#include "bitmap.h" /* Functions to generate MurmurHash3 values of the bitmap image */ /*data with a constant as the seed */ HASH_128 * Generate_Hash_x64_128( FT_Bitmap * bitmap, HASH_128 * murmur) { int seed = 99; /* Dont change */ MurmurHash3_x64_128(bitmap->buffer, (bitmap->pitch * bitmap->rows), seed, murmur->hash); return murmur; } /*Not used*/ HASH_128 * Generate_Hash_x86_128( FT_Bitmap * bitmap, HASH_128 * murmur) { int seed = 99; /* Dont change */ MurmurHash3_x86_128(bitmap->buffer, (bitmap->pitch * bitmap->rows), seed, murmur->hash); return murmur; } /*Not used*/ HASH_32 * Generate_Hash_x86_32( FT_Bitmap * bitmap, HASH_32 * murmur) { int seed = 99; /* Dont change */ MurmurHash3_x86_32( bitmap->buffer, (bitmap->pitch * bitmap->rows), seed, &murmur->hash); return murmur; } /* This function takes the render mode argument and */ /* returns the corresponding render_mode code */ int Get_Render_Mode(const char* mode){ /* Using -1 as the error code */ int render_mode = -1; if ( strcmp(mode,"MONO") == 0 ) { render_mode = 0; }else if ( strcmp(mode,"AA") == 0 ) { render_mode = 1; }else if ( strcmp(mode,"RGB") == 0 ) { render_mode = 2; }else if ( strcmp(mode,"BGR") == 0 ) { render_mode = 3; }else if ( strcmp(mode,"VRGB") == 0 ) { render_mode = 4; }else if ( strcmp(mode,"VBGR") == 0 ) { render_mode = 5; } return render_mode; } /* This function takes in the IMAGE data and returns the pointer */ /* to the pixel at co-ordinates (x,y). This is used to access the */ /* pixel data */ PIXEL * Pixel_At (IMAGE * bitmap, int x, int y) { return bitmap->pixels + bitmap->width * y + x; } /* Here we take the FT_Bitmap structure and make an IMAGE structure */ /* with pixel data from the FT_Bitmap buffer */ void Make_PNG(FT_Bitmap* bitmap,IMAGE* fruit,int i,int render_mode){ int x; int y; unsigned char value; int p; switch(render_mode){ case 0 : fruit->width = bitmap->width; /* MONO */ fruit->height = bitmap->rows; /* Allocate Memory to the IMAGE structure as per the */ /* dimensions of the FT_Bitmap image*/ fruit->pixels = calloc ( fruit->width * fruit->height, sizeof (PIXEL)); for (y = 0; y < fruit->height; y++) { for (x = 0; x < fruit->width; x++) { /* Access pixel by co-ordinates */ PIXEL * pixel = Pixel_At ( fruit, x, y); p = (y * bitmap->pitch ) + x; value = bitmap->buffer[p]; /* If there is some colour, make it white */ /* else, make it black */ if ( value != 0x00 ){ value = 0xff; }else{ value = 0x00; } /* Invert the colours to make the background white*/ /* and the character black */ pixel->red = 255- value; pixel->green = 255- value; pixel->blue = 255- value; pixel->alpha = 255; } } break; case 1 : fruit->width = bitmap->width; /* GRAY */ fruit->height = bitmap->rows; fruit->pixels = calloc ( fruit->width * fruit->height, sizeof (PIXEL)); for (y = 0; y < fruit->height; y++) { for (x = 0; x < fruit->width; x++) { PIXEL * pixel = Pixel_At ( fruit, x, y); p = (y * bitmap->pitch ) + x; /* Access the image data from the buffer */ value = bitmap->buffer[p]; /* R=G=B for Grayscale images */ pixel->red = 255- value; pixel->green = 255- value; pixel->blue = 255- value; pixel->alpha = 255; } } break; /********************************************************************/ /* FT_Bitmap has 'width' three times the size of glyph in case of */ /* LCD rendering i.e. three adjacent values in bitmap buffer row */ /* correspond to one RGB triplet. Accessing the buffer accordingly */ /* and filling the RGB values of the IMAGE structure */ /********************************************************************/ case 2 : case 3 : fruit->width = bitmap->width / 3; /* LCD */ fruit->height = bitmap->rows; fruit->pixels = calloc ( fruit->width * fruit->height, sizeof (PIXEL)); for (y = 0; y < fruit->height; y++) { for (x = 0; x < fruit->width; x++) { PIXEL * pixel = Pixel_At ( fruit, x, y); p = (y * bitmap->pitch ) + (x)*3; value = bitmap->buffer[p]; pixel->red = 255- value; p++; value = bitmap->buffer[p]; pixel->green = 255- value; p++; value = bitmap->buffer[p]; pixel->blue = 255- value; pixel->alpha = 255; } } break; /********************************************************************/ /* FT_Bitmap has 'height' three times the size of glyph in case of */ /* LCD_v rendering i.e. three adjacent values in bitmap buffer */ /* column correspond to one RGB triplet. Accessing the buffer */ /* accordingly and filling the RGB values of the IMAGE structure */ /********************************************************************/ case 4 : case 5 : fruit->width = bitmap->width; /* LCD_V */ fruit->height = bitmap->rows / 3; fruit->pixels = calloc ( fruit->width * fruit->height, sizeof (PIXEL)); for (y = 0; y < fruit->height; y++) { for (x = 0; x < fruit->width; x++) { PIXEL * pixel = Pixel_At ( fruit, x, y); p = ((y*3) * bitmap->pitch ) + x; value = bitmap->buffer[p]; pixel->red = 255- value; p += bitmap->pitch; value = bitmap->buffer[p]; pixel->green = 255- value; p += bitmap->pitch; value = bitmap->buffer[p]; pixel->blue = 255- value; pixel->alpha = 255; } } break; default : fruit->width = bitmap->width; fruit->height = bitmap->rows; break; } } /********************************************************************/ /* This function generates the PNG file taking the IMAGE structure */ /* , path to the file and the render_mode. ( Using libpng ) */ /* 32-bit RGBA images are generated. Each channel is 8-bit with */ /* alpha channel set to 255. Transparency can be set accordingly */ /********************************************************************/ int Generate_PNG (IMAGE *bitmap, const char *path, int render_mode) { FILE * fp; png_structp png_ptr = NULL; png_infop info_ptr = NULL; size_t x, y; png_byte ** row_pointers = NULL; int status = -1; int pixel_size = 4; /* Each pixel is 4-byte */ int depth = 8; /* Each colour is 8-bit*/ fp = fopen (path, "wb"); if (! fp) { goto fopen_failed; } png_ptr = png_create_write_struct ( PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); if (png_ptr == NULL) { goto png_create_write_struct_failed; } info_ptr = png_create_info_struct (png_ptr); if (info_ptr == NULL) { goto png_create_info_struct_failed; } if (setjmp (png_jmpbuf (png_ptr))) { goto png_failure; } png_set_IHDR (png_ptr, info_ptr, bitmap->width, bitmap->height, depth, PNG_COLOR_TYPE_RGBA, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); row_pointers = png_malloc ( png_ptr, bitmap->height * sizeof (png_byte *)); for (y = 0; y < bitmap->height; y++) { png_byte *row = png_malloc(png_ptr, sizeof(uint8_t) * bitmap->width * pixel_size); row_pointers[y] = row; for (x = 0; x < bitmap->width; x++) { PIXEL * pixel = Pixel_At (bitmap, x, y); if (render_mode == 3 || render_mode == 5) { /* For BGRA images */ *row++ = pixel->blue; *row++ = pixel->green; *row++ = pixel->red; *row++ = pixel->alpha; continue; } /* For RGBA images */ *row++ = pixel->red; *row++ = pixel->green; *row++ = pixel->blue; *row++ = pixel->alpha; } } png_init_io ( png_ptr, fp); png_set_rows (png_ptr, info_ptr, row_pointers); png_write_png ( png_ptr, info_ptr, PNG_TRANSFORM_IDENTITY, NULL); status = 0; printf("%s\n", path ); for (y = 0; y < bitmap->height; y++) { png_free (png_ptr, row_pointers[y]); } png_free (png_ptr, row_pointers); free (bitmap->pixels); png_failure: png_create_info_struct_failed: png_destroy_write_struct (&png_ptr, &info_ptr); png_create_write_struct_failed: fclose (fp); fopen_failed: return status; } /********************************************************************/ /* Compare the MurmurHash3 values ( x64_128 bit implemented ) */ /* Returns 1 if they are different and 0 if identical. */ /********************************************************************/ int Compare_Hash(HASH_128* hash_b, HASH_128* hash_t){ if (hash_b->hash[0] != hash_t->hash[0] || hash_b->hash[1] != hash_t->hash[1] || hash_b->hash[2] != hash_t->hash[2] || hash_b->hash[3] != hash_t->hash[3] ) { return 1; } return 0; } /********************************************************************/ /* Returns the index of the first-column to have a coloured pixel. */ /* 'Coloured' means the pixel isn't in the background */ /* Background Colour RGB = ( 255,255,255 ) */ /********************************************************************/ int First_Column(IMAGE* input){ int x, y; for ( x = 0; x < input->width; ++x) { for ( y = 0; y < input->height; ++y) { PIXEL * pixel_result = Pixel_At ( input, x, y); if ( pixel_result->red == 255 && pixel_result->green == 255 && pixel_result->blue == 255 && pixel_result->alpha == 255 ) { continue; }else{ return x; } } } return input->width; } /* Returns the index of the first-row to have a coloured pixel. */ int First_Row(IMAGE* input){ int x, y; for ( y = 0; y < input->height; ++y) { for ( x = 0; x < input->width; ++x) { PIXEL * pixel_result = Pixel_At ( input, x, y); if ( pixel_result->red == 255 && pixel_result->green == 255 && pixel_result->blue == 255 && pixel_result->alpha == 255 ) { continue; }else{ return y; } } } return input->height; } /********************************************************************/ /* The following two functions takes two IMAGES with different */ /* dimensions and aligns the two images based on the first pixel */ /* that isn't in the background i.e. RGB != ( 255,255,255 ). */ /* The first argument is the one which has smaller height/width. */ /* Columns/Rows are appended to the smaller image to match the */ /* dimensions. */ /********************************************************************/ IMAGE* Append_Columns(IMAGE* small, IMAGE* big){ /* small->width < big->width */ int x, y; IMAGE* result = (IMAGE*)malloc(sizeof(IMAGE)); result->height = small->height; result->width = big->width; result->pixels = (PIXEL*) malloc(result->width * result->height * sizeof(PIXEL)); int first_col = First_Column(big); for ( x = 0; x < first_col; ++x) /* Filling White columns */ { for ( y = 0; y < result->height; ++y) { PIXEL * pixel_result = Pixel_At ( result, x, y); /* Filling White columns */ pixel_result->red = 255; pixel_result->green = 255; pixel_result->blue = 255; pixel_result->alpha = 255; } } for ( y = 0; y < result->height; ++y) { for ( x = first_col; x < first_col + small->width; ++x) { PIXEL * pixel_small = Pixel_At ( small, (x - first_col), y); PIXEL * pixel_result = Pixel_At ( result, x, y); /* Putting the original IMAGE data */ pixel_result->red = pixel_small->red; pixel_result->green = pixel_small->green; pixel_result->blue = pixel_small->blue; pixel_result->alpha = pixel_small->alpha; } } for ( x = first_col + small->width; x < result->width; ++x) { for ( y = 0; y < result->height; ++y) { PIXEL * pixel_result = Pixel_At ( result, x, y); /* Filling White columns */ pixel_result->red = 255; pixel_result->green = 255; pixel_result->blue = 255; pixel_result->alpha = 255; } } return result; } IMAGE* Append_Rows(IMAGE* small, IMAGE* big){ /* small->height < big->height */ int x, y; IMAGE* result = (IMAGE*)malloc(sizeof(IMAGE)); result->height = big->height; result->width = small->width; result->pixels = (PIXEL*) malloc(result->width * result->height * sizeof(PIXEL)); int first_row = First_Row(big); for ( y = 0; y < first_row; ++y) { for ( x = 0; x < result->width; ++x) { PIXEL * pixel_result = Pixel_At ( result, x, y); /* Filling White rows */ pixel_result->red = 255; pixel_result->green = 255; pixel_result->blue = 255; pixel_result->alpha = 255; } } for ( y = first_row; y < first_row + small->height; ++y) { for ( x = 0; x < result->width; ++x) { PIXEL * pixel_small = Pixel_At ( small, x, y - first_row); PIXEL * pixel_result = Pixel_At ( result, x, y); /* Putting the original IMAGE data */ pixel_result->red = pixel_small->red; pixel_result->green = pixel_small->green; pixel_result->blue = pixel_small->blue; pixel_result->alpha = pixel_small->alpha; } } for ( y = first_row + small->height; y < result->height; ++y) { for ( x = 0; x < result->width; ++x) { PIXEL * pixel_result = Pixel_At ( result, x, y); /* Filling White rows */ pixel_result->red = 255; pixel_result->green = 255; pixel_result->blue = 255; pixel_result->alpha = 255; } } return result; } /********************************************************************/ /* This fuction visually highlights the differences between the two */ /* images generated for the same glyph. There are two effects each */ /* given an Effect_ID. */ /* This function generates a new IMAGE structure after comparing and*/ /* adding the desired effect. */ /* */ /* Effect_ID =1 means that the differences in pixels are highlighted*/ /* and the pixels that are same are in GRAY (RGB = (128,128,128)) */ /* */ /* Effect_ID =2 means that the differences in pixels are highlighted*/ /* over the 'base' version's rendered image */ /* */ /* Highlighting is done in RED colour i.e. RGB=( 255, 0, 0) for */ /* mono, grayscale and RGB-LCD displays and for BGR-LCD displays */ /* is is done in BLUE colour i.e. RGB = ( 0, 0, 255). */ /********************************************************************/ int Add_effect(IMAGE* base, IMAGE* test, IMAGE* out, int Effect_ID) { int pixel_diff = 0; int x,y; /* new IMAGE */ out->width = base->width; out->height = base->height; out->pixels = (PIXEL*)malloc(base->width * base->height * sizeof(PIXEL)); for( y = 0; y < base->height; y++) { for( x = 0; x < base->width; x++ ) { PIXEL * pixel_base = Pixel_At ( base, x, y); PIXEL * pixel_test = Pixel_At ( test, x, y); PIXEL * pixel_out = Pixel_At ( out, x, y); if (Effect_ID == 1) { /* If colour is white */ if (pixel_base->red == 255 && pixel_base->green == 255 && pixel_base->blue == 255 && pixel_base->alpha == 255 ) { pixel_out->red = 255; /* White*/ pixel_out->green = 255; pixel_out->blue = 255; pixel_out->alpha = 255; }else{ pixel_out->red = 127; /* Gray */ pixel_out->green = 127; pixel_out->blue = 127; pixel_out->alpha = 255; } } /* if colour is different*/ if (pixel_base->red != pixel_test->red || pixel_base->green != pixel_test->green || pixel_base->blue != pixel_test->blue || pixel_base->alpha != pixel_test->alpha ) { /* Highlighting pixels */ pixel_out->red = 255; pixel_out->green = 0; pixel_out->blue = 0; pixel_out->alpha = 255; pixel_diff++; }else{ if (Effect_ID == 2) { pixel_out->red = pixel_base->red; pixel_out->green = pixel_base->green; pixel_out->blue = pixel_base->blue; pixel_out->alpha = pixel_base->alpha; } } } } return pixel_diff; } /********************************************************************/ /* This function takes two IMAGE structures and stitches the images */ /* horizontally to make one IMAGE. */ /* i.e. ( result->width = left->width + right->width ) */ /* The first argument forms the left part of the image and the */ /* second forms the right part. */ /* This returns the pointer to the stitched image */ /********************************************************************/ void Stitch(IMAGE* left, IMAGE* right, IMAGE* result){ int x, y; result->width = left->width + right->width; result->height = MAX(left->height, right->height); result->pixels = (PIXEL*)calloc(result->width * result->height, sizeof(PIXEL)); for ( y = 0; y < left->height; ++y) { for ( x = 0; x < left->width; ++x) { PIXEL * pixel_left = Pixel_At ( left, x, y); PIXEL * pixel_result = Pixel_At ( result, x, y); /* Filling Left part of the image*/ pixel_result->red = pixel_left->red; pixel_result->green = pixel_left->green; pixel_result->blue = pixel_left->blue; pixel_result->alpha = pixel_left->alpha; } } for ( y = 0; y < right->height; ++y) { for ( x = left->width; x < result->width; ++x) { PIXEL * pixel_right = Pixel_At ( right, x - left->width, y); PIXEL * pixel_result = Pixel_At ( result, x, y); /* Filling right part of the image*/ pixel_result->red = pixel_right->red; pixel_result->green = pixel_right->green; pixel_result->blue = pixel_right->blue; pixel_result->alpha = pixel_right->alpha; } } } /* This prints table-headers to a HTML file for the list-view page */ void Print_Head( FILE* fp ){ printf(" *** Generating Images *** \n"); fprintf(fp, "\n\
\n\\n\ Index\n\ | \n\\n\ Name\n\ | \n\\n\ Diff\n\ | \n\\n\ Images\n\ | \n\
---|---|---|---|
%04d | \n\%s | \n\%04d | \n\\ \ | \n\