Public interface definitions of Google APIs. Topics (grpc依赖)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

263 lines
12 KiB

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
package google.cloud.aiplatform.v1beta1;
import "google/api/field_behavior.proto";
import "google/api/resource.proto";
import "google/cloud/aiplatform/v1beta1/encryption_spec.proto";
import "google/cloud/aiplatform/v1beta1/explanation.proto";
import "google/cloud/aiplatform/v1beta1/io.proto";
import "google/cloud/aiplatform/v1beta1/machine_resources.proto";
import "google/protobuf/timestamp.proto";
option csharp_namespace = "Google.Cloud.AIPlatform.V1Beta1";
option go_package = "google.golang.org/genproto/googleapis/cloud/aiplatform/v1beta1;aiplatform";
option java_multiple_files = true;
option java_outer_classname = "EndpointProto";
option java_package = "com.google.cloud.aiplatform.v1beta1";
option php_namespace = "Google\\Cloud\\AIPlatform\\V1beta1";
option ruby_package = "Google::Cloud::AIPlatform::V1beta1";
// Models are deployed into it, and afterwards Endpoint is called to obtain
// predictions and explanations.
message Endpoint {
option (google.api.resource) = {
type: "aiplatform.googleapis.com/Endpoint"
pattern: "projects/{project}/locations/{location}/endpoints/{endpoint}"
};
// Output only. The resource name of the Endpoint.
string name = 1 [(google.api.field_behavior) = OUTPUT_ONLY];
// Required. The display name of the Endpoint.
// The name can be up to 128 characters long and can be consist of any UTF-8
// characters.
string display_name = 2 [(google.api.field_behavior) = REQUIRED];
// The description of the Endpoint.
string description = 3;
// Output only. The models deployed in this Endpoint.
// To add or remove DeployedModels use [EndpointService.DeployModel][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel] and
// [EndpointService.UndeployModel][google.cloud.aiplatform.v1beta1.EndpointService.UndeployModel] respectively.
repeated DeployedModel deployed_models = 4 [(google.api.field_behavior) = OUTPUT_ONLY];
// A map from a DeployedModel's ID to the percentage of this Endpoint's
// traffic that should be forwarded to that DeployedModel.
//
// If a DeployedModel's ID is not listed in this map, then it receives no
// traffic.
//
// The traffic percentage values must add up to 100, or map must be empty if
// the Endpoint is to not accept any traffic at a moment.
map<string, int32> traffic_split = 5;
// Used to perform consistent read-modify-write updates. If not set, a blind
// "overwrite" update happens.
string etag = 6;
// The labels with user-defined metadata to organize your Endpoints.
//
// Label keys and values can be no longer than 64 characters
// (Unicode codepoints), can only contain lowercase letters, numeric
// characters, underscores and dashes. International characters are allowed.
//
// See https://goo.gl/xmQnxf for more information and examples of labels.
map<string, string> labels = 7;
// Output only. Timestamp when this Endpoint was created.
google.protobuf.Timestamp create_time = 8 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. Timestamp when this Endpoint was last updated.
google.protobuf.Timestamp update_time = 9 [(google.api.field_behavior) = OUTPUT_ONLY];
// Customer-managed encryption key spec for an Endpoint. If set, this
// Endpoint and all sub-resources of this Endpoint will be secured by
// this key.
EncryptionSpec encryption_spec = 10;
// The full name of the Google Compute Engine
// [network](https://cloud.google.com//compute/docs/networks-and-firewalls#networks)
// to which the Endpoint should be peered.
//
// Private services access must already be configured for the network. If left
// unspecified, the Endpoint is not peered with any network.
//
// Only one of the fields, [network][google.cloud.aiplatform.v1beta1.Endpoint.network] or
// [enable_private_service_connect][google.cloud.aiplatform.v1beta1.Endpoint.enable_private_service_connect],
// can be set.
//
// [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert):
// `projects/{project}/global/networks/{network}`.
// Where `{project}` is a project number, as in `12345`, and `{network}` is
// network name.
string network = 13 [(google.api.resource_reference) = {
type: "compute.googleapis.com/Network"
}];
// Deprecated: If true, expose the Endpoint via private service connect.
//
// Only one of the fields, [network][google.cloud.aiplatform.v1beta1.Endpoint.network] or
// [enable_private_service_connect][google.cloud.aiplatform.v1beta1.Endpoint.enable_private_service_connect],
// can be set.
bool enable_private_service_connect = 17 [deprecated = true];
// Output only. Resource name of the Model Monitoring job associated with this Endpoint
// if monitoring is enabled by [CreateModelDeploymentMonitoringJob][].
// Format:
// `projects/{project}/locations/{location}/modelDeploymentMonitoringJobs/{model_deployment_monitoring_job}`
string model_deployment_monitoring_job = 14 [
(google.api.field_behavior) = OUTPUT_ONLY,
(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/ModelDeploymentMonitoringJob"
}
];
// Configures the request-response logging for online prediction.
PredictRequestResponseLoggingConfig predict_request_response_logging_config = 18;
}
// A deployment of a Model. Endpoints contain one or more DeployedModels.
message DeployedModel {
// The prediction (for example, the machine) resources that the DeployedModel
// uses. The user is billed for the resources (at least their minimal amount)
// even if the DeployedModel receives no traffic.
// Not all Models support all resources types. See
// [Model.supported_deployment_resources_types][google.cloud.aiplatform.v1beta1.Model.supported_deployment_resources_types].
oneof prediction_resources {
// A description of resources that are dedicated to the DeployedModel, and
// that need a higher degree of manual configuration.
DedicatedResources dedicated_resources = 7;
// A description of resources that to large degree are decided by Vertex
// AI, and require only a modest additional configuration.
AutomaticResources automatic_resources = 8;
// The resource name of the shared DeploymentResourcePool to deploy on.
// Format:
// projects/{project}/locations/{location}/deploymentResourcePools/{deployment_resource_pool}
string shared_resources = 17 [(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/DeploymentResourcePool"
}];
}
// Immutable. The ID of the DeployedModel. If not provided upon deployment, Vertex AI
// will generate a value for this ID.
//
// This value should be 1-10 characters, and valid characters are /[0-9]/.
string id = 1 [(google.api.field_behavior) = IMMUTABLE];
// Required. The resource name of the Model that this is the deployment of. Note that
// the Model may be in a different location than the DeployedModel's Endpoint.
//
// The resource name may contain version id or version alias to specify the
// version, if no version is specified, the default version will be deployed.
string model = 2 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/Model"
}
];
// Output only. The version ID of the model that is deployed.
string model_version_id = 18 [(google.api.field_behavior) = OUTPUT_ONLY];
// The display name of the DeployedModel. If not provided upon creation,
// the Model's display_name is used.
string display_name = 3;
// Output only. Timestamp when the DeployedModel was created.
google.protobuf.Timestamp create_time = 6 [(google.api.field_behavior) = OUTPUT_ONLY];
// Explanation configuration for this DeployedModel.
//
// When deploying a Model using [EndpointService.DeployModel][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel], this value
// overrides the value of [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec]. All fields of
// [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] are optional in the request. If a field of
// [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] is not populated, the value of the same field of
// [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec] is inherited. If the corresponding
// [Model.explanation_spec][google.cloud.aiplatform.v1beta1.Model.explanation_spec] is not populated, all fields of the
// [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] will be used for the explanation configuration.
ExplanationSpec explanation_spec = 9;
// The service account that the DeployedModel's container runs as. Specify the
// email address of the service account. If this service account is not
// specified, the container runs as a service account that doesn't have access
// to the resource project.
//
// Users deploying the Model must have the `iam.serviceAccounts.actAs`
// permission on this service account.
string service_account = 11;
// If true, the container of the DeployedModel instances will send `stderr`
// and `stdout` streams to Stackdriver Logging.
//
// Only supported for custom-trained Models and AutoML Tabular Models.
bool enable_container_logging = 12;
// These logs are like standard server access logs, containing
// information like timestamp and latency for each prediction request.
//
// Note that Stackdriver logs may incur a cost, especially if your project
// receives prediction requests at a high queries per second rate (QPS).
// Estimate your costs before enabling this option.
bool enable_access_logging = 13;
// Output only. Provide paths for users to send predict/explain/health requests directly to
// the deployed model services running on Cloud via private services access.
// This field is populated if [network][google.cloud.aiplatform.v1beta1.Endpoint.network] is configured.
PrivateEndpoints private_endpoints = 14 [(google.api.field_behavior) = OUTPUT_ONLY];
}
// PrivateEndpoints proto is used to provide paths for users to send
// requests privately.
// To send request via private service access, use predict_http_uri,
// explain_http_uri or health_http_uri. To send request via private service
// connect, use service_attachment.
message PrivateEndpoints {
// Output only. Http(s) path to send prediction requests.
string predict_http_uri = 1 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. Http(s) path to send explain requests.
string explain_http_uri = 2 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. Http(s) path to send health check requests.
string health_http_uri = 3 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. The name of the service attachment resource. Populated if private service
// connect is enabled.
string service_attachment = 4 [(google.api.field_behavior) = OUTPUT_ONLY];
}
// Configuration for logging request-response to a BigQuery table.
message PredictRequestResponseLoggingConfig {
// If logging is enabled or not.
bool enabled = 1;
// Percentage of requests to be logged, expressed as a fraction in
// range(0,1].
double sampling_rate = 2;
// BigQuery table for logging.
// If only given a project, a new dataset will be created with name
// `logging_<endpoint-display-name>_<endpoint-id>` where
// <endpoint-display-name> will be made BigQuery-dataset-name compatible (e.g.
// most special characters will become underscores). If no table name is
// given, a new table will be created with name `request_response_logging`
BigQueryDestination bigquery_destination = 3;
}