|
|
|
@ -2375,7 +2375,7 @@ |
|
|
|
|
* 90~degrees with the curve. We solve this with the Newton-Raphson |
|
|
|
|
* method. |
|
|
|
|
* |
|
|
|
|
* (7) We first assume an arbitary value of factor `t`, which we then |
|
|
|
|
* (7) We first assume an arbitrary value of factor `t`, which we then |
|
|
|
|
* improve. |
|
|
|
|
* |
|
|
|
|
* ``` |
|
|
|
@ -2688,7 +2688,7 @@ |
|
|
|
|
* 90~degree with curve. We solve this with the Newton-Raphson |
|
|
|
|
* method. |
|
|
|
|
* |
|
|
|
|
* (7) We first assume an arbitary value of factor `t`, which we then |
|
|
|
|
* (7) We first assume an arbitrary value of factor `t`, which we then |
|
|
|
|
* improve. |
|
|
|
|
* |
|
|
|
|
* ``` |
|
|
|
@ -2718,8 +2718,9 @@ |
|
|
|
|
|
|
|
|
|
FT_Error error = FT_Err_Ok; |
|
|
|
|
|
|
|
|
|
FT_26D6_Vec aA, bB, cC, dD; /* A, B, C in the above comment */ |
|
|
|
|
FT_16D16_Vec nearest_point; /* point on curve nearest to `point` */ |
|
|
|
|
FT_26D6_Vec aA, bB, cC, dD; /* A, B, C, D in the above comment */ |
|
|
|
|
FT_16D16_Vec nearest_point = { 0, 0 }; |
|
|
|
|
/* point on curve nearest to `point` */ |
|
|
|
|
FT_16D16_Vec direction; /* direction of curve at `nearest_point` */ |
|
|
|
|
|
|
|
|
|
FT_26D6_Vec p0, p1, p2, p3; /* control points of a cubic curve */ |
|
|
|
|