFeature {
// The name of the input feature for which noise sigma is provided. The
// features are defined in
// [explanation metadata
// inputs][google.cloud.aiplatform.v1beta1.ExplanationMetadata.inputs].
string name = 1;
// This represents the standard deviation of the Gaussian kernel that will
// be used to add noise to the feature prior to computing gradients. Similar
// to
// [noise_sigma][google.cloud.aiplatform.v1beta1.SmoothGradConfig.noise_sigma]
// but represents the noise added to the current feature. Defaults to 0.1.
float sigma = 2;
}
// Noise sigma per feature. No noise is added to features that are not set.
repeated NoiseSigmaForFeature noise_sigma = 1;
}
// Config for blur baseline.
//
// When enabled, a linear path from the maximally blurred image to the input
// image is created. Using a blurred baseline instead of zero (black image) is
// motivated by the BlurIG approach explained here:
// https://arxiv.org/abs/2004.03383
message BlurBaselineConfig {
// The standard deviation of the blur kernel for the blurred baseline. The
// same blurring parameter is used for both the height and the width
// dimension. If not set, the method defaults to the zero (i.e. black for
// images) baseline.
float max_blur_sigma = 1;
}
// Example-based explainability that returns the nearest neighbors from the
// provided dataset.
message Examples {
// The Cloud Storage input instances.
message ExampleGcsSource {
// The format of the input example instances.
enum DataFormat {
// Format unspecified, used when unset.
DATA_FORMAT_UNSPECIFIED = 0;
// Examples are stored in JSONL files.
JSONL = 1;
}
// The format in which instances are given, if not specified, assume it's
// JSONL format. Currently only JSONL format is supported.
DataFormat data_format = 1;
// The Cloud Storage location for the input instances.
GcsSource gcs_source = 2;
}
oneof source {
// The Cloud Storage input instances.
ExampleGcsSource example_gcs_source = 5;
}
oneof config {
// The full configuration for the generated index, the semantics are the
// same as [metadata][google.cloud.aiplatform.v1beta1.Index.metadata] and
// should match
// [NearestNeighborSearchConfig](https://cloud.google.com/vertex-ai/docs/explainable-ai/configuring-explanations-example-based#nearest-neighbor-search-config).
google.protobuf.Value nearest_neighbor_search_config = 2;
// Simplified preset configuration, which automatically sets configuration
// values based on the desired query speed-precision trade-off and modality.
Presets presets = 4;
}
// The Cloud Storage locations that contain the instances to be
// indexed for approximate nearest neighbor search.
GcsSource gcs_source = 1;
// The number of neighbors to return when querying for examples.
int32 neighbor_count = 3;
}
// Preset configuration for example-based explanations
message Presets {
// Preset option controlling parameters for query speed-precision trade-off
enum Query {
// More precise neighbors as a trade-off against slower response.
PRECISE = 0;
// Faster response as a trade-off against less precise neighbors.
FAST = 1;
}
// Preset option controlling parameters for different modalities
enum Modality {
// Should not be set. Added as a recommended best practice for enums
MODALITY_UNSPECIFIED = 0;
// IMAGE modality
IMAGE = 1;
// TEXT modality
TEXT = 2;
// TABULAR modality
TABULAR = 3;
}
// Preset option controlling parameters for speed-precision trade-off when
// querying for examples. If omitted, defaults to `PRECISE`.
optional Query query = 1;
// The modality of the uploaded model, which automatically configures the
// distance measurement and feature normalization for the underlying example
// index and queries. If your model does not precisely fit one of these types,
// it is okay to choose the closest type.
Modality modality = 2;
}
// The [ExplanationSpec][google.cloud.aiplatform.v1beta1.ExplanationSpec]
// entries that can be overridden at [online
// explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] time.
message ExplanationSpecOverride {
// The parameters to be overridden. Note that the
// attribution method cannot be changed. If not specified,
// no parameter is overridden.
ExplanationParameters parameters = 1;
// The metadata to be overridden. If not specified, no metadata is overridden.
ExplanationMetadataOverride metadata = 2;
// The example-based explanations parameter overrides.
ExamplesOverride examples_override = 3;
}
// The
// [ExplanationMetadata][google.cloud.aiplatform.v1beta1.ExplanationMetadata]
// entries that can be overridden at [online
// explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] time.
message ExplanationMetadataOverride {
// The [input
// metadata][google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata]
// entries to be overridden.
message InputMetadataOverride {
// Baseline inputs for this feature.
//
// This overrides the `input_baseline` field of the
// [ExplanationMetadata.InputMetadata][google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata]
// object of the corresponding feature's input metadata. If it's not
// specified, the original baselines are not overridden.
repeated google.protobuf.Value input_baselines = 1;
}
// Required. Overrides the [input
// metadata][google.cloud.aiplatform.v1beta1.ExplanationMetadata.inputs] of
// the features. The key is the name of the feature to be overridden. The keys
// specified here must exist in the input metadata to be overridden. If a
// feature is not specified here, the corresponding feature's input metadata
// is not overridden.
map<string, InputMetadataOverride> inputs = 1
[(google.api.field_behavior) = REQUIRED];
}
// Overrides for example-based explanations.
message ExamplesOverride {
// Data format enum.
enum DataFormat {
// Unspecified format. Must not be used.
DATA_FORMAT_UNSPECIFIED = 0;
// Provided data is a set of model inputs.
INSTANCES = 1;
// Provided data is a set of embeddings.
EMBEDDINGS = 2;
}
// The number of neighbors to return.
int32 neighbor_count = 1;
// The number of neighbors to return that have the same crowding tag.
int32 crowding_count = 2;
// Restrict the resulting nearest neighbors to respect these constraints.
repeated ExamplesRestrictionsNamespace restrictions = 3;
// If true, return the embeddings instead of neighbors.
bool return_embeddings = 4;
// The format of the data being provided with each call.
DataFormat data_format = 5;
}
// Restrictions namespace for example-based explanations overrides.
message ExamplesRestrictionsNamespace {
// The namespace name.
string namespace_name = 1;
// The list of allowed tags.
repeated string allow = 2;
// The list of deny tags.
repeated string deny = 3;
}