modified the TrueType interpreter to let it

use the new trigonometric functions provided in "fttrigon.h". This
        gets rid of some old 64-bit computation routines, as well as many
        warnings when compiling the library with the "long long" 64-bit
        integer type.
VER-2-0-4-PATCH
David Turner 24 years ago
parent 2bd945c375
commit 686901a1a5
  1. 10
      ChangeLog
  2. 2
      include/freetype/config/ftoption.h
  3. 33
      include/freetype/internal/ftcalc.h
  4. 21
      src/base/ftcalc.c
  5. 153
      src/truetype/ttinterp.c

@ -1,3 +1,13 @@
2001-06-14 David Turner <david@freetype.org>
* src/base/ftcalc.c, include/internal/ftcalc.h, src/truetype/ttinterp.c,
include/config/ftoption.h: modified the TrueType interpreter to let it
use the new trigonometric functions provided in "fttrigon.h". This
gets rid of some old 64-bit computation routines, as well as many
warnings when compiling the library with the "long long" 64-bit
integer type.
2001-06-11 Mike Owens <MOwens@amtdatasouth.com>
* src/base/ftcalc.c (FT_MulDiv, FT_DivFix, FT_Sqrt64): Remove

@ -237,7 +237,7 @@ FT_BEGIN_HEADER
/* Used for debugging, this configuration macro should disappear */
/* soon. */
/* */
#define FT_CONFIG_OPTION_OLD_CALCS
#undef FT_CONFIG_OPTION_OLD_CALCS
/*************************************************************************/

@ -27,18 +27,19 @@
FT_BEGIN_HEADER
#ifdef FT_LONG64
/* OLD 64-bits internal API */
#ifdef FT_CONFIG_OPTION_OLD_CALCS
# ifdef FT_LONG64
typedef FT_INT64 FT_Int64;
#define ADD_64( x, y, z ) z = (x) + (y)
#define MUL_64( x, y, z ) z = (FT_Int64)(x) * (y)
#define DIV_64( x, y ) ( (x) / (y) )
# define ADD_64( x, y, z ) z = (x) + (y)
# define MUL_64( x, y, z ) z = (FT_Int64)(x) * (y)
# define DIV_64( x, y ) ( (x) / (y) )
#ifdef FT_CONFIG_OPTION_OLD_CALCS
#define SQRT_64( z ) FT_Sqrt64( z )
# define SQRT_64( z ) FT_Sqrt64( z )
/*************************************************************************/
/* */
@ -58,10 +59,8 @@ FT_BEGIN_HEADER
/* */
FT_EXPORT( FT_Int32 ) FT_Sqrt64( FT_Int64 l );
#endif /* FT_CONFIG_OPTION_OLD_CALCS */
#else /* FT_LONG64 */
# else /* !FT_LONG64 */
typedef struct FT_Int64_
@ -72,9 +71,9 @@ FT_BEGIN_HEADER
} FT_Int64;
#define ADD_64( x, y, z ) FT_Add64( &x, &y, &z )
#define MUL_64( x, y, z ) FT_MulTo64( x, y, &z )
#define DIV_64( x, y ) FT_Div64by32( &x, y )
# define ADD_64( x, y, z ) FT_Add64( &x, &y, &z )
# define MUL_64( x, y, z ) FT_MulTo64( x, y, &z )
# define DIV_64( x, y ) FT_Div64by32( &x, y )
/*************************************************************************/
@ -146,9 +145,7 @@ FT_BEGIN_HEADER
FT_Int32 y );
#ifdef FT_CONFIG_OPTION_OLD_CALCS
#define SQRT_64( z ) FT_Sqrt64( &z )
# define SQRT_64( z ) FT_Sqrt64( &z )
/*************************************************************************/
/* */
@ -168,10 +165,10 @@ FT_BEGIN_HEADER
/* */
FT_EXPORT( FT_Int32 ) FT_Sqrt64( FT_Int64* x );
#endif /* FT_CONFIG_OPTION_OLD_CALCS */
# endif /* !FT_LONG64 */
#endif /* FT_CONFIG_OPTION_OLD_CALCS */
#endif /* FT_LONG64 */
FT_EXPORT( FT_Int32 ) FT_SqrtFixed( FT_Int32 x );

@ -38,6 +38,27 @@
#include FT_INTERNAL_OBJECTS_H
/* we need to define a 64-bits data type here */
#ifndef FT_CONFIG_OPTION_OLD_CALCS
# ifdef FT_LONG64
typedef FT_INT64 FT_Int64;
# else
typedef struct FT_Int64_
{
FT_UInt32 lo;
FT_UInt32 hi;
} FT_Int64;
# endif
#endif
/*************************************************************************/
/* */
/* The macro FT_COMPONENT is used in trace mode. It is an implicit */

@ -19,6 +19,7 @@
#include <ft2build.h>
#include FT_INTERNAL_DEBUG_H
#include FT_INTERNAL_CALC_H
#include FT_TRIGONOMETRY_H
#include FT_SYSTEM_H
#include "ttinterp.h"
@ -31,10 +32,8 @@
#define TT_MULFIX FT_MulFix
#define TT_MULDIV FT_MulDiv
#define TT_INT64 FT_Int64
/*************************************************************************/
/* */
/* The macro FT_COMPONENT is used in trace mode. It is an implicit */
@ -825,6 +824,7 @@
}
/* return length of given vector */
#ifdef FT_CONFIG_OPTION_OLD_CALCS
static FT_F26Dot6 Norm( FT_F26Dot6 X,
@ -841,6 +841,18 @@
return (FT_F26Dot6)SQRT_64( T1 );
}
#else /* !FT_CONFIG_OPTION_OLD_CALCS */
static FT_F26Dot6 Norm( FT_F26Dot6 X,
FT_F26Dot6 Y )
{
FT_Vector v;
v.x = X;
v.y = Y;
return FT_Vector_Length( &v );
}
#endif /* FT_CONFIG_OPTION_OLD_CALCS */
@ -1214,21 +1226,9 @@
{
FT_Long x, y;
#ifdef FT_CONFIG_OPTION_OLD_CALCS
x = TT_MULDIV( CUR.GS.projVector.x, CUR.tt_metrics.x_ratio, 0x4000 );
y = TT_MULDIV( CUR.GS.projVector.y, CUR.tt_metrics.y_ratio, 0x4000 );
CUR.tt_metrics.ratio = Norm( x, y );
#else
x = TT_MULDIV( CUR.GS.projVector.x, CUR.tt_metrics.x_ratio, 0x8000 );
y = TT_MULDIV( CUR.GS.projVector.y, CUR.tt_metrics.y_ratio, 0x8000 );
CUR.tt_metrics.ratio = FT_Sqrt32( x * x + y * y ) << 1;
#endif /* FT_CONFIG_OPTION_OLD_CALCS */
}
return CUR.tt_metrics.ratio;
@ -2287,123 +2287,16 @@
FT_F26Dot6 Vy,
FT_UnitVector* R )
{
FT_F26Dot6 u, v, d;
FT_Int shift;
FT_ULong H, L, L2, hi, lo, med;
u = ABS( Vx );
v = ABS( Vy );
if ( u < v )
{
d = u;
u = v;
v = d;
}
R->x = 0;
R->y = 0;
/* check that we are not trying to normalise zero! */
if ( u == 0 )
return SUCCESS;
/* compute (u*u + v*v) on 64 bits with two 32-bit registers [H:L] */
hi = (FT_ULong)u >> 16;
lo = (FT_ULong)u & 0xFFFF;
med = hi * lo;
H = hi * hi + ( med >> 15 );
med <<= 17;
L = lo * lo + med;
if ( L < med )
H++;
hi = (FT_ULong)v >> 16;
lo = (FT_ULong)v & 0xFFFF;
med = hi * lo;
H += hi * hi + ( med >> 15 );
med <<= 17;
L2 = lo * lo + med;
if ( L2 < med )
H++;
L += L2;
if ( L < L2 )
H++;
/* if the value is smaller than 32-bits */
if ( H == 0 )
{
shift = 0;
while ( ( L & 0xC0000000L ) == 0 )
{
L <<= 2;
shift++;
}
d = FT_Sqrt32( L );
R->x = (FT_F2Dot14)TT_MULDIV( Vx << shift, 0x4000, d );
R->y = (FT_F2Dot14)TT_MULDIV( Vy << shift, 0x4000, d );
}
/* if the value is greater than 64-bits */
else
{
shift = 0;
while ( H )
{
L = ( L >> 2 ) | ( H << 30 );
H >>= 2;
shift++;
}
d = FT_Sqrt32( L );
R->x = (FT_F2Dot14)TT_MULDIV( Vx >> shift, 0x4000, d );
R->y = (FT_F2Dot14)TT_MULDIV( Vy >> shift, 0x4000, d );
}
{
FT_ULong x, y, w;
FT_Int sx, sy;
sx = R->x >= 0 ? 1 : -1;
sy = R->y >= 0 ? 1 : -1;
x = (FT_ULong)sx * R->x;
y = (FT_ULong)sy * R->y;
w = x * x + y * y;
/* we now want to adjust (x,y) in order to have sqrt(w) == 0x4000 */
/* which means 0x1000000 <= w < 0x1004000 */
while ( w <= 0x10000000L )
{
/* increment the smallest coordinate */
if ( x < y )
x++;
else
y++;
w = x * x + y * y;
}
while ( w >= 0x10040000L )
{
/* decrement the smallest coordinate */
if ( x < y )
x--;
else
y--;
w = x * x + y * y;
}
R->x = sx * x;
R->y = sy * y;
}
FT_Vector v;
FT_Angle angle;
angle = FT_Atan2( Vx, Vy );
FT_Vector_Unit( &v, angle );
R->x = v.x >> 2;
R->y = v.y >> 2;
return SUCCESS;
}

Loading…
Cancel
Save