diff --git a/src/dense/ftdense.c b/src/dense/ftdense.c index 80eab48a2..d2a4cde84 100644 --- a/src/dense/ftdense.c +++ b/src/dense/ftdense.c @@ -32,6 +32,15 @@ typedef struct dense_TRaster_ } dense_TRaster, *dense_PRaster; +/* Linear interpolation between P0 and P1 */ +static FT_Vector +Lerp( float T, FT_Vector P0, FT_Vector P1 ) +{ + FT_Vector p; + p.x = P0.x + T * ( P1.x - P0.x ); + p.y = P0.y + T * ( P1.y - P0.y ); + return p; +} static int dense_move_to( const FT_Vector* to, dense_worker* worker ) @@ -54,11 +63,112 @@ dense_line_to( const FT_Vector* to, dense_worker* worker ) } void -dense_render_line( dense_worker* worker, TPos tox, TPos toy ) +dense_render_line( dense_worker* worker, FT_Pos tox, FT_Pos toy ) { - return; + float from_x = worker->prev_x; + float from_y = worker->prev_y; + if ( from_y == toy ) + return; + + + from_x /= 256.0; + from_y /= 256.0; + float to_x = tox / 256.0; + float to_y = toy / 256.0; + + + float dir; + if ( from_y < to_y ) + dir = 1; + else + { + dir = -1; + FT_SWAP(from_x, to_x ); + FT_SWAP(from_y, to_y ); + } + + // Clip to the height. + if ( from_y >= worker->m_h || to_y <= 0 ) + return; + + float dxdy = ( to_x - from_x ) / (float)( to_y - from_y ); + if ( from_y < 0 ) + { + from_x -= from_y * dxdy; + from_y = 0; + } + if ( to_y > worker->m_h ) + { + to_x -= ( to_y - worker->m_h ) * dxdy; + to_y = (float)worker->m_h; + } + + float x = from_x; + int y0 = (int)from_y; + int y_limit = (int)ceil( to_y ); + float* m_a = worker->m_a; + + for ( int y = y0; y < y_limit; y++ ) + { + int linestart = y * worker->m_w; + float dy = fmin( y + 1.0f, to_y ) - fmax( (float)y, from_y ); + float xnext = x + dxdy * dy; + float d = dy * dir; + + float x0, x1; + if ( x < xnext ) + { + x0 = x; + x1 = xnext; + } + else + { + x0 = xnext; + x1 = x; + } + + /* + It's possible for x0 to be negative on the last scanline because of + floating-point inaccuracy That would cause an out-of-bounds array access at + index -1. + */ + float x0floor = x0 <= 0.0f ? 0.0f : (float)floor( x0 ); + + int x0i = (int)x0floor; + float x1ceil = (float)ceil( x1 ); + int x1i = (int)x1ceil; + if ( x1i <= x0i + 1 ) + { + float xmf = 0.5f * ( x + xnext ) - x0floor; + m_a[linestart + x0i] += d - d * xmf; + m_a[linestart + ( x0i + 1 )] += d * xmf; + } + else + { + float s = 1.0f / ( x1 - x0 ); + float x0f = x0 - x0floor; + float a0 = 0.5f * s * ( 1.0f - x0f ) * ( 1.0f - x0f ); + float x1f = x1 - x1ceil + 1.0f; + float am = 0.5f * s * x1f * x1f; + m_a[linestart + x0i] += d * a0; + if ( x1i == x0i + 2 ) + m_a[linestart + ( x0i + 1 )] += d * ( 1.0f - a0 - am ); + else + { + float a1 = s * ( 1.5f - x0f ); + m_a[linestart + ( x0i + 1 )] += d * ( a1 - a0 ); + for ( int xi = x0i + 2; xi < x1i - 1; xi++ ) + m_a[linestart + xi] += d * s; + float a2 = a1 + ( x1i - x0i - 3 ) * s; + m_a[linestart + ( x1i - 1 )] += d * ( 1.0f - a2 - am ); + } + m_a[linestart + x1i] += d * am; + } + x = xnext; + } } + static int dense_conic_to( const FT_Vector* control, const FT_Vector* to, @@ -73,7 +183,56 @@ dense_render_quadratic( dense_worker* worker, FT_Vector* control, FT_Vector* to ) { + /* + Calculate devsq as the square of four times the + distance from the control point to the midpoint of the curve. + This is the place at which the curve is furthest from the + line joining the control points. + + 4 x point on curve = p0 + 2p1 + p2 + 4 x midpoint = 4p1 + + The division by four is omitted to save time. + */ + + FT_Vector aP0 = { DOWNSCALE( worker->prev_x ), DOWNSCALE( worker->prev_y ) }; + FT_Vector aP1 = { control->x, control->y }; + FT_Vector aP2 = { to->x, to->y }; + + float devx = aP0.x - aP1.x - aP1.x + aP2.x; + float devy = aP0.y - aP1.y - aP1.y + aP2.y; + float devsq = devx * devx + devy * devy; + + if ( devsq < 0.333f ) + { + dense_line_to( &aP2, worker ); return; + } + + /* + According to Raph Levien, the reason for the subdivision by n (instead of + recursive division by the Casteljau system) is that "I expect the flatness + computation to be semi-expensive (it's done once rather than on each potential + subdivision) and also because you'll often get fewer subdivisions. Taking a + circular arc as a simplifying assumption, where I get n, a recursive approach + would get 2^ceil(lg n), which, if I haven't made any horrible mistakes, is + expected to be 33% more in the limit". + */ + + const float tol = 3.0f; + int n = (int)floor( sqrt( sqrt( tol * devsq ) ) )/8; + FT_Vector p = aP0; + float nrecip = 1.0f / ( n + 1.0f ); + float t = 0.0f; + for ( int i = 0; i < n; i++ ) + { + t += nrecip; + FT_Vector next = Lerp( t, Lerp( t, aP0, aP1 ), Lerp( t, aP1, aP2 ) ); + dense_line_to(&next, worker ); + p = next; + } + + dense_line_to( &aP2, worker ); } static int @@ -92,7 +251,43 @@ dense_render_cubic( dense_worker* worker, FT_Vector* control_2, FT_Vector* to ) { - return; + FT_Vector aP0 = { DOWNSCALE( worker->prev_x ), DOWNSCALE( worker->prev_y ) }; + FT_Vector aP1 = { control_1->x, control_1->y }; + FT_Vector aP2 = { control_2->x, control_2->y }; + FT_Vector aP3 = { to->x, to->y }; + + float devx = aP0.x - aP1->x - aP1->x + aP2->x; + float devy = aP0.y - aP1->y - aP1->y + aP2->y; + float devsq0 = devx * devx + devy * devy; + devx = aP1->x - aP2->x - aP2->x + aP3->x; + devy = aP1->y - aP2->y - aP2->y + aP3->y; + float devsq1 = devx * devx + devy * devy; + float devsq = fmax( devsq0, devsq1 ); + + if ( devsq < 0.333f ) + { + dense_render_line( worker, aP3->x, aP3->y ); + return; + } + + const float tol = 3.0f; + int n = (int)floor( sqrt( sqrt( tol * devsq ) ) ) / 8; + FT_Vector p = aP0; + float nrecip = 1.0f / ( n + 1.0f ); + float t = 0.0f; + for ( int i = 0; i < n; i++ ) + { + t += nrecip; + FT_Vector a = Lerp( t, Lerp( t, aP0, *aP1 ), Lerp( t, *aP1, *aP2 ) ); + FT_Vector b = Lerp( t, Lerp( t, *aP1, *aP2 ), Lerp( t, *aP2, *aP3 ) ); + FT_Vector next = Lerp( t, a, b ); + dense_render_line( worker, next.x, next.y ); + worker->prev_x = next.x; + worker->prev_y = next.y; + p = next; + } + + dense_line_to( &aP3, worker ); } static int @@ -152,13 +347,78 @@ dense_render_glyph( dense_worker* worker, const FT_Bitmap* target ) { FT_Error error = FT_Outline_Decompose( &( worker->outline ), &dense_decompose_funcs, worker ); + // Render into bitmap + const float* source = worker->m_a; + + unsigned char* dest = target->buffer; + unsigned char* dest_end = target->buffer + worker->m_w * worker->m_h; + float value = 0.0f; + while ( dest < dest_end ) + { + value += *source++; + if ( value > 0.0f ) + { + int n = (int)( fabs( value ) * 255.0f + 0.5f ); + if ( n > 255 ) + n = 255; + *dest = (unsigned char)n; + } + else + *dest = 0; + dest++; + } + + free(worker->m_a); return error; } static int dense_raster_render( FT_Raster raster, const FT_Raster_Params* params ) { - return 0; + const FT_Outline* outline = (const FT_Outline*)params->source; + FT_Bitmap* target_map = params->target; + + dense_worker worker[1]; + + if ( !raster ) + return FT_THROW( Invalid_Argument ); + + if ( !outline ) + return FT_THROW( Invalid_Outline ); + + worker->outline = *outline; + + if ( !target_map ) + return FT_THROW( Invalid_Argument ); + + /* nothing to do */ + if ( !target_map->width || !target_map->rows ) + return 0; + + if ( !target_map->buffer ) + return FT_THROW( Invalid_Argument ); + + worker->m_origin_x = 0; + worker->m_origin_y = 0; + worker->m_w = target_map->pitch; + worker->m_h = target_map->rows; + + int size = worker->m_w * worker->m_h + 4; + + worker->m_a = malloc( sizeof( float ) * size ); + worker->m_a_size = size; + + memset( worker->m_a, 0, ( sizeof( float ) * size ) ); + /* exit if nothing to do */ + if ( worker->m_w <= worker->m_origin_x || worker->m_h <= worker->m_origin_y ) + { + return 0; + } + + // Invert the pitch to account for different +ve y-axis direction in dense array + // (maybe temporary solution) + target_map->pitch *= -1; + return dense_render_glyph( worker, target_map ); } FT_DEFINE_RASTER_FUNCS(