Capstone disassembly/disassembler framework: Core (Arm, Arm64, BPF, EVM, M68K, M680X, MOS65xx, Mips, PPC, RISCV, Sparc, SystemZ, TMS320C64x, Web Assembly, X86, X86_64, XCore) + bindings. (bloaty 依赖)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2358 lines
85 KiB

//===-- ARMInstPrinter.cpp - Convert ARM MCInst to assembly syntax --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class prints an ARM MCInst to a .s file.
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembler Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013> */
#include <stdio.h> // DEBUG
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "ARMInstPrinter.h"
#include "ARMAddressingModes.h"
#include "ARMBaseInfo.h"
#include "ARMDisassembler.h"
#include "../../MCInst.h"
#include "../../SStream.h"
#include "../../MCRegisterInfo.h"
#include "../../utils.h"
#include "ARMMapping.h"
#define GET_SUBTARGETINFO_ENUM
#include "ARMGenSubtargetInfo.inc"
static void printRegName(SStream *OS, unsigned RegNo);
// Autogenerated by tblgen.
static void printInstruction(MCInst *MI, SStream *O, MCRegisterInfo *MRI);
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O);
static void printSORegRegOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printSORegImmOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrModeTBB(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrModeTBH(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrMode2Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAM2PreOrOffsetIndexOp(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrMode2OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrMode3Operand(MCInst *MI, unsigned OpNum, SStream *O, bool AlwaysPrintImm0);
static void printAddrMode3OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAM3PostIndexOp(MCInst *MI, unsigned Op, SStream *O);
static void printAM3PreOrOffsetIndexOp(MCInst *MI, unsigned Op, SStream *O, bool AlwaysPrintImm0);
static void printPostIdxImm8Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printPostIdxRegOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printPostIdxImm8s4Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrMode5Operand(MCInst *MI, unsigned OpNum, SStream *O, bool AlwaysPrintImm0);
static void printAddrMode6Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrMode7Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrMode6OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printBitfieldInvMaskImmOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printMemBOption(MCInst *MI, unsigned OpNum, SStream *O);
static void printShiftImmOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printPKHLSLShiftImm(MCInst *MI, unsigned OpNum, SStream *O);
static void printPKHASRShiftImm(MCInst *MI, unsigned OpNum, SStream *O);
static void printAdrLabelOperand(MCInst *MI, unsigned OpNum, SStream *O, unsigned);
static void printThumbS4ImmOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printThumbSRImm(MCInst *MI, unsigned OpNum, SStream *O);
static void printThumbITMask(MCInst *MI, unsigned OpNum, SStream *O);
static void printThumbAddrModeRROperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printThumbAddrModeImm5SOperand(MCInst *MI, unsigned OpNum, SStream *O, unsigned Scale);
static void printThumbAddrModeImm5S1Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printThumbAddrModeImm5S2Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printThumbAddrModeImm5S4Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printThumbAddrModeSPOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printT2SOOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printAddrModeImm12Operand(MCInst *MI, unsigned OpNum, SStream *O, bool AlwaysPrintImm0);
static void printT2AddrModeImm8Operand(MCInst *MI, unsigned OpNum, SStream *O, bool);
static void printT2AddrModeImm8s4Operand(MCInst *MI, unsigned OpNum, SStream *O, bool);
static void printT2AddrModeImm0_1020s4Operand(MCInst *MI, unsigned OpNum, SStream *O);
static void printT2AddrModeImm8OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printT2AddrModeImm8s4OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printT2AddrModeSoRegOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printSetendOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printCPSIMod(MCInst *MI, unsigned OpNum, SStream *O);
static void printCPSIFlag(MCInst *MI, unsigned OpNum, SStream *O);
static void printMSRMaskOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printPredicateOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printMandatoryPredicateOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printSBitModifierOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printRegisterList(MCInst *MI, unsigned OpNum, SStream *O);
static void printNoHashImmediate(MCInst *MI, unsigned OpNum, SStream *O);
static void printPImmediate(MCInst *MI, unsigned OpNum, SStream *O);
static void printCImmediate(MCInst *MI, unsigned OpNum, SStream *O);
static void printCoprocOptionImm(MCInst *MI, unsigned OpNum, SStream *O);
static void printFPImmOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printNEONModImmOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printImmPlusOneOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printRotImmOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printGPRPairOperand(MCInst *MI, unsigned OpNum, SStream *O, MCRegisterInfo *MRI);
static void printThumbLdrLabelOperand(MCInst *MI, unsigned OpNum, SStream *O);
static void printFBits16(MCInst *MI, unsigned OpNum, SStream *O);
static void printFBits32(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorIndex(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListOne(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListTwo(MCInst *MI, unsigned OpNum, SStream *O, MCRegisterInfo *MRI);
static void printVectorListTwoSpaced(MCInst *MI, unsigned OpNum, SStream *O, MCRegisterInfo *RI);
static void printVectorListThree(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListFour(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListOneAllLanes(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListTwoAllLanes(MCInst *MI, unsigned OpNum, SStream *O, MCRegisterInfo *RI);
static void printVectorListThreeAllLanes(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListFourAllLanes(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListTwoSpacedAllLanes(MCInst *MI, unsigned OpNum, SStream *O, MCRegisterInfo *MRI);
static void printVectorListThreeSpacedAllLanes(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListFourSpacedAllLanes(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListThreeSpaced(MCInst *MI, unsigned OpNum, SStream *O);
static void printVectorListFourSpaced(MCInst *MI, unsigned OpNum, SStream *O);
static void printInstSyncBOption(MCInst *MI, unsigned OpNum, SStream *O);
static void set_mem_access(MCInst *MI, bool status)
{
if (MI->csh->detail != CS_OPT_ON)
return;
MI->csh->doing_mem = status;
if (status) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_MEM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = ARM_REG_INVALID;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.index = ARM_REG_INVALID;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.scale = 1;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.disp = 0;
} else {
// done, create the next operand slot
MI->flat_insn.arm.op_count++;
}
}
#define GET_INSTRINFO_ENUM
#include "ARMGenInstrInfo.inc"
//#define PRINT_ALIAS_INSTR
#include "ARMGenAsmWriter.inc"
#define UseMarkup false
#define markup(x) (UseMarkup? (x) : "")
/// translateShiftImm - Convert shift immediate from 0-31 to 1-32 for printing.
///
/// getSORegOffset returns an integer from 0-31, representing '32' as 0.
static unsigned translateShiftImm(unsigned imm)
{
// lsr #32 and asr #32 exist, but should be encoded as a 0.
//assert((imm & ~0x1f) == 0 && "Invalid shift encoding");
if (imm == 0)
return 32;
return imm;
}
/// Prints the shift value with an immediate value.
static void printRegImmShift(MCInst *MI, SStream *O, ARM_AM_ShiftOpc ShOpc,
unsigned ShImm, bool _UseMarkup)
{
if (ShOpc == ARM_AM_no_shift || (ShOpc == ARM_AM_lsl && !ShImm))
return;
SStream_concat(O, ", ");
//assert (!(ShOpc == ARM_AM_ror && !ShImm) && "Cannot have ror #0");
SStream_concat(O, ARM_AM_getShiftOpcStr(ShOpc));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.type = (arm_shifter)ShOpc;
if (ShOpc != ARM_AM_rrx) {
SStream_concat(O, " ");
if (_UseMarkup)
SStream_concat(O, "<imm:");
SStream_concat(O, "#%u", translateShiftImm(ShImm));
if (_UseMarkup)
SStream_concat(O, ">");
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.value = translateShiftImm(ShImm);
}
}
static void printRegName(SStream *OS, unsigned RegNo)
{
SStream_concat(OS, markup("<reg:"));
SStream_concat(OS, getRegisterName(RegNo));
SStream_concat(OS, markup(">"));
}
static name_map insn_update_flgs[] = {
{ ARM_INS_CMN, "cmn" },
{ ARM_INS_CMP, "cmp" },
{ ARM_INS_TEQ, "teq" },
{ ARM_INS_TST, "tst" },
{ ARM_INS_ADC, "adcs" },
{ ARM_INS_ADD, "adds" },
{ ARM_INS_AND, "ands" },
{ ARM_INS_ASR, "asrs" },
{ ARM_INS_BIC, "bics" },
{ ARM_INS_EOR, "eors" },
{ ARM_INS_LSL, "lsls" },
{ ARM_INS_LSR, "lsrs" },
{ ARM_INS_MLA, "mlas" },
{ ARM_INS_MOV, "movs" },
{ ARM_INS_MUL, "muls" },
{ ARM_INS_MVN, "mvns" },
{ ARM_INS_ORN, "orns" },
{ ARM_INS_ORR, "orrs" },
{ ARM_INS_ROR, "rors" },
{ ARM_INS_RRX, "rrxs" },
{ ARM_INS_RSB, "rsbs" },
{ ARM_INS_RSC, "rscs" },
{ ARM_INS_SBC, "sbcs" },
{ ARM_INS_SMLAL, "smlals" },
{ ARM_INS_SMULL, "smulls" },
{ ARM_INS_SUB, "subs" },
{ ARM_INS_UMLAL, "umlals" },
{ ARM_INS_UMULL, "umulls" },
};
void ARM_post_printer(csh ud, cs_insn *insn, char *insn_asm)
{
if (((cs_struct *)ud)->detail != CS_OPT_ON)
return;
// check if this insn requests write-back
if (strrchr(insn_asm, '!') != NULL) {
insn->detail->arm.writeback = true;
}
// check if this insn requests update flags
if (insn->detail->arm.update_flags == false) {
// some insn still update flags, regardless of tabgen info
int i;
for (i = 0; i < ARR_SIZE(insn_update_flgs); i++) {
if (insn->id == insn_update_flgs[i].id &&
!strncmp(insn_asm, insn_update_flgs[i].name,
strlen(insn_update_flgs[i].name))) {
insn->detail->arm.update_flags = true;
// we have to update regs_write array as well
int j;
for (j = 0; j < ARR_SIZE(insn->detail->regs_write); j++) {
if (insn->detail->regs_write[j] == 0) {
insn->detail->regs_write[j] = ARM_REG_CPSR;
break;
}
}
break;
}
}
}
}
void ARM_printInst(MCInst *MI, SStream *O, void *Info)
{
MCRegisterInfo *MRI = (MCRegisterInfo *)Info;
unsigned Opcode = MCInst_getOpcode(MI);
switch(Opcode) {
// Check for HINT instructions w/ canonical names.
case ARM_HINT:
case ARM_tHINT:
case ARM_t2HINT:
switch (MCOperand_getImm(MCInst_getOperand(MI, 0))) {
case 0: SStream_concat(O, "nop"); break;
case 1: SStream_concat(O, "yield"); break;
case 2: SStream_concat(O, "wfe"); break;
case 3: SStream_concat(O, "wfi"); break;
case 4: SStream_concat(O, "sev"); break;
case 5:
// FIXME: HasV80Ops becomes a mode
//if ((ARM_getFeatureBits(MI->csh->mode) & ARM_HasV8Ops)) {
// SStream_concat(O, "sevl");
// break;
//}
// Fallthrough for non-v8
SStream_concat(O, "sevl");
break;
default:
// Anything else should just print normally.
printInstruction(MI, O, MRI);
return;
}
printPredicateOperand(MI, 1, O);
if (Opcode == ARM_t2HINT)
SStream_concat(O, ".w"); // FIXME: expose this in register-size of insn?
return;
// Check for MOVs and print canonical forms, instead.
case ARM_MOVsr: {
// FIXME: Thumb variants?
MCOperand *Dst = MCInst_getOperand(MI, 0);
MCOperand *MO1 = MCInst_getOperand(MI, 1);
MCOperand *MO2 = MCInst_getOperand(MI, 2);
MCOperand *MO3 = MCInst_getOperand(MI, 3);
SStream_concat(O, ARM_AM_getShiftOpcStr(ARM_AM_getSORegShOp((unsigned int)MCOperand_getImm(MO3))));
printSBitModifierOperand(MI, 6, O);
printPredicateOperand(MI, 4, O);
SStream_concat(O, "\t");
printRegName(O, MCOperand_getReg(Dst));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(Dst);
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MO1);
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MO2));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MO2);
MI->flat_insn.arm.op_count++;
}
//assert(ARM_AM_getSORegOffset(MO3.getImm()) == 0);
return;
}
case ARM_MOVsi: {
// FIXME: Thumb variants?
MCOperand *Dst = MCInst_getOperand(MI, 0);
MCOperand *MO1 = MCInst_getOperand(MI, 1);
MCOperand *MO2 = MCInst_getOperand(MI, 2);
SStream_concat(O, ARM_AM_getShiftOpcStr(ARM_AM_getSORegShOp((unsigned int)MCOperand_getImm(MO2))));
printSBitModifierOperand(MI, 5, O);
printPredicateOperand(MI, 3, O);
SStream_concat(O, "\t");
printRegName(O, MCOperand_getReg(Dst));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(Dst);
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MO1);
MI->flat_insn.arm.op_count++;
}
if (ARM_AM_getSORegShOp((unsigned int)MCOperand_getImm(MO2)) == ARM_AM_rrx) {
//printAnnotation(O, Annot);
return;
}
SStream_concat(O, ", %s", markup("<imm:"));
unsigned tmp = translateShiftImm(getSORegOffset((unsigned int)MCOperand_getImm(MO2)));
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", tmp);
else
SStream_concat(O, "#%u", tmp);
SStream_concat(O, markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.type =
(arm_shifter)ARM_AM_getSORegShOp((unsigned int)MCOperand_getImm(MO2));
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.value = tmp;
}
return;
}
// A8.6.123 PUSH
case ARM_STMDB_UPD:
case ARM_t2STMDB_UPD:
if (MCOperand_getReg(MCInst_getOperand(MI, 0)) == ARM_SP &&
MCInst_getNumOperands(MI) > 5) {
// Should only print PUSH if there are at least two registers in the list.
SStream_concat(O, "push");
printPredicateOperand(MI, 2, O);
if (Opcode == ARM_t2STMDB_UPD)
SStream_concat(O, ".w");
SStream_concat(O, "\t");
printRegisterList(MI, 4, O);
return;
}
break;
case ARM_STR_PRE_IMM:
if (MCOperand_getReg(MCInst_getOperand(MI, 2)) == ARM_SP &&
MCOperand_getImm(MCInst_getOperand(MI, 3)) == -4) {
SStream_concat(O, "push");
printPredicateOperand(MI, 4, O);
SStream_concat(O, "\t{");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, 1)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, 1));
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "}");
return;
}
break;
// A8.6.122 POP
case ARM_LDMIA_UPD:
case ARM_t2LDMIA_UPD:
if (MCOperand_getReg(MCInst_getOperand(MI, 0)) == ARM_SP &&
MCInst_getNumOperands(MI) > 5) {
// Should only print POP if there are at least two registers in the list.
SStream_concat(O, "pop");
printPredicateOperand(MI, 2, O);
if (Opcode == ARM_t2LDMIA_UPD)
SStream_concat(O, ".w");
SStream_concat(O, "\t");
printRegisterList(MI, 4, O);
return;
}
break;
case ARM_LDR_POST_IMM:
if (MCOperand_getReg(MCInst_getOperand(MI, 2)) == ARM_SP &&
MCOperand_getImm(MCInst_getOperand(MI, 4)) == 4) {
SStream_concat(O, "pop");
printPredicateOperand(MI, 5, O);
SStream_concat(O, "\t{");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, 0)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, 0));
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "}");
return;
}
break;
// A8.6.355 VPUSH
case ARM_VSTMSDB_UPD:
case ARM_VSTMDDB_UPD:
if (MCOperand_getReg(MCInst_getOperand(MI, 0)) == ARM_SP) {
SStream_concat(O, "vpush");
printPredicateOperand(MI, 2, O);
SStream_concat(O, "\t");
printRegisterList(MI, 4, O);
return;
}
break;
// A8.6.354 VPOP
case ARM_VLDMSIA_UPD:
case ARM_VLDMDIA_UPD:
if (MCOperand_getReg(MCInst_getOperand(MI, 0)) == ARM_SP) {
SStream_concat(O, "vpop");
printPredicateOperand(MI, 2, O);
SStream_concat(O, "\t");
printRegisterList(MI, 4, O);
return;
}
break;
case ARM_tLDMIA: {
bool Writeback = true; // FIXME: expose this
unsigned BaseReg = MCOperand_getReg(MCInst_getOperand(MI, 0));
unsigned i;
for (i = 3; i < MCInst_getNumOperands(MI); ++i) {
if (MCOperand_getReg(MCInst_getOperand(MI, i)) == BaseReg)
Writeback = false;
}
SStream_concat(O, "ldm");
printPredicateOperand(MI, 1, O);
SStream_concat(O, "\t");
printRegName(O, BaseReg);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = BaseReg;
MI->flat_insn.arm.op_count++;
}
if (Writeback)
SStream_concat(O, "!");
SStream_concat(O, ", ");
printRegisterList(MI, 3, O);
return;
}
// Combine 2 GPRs from disassember into a GPRPair to match with instr def.
// ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
// a single GPRPair reg operand is used in the .td file to replace the two
// GPRs. However, when decoding them, the two GRPs cannot be automatically
// expressed as a GPRPair, so we have to manually merge them.
// FIXME: We would really like to be able to tablegen'erate this.
case ARM_LDREXD:
case ARM_STREXD:
case ARM_LDAEXD:
case ARM_STLEXD: {
MCRegisterClass* MRC = MCRegisterInfo_getRegClass(MRI, ARM_GPRRegClassID);
bool isStore = Opcode == ARM_STREXD || Opcode == ARM_STLEXD;
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, isStore ? 1 : 0));
if (MCRegisterClass_contains(MRC, Reg)) {
MCInst NewMI;
MCOperand *NewReg;
MCInst_setOpcode(&NewMI, Opcode);
if (isStore)
MCInst_addOperand2(&NewMI, MCInst_getOperand(MI, 0));
NewReg = MCOperand_CreateReg(MCRegisterInfo_getMatchingSuperReg(MRI, Reg, ARM_gsub_0,
MCRegisterInfo_getRegClass(MRI, ARM_GPRPairRegClassID)));
MCInst_addOperand2(&NewMI, NewReg);
cs_mem_free(NewReg);
// Copy the rest operands into NewMI.
unsigned i;
for(i= isStore ? 3 : 2; i < MCInst_getNumOperands(MI); ++i)
MCInst_addOperand2(&NewMI, MCInst_getOperand(MI, i));
printInstruction(&NewMI, O, MRI);
return;
}
}
}
//if (printAliasInstr(MI, O, MRI))
// printInstruction(MI, O, MRI);
printInstruction(MI, O, MRI);
}
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNo);
if (MCOperand_isReg(Op)) {
unsigned Reg = MCOperand_getReg(Op);
printRegName(O, Reg);
if (MI->csh->detail) {
if (MI->csh->doing_mem) {
if (MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base == ARM_REG_INVALID)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = Reg;
else
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.index = Reg;
} else {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = Reg;
MI->flat_insn.arm.op_count++;
}
}
} else if (MCOperand_isImm(Op)) {
SStream_concat(O, markup("<imm:"));
int32_t imm = (int32_t)MCOperand_getImm(Op);
// relative branch only has relative offset, so we have to update it
// to reflect absolute address.
// Note: in ARM, PC is always 2 instructions ahead, so we have to
// add 8 in ARM mode, or 4 in Thumb mode
if (ARM_rel_branch(MI->csh, MCInst_getOpcode(MI))) {
// only do this for relative branch
if (MI->csh->mode & CS_MODE_THUMB)
imm += (int32_t)MI->address + 4;
else
imm += (int32_t)MI->address + 8;
if (imm > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", imm);
else
SStream_concat(O, "#%u", imm);
} else if (imm >= 0) {
if (imm > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", imm);
else
SStream_concat(O, "#%u", imm);
} else
SStream_concat(O, "#-0x%x", -imm);
SStream_concat(O, markup(">"));
if (MI->csh->detail) {
if (MI->csh->doing_mem)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.disp = imm;
else {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = imm;
MI->flat_insn.arm.op_count++;
}
}
}
}
static void printThumbLdrLabelOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
SStream_concat(O, "%s[pc, ", markup("<mem:"));
int32_t OffImm = (int32_t)MCOperand_getImm(MO1);
bool isSub = OffImm < 0;
// Special value for #-0. All others are normal.
if (OffImm == INT32_MIN)
OffImm = 0;
if (isSub) {
SStream_concat(O, "%s#-0x%x%s", markup("<imm:"), -OffImm, markup(">"));
} else {
if (OffImm > HEX_THRESHOLD)
SStream_concat(O, "%s#0x%x%s", markup("<imm:"), OffImm, markup(">"));
else
SStream_concat(O, "%s#%u%s", markup("<imm:"), OffImm, markup(">"));
}
SStream_concat(O, "]%s", markup(">"));
}
// so_reg is a 4-operand unit corresponding to register forms of the A5.1
// "Addressing Mode 1 - Data-processing operands" forms. This includes:
// REG 0 0 - e.g. R5
// REG REG 0,SH_OPC - e.g. R5, ROR R3
// REG 0 IMM,SH_OPC - e.g. R5, LSL #3
static void printSORegRegOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
MCOperand *MO3 = MCInst_getOperand(MI, OpNum+2);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MO1);
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].shift.type = (MCOperand_getImm(MO3) & 7) + ARM_SFT_ASR_REG - 1;
MI->flat_insn.arm.op_count++;
}
// Print the shift opc.
ARM_AM_ShiftOpc ShOpc = ARM_AM_getSORegShOp((unsigned int)MCOperand_getImm(MO3));
SStream_concat(O, ", ");
SStream_concat(O, ARM_AM_getShiftOpcStr(ShOpc));
if (ShOpc == ARM_AM_rrx)
return;
SStream_concat(O, " ");
printRegName(O, MCOperand_getReg(MO2));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.value = MCOperand_getReg(MO2);
//assert(ARM_AM_getSORegOffset(MO3.getImm()) == 0);
}
static void printSORegImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MO1);
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].shift.type = MCOperand_getImm(MO2) & 7;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].shift.value = (unsigned int)MCOperand_getImm(MO2) >> 3;
MI->flat_insn.arm.op_count++;
}
// Print the shift opc.
printRegImmShift(MI, O, ARM_AM_getSORegShOp((unsigned int)MCOperand_getImm(MO2)),
getSORegOffset((unsigned int)MCOperand_getImm(MO2)), UseMarkup);
}
//===--------------------------------------------------------------------===//
// Addressing Mode #2
//===--------------------------------------------------------------------===//
static void printAM2PreOrOffsetIndexOp(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
MCOperand *MO2 = MCInst_getOperand(MI, Op + 1);
MCOperand *MO3 = MCInst_getOperand(MI, Op + 2);
SStream_concat(O, "%s[", markup("<mem:"));
set_mem_access(MI, true);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = MCOperand_getReg(MO1);
}
if (!MCOperand_getReg(MO2)) {
unsigned tmp = getAM2Offset((unsigned int)MCOperand_getImm(MO3));
if (tmp) { // Don't print +0.
SStream_concat(O, ", %s", markup("<imm:"));
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "#%s0x%x", ARM_AM_getAddrOpcStr(getAM2Op((unsigned int)MCOperand_getImm(MO3))), tmp);
else
SStream_concat(O, "#%s%u", ARM_AM_getAddrOpcStr(getAM2Op((unsigned int)MCOperand_getImm(MO3))), tmp);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].shift.type = (arm_shifter)getAM2Op((unsigned int)MCOperand_getImm(MO3));
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].shift.value = tmp;
}
SStream_concat(O, markup(">"));
}
SStream_concat(O, "]%s", markup(">"));
set_mem_access(MI, false);
return;
}
SStream_concat(O, ", ");
SStream_concat(O, ARM_AM_getAddrOpcStr(getAM2Op((unsigned int)MCOperand_getImm(MO3))));
printRegName(O, MCOperand_getReg(MO2));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.index = MCOperand_getReg(MO2);
}
printRegImmShift(MI, O, getAM2ShiftOpc((unsigned int)MCOperand_getImm(MO3)),
getAM2Offset((unsigned int)MCOperand_getImm(MO3)), UseMarkup);
SStream_concat(O, "]%s", markup(">"));
set_mem_access(MI, false);
}
static void printAddrModeTBB(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
MCOperand *MO2 = MCInst_getOperand(MI, Op+1);
SStream_concat(O, "%s[", markup("<mem:"));
set_mem_access(MI, true);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = MCOperand_getReg(MO1);
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MO2));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.index = MCOperand_getReg(MO2);
SStream_concat(O, "]%s", markup(">"));
set_mem_access(MI, false);
}
static void printAddrModeTBH(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
MCOperand *MO2 = MCInst_getOperand(MI, Op+1);
SStream_concat(O, "%s[", markup("<mem:"));
set_mem_access(MI, true);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = MCOperand_getReg(MO1);
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MO2));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.index = MCOperand_getReg(MO2);
SStream_concat(O, ", lsl %s #1%s]%s", markup("<imm:"), markup(">"), markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].shift.type = ARM_SFT_LSL;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].shift.value = 1;
}
set_mem_access(MI, false);
}
static void printAddrMode2Operand(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
if (!MCOperand_isReg(MO1)) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
printAM2PreOrOffsetIndexOp(MI, Op, O);
}
static void printAddrMode2OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
if (!MCOperand_getReg(MO1)) {
unsigned ImmOffs = getAM2Offset((unsigned int)MCOperand_getImm(MO2));
if (ImmOffs > HEX_THRESHOLD)
SStream_concat(O, "%s#%s0x%x%s", markup("<imm:"),
ARM_AM_getAddrOpcStr(getAM2Op((unsigned int)MCOperand_getImm(MO2))), ImmOffs,
markup(">"));
else
SStream_concat(O, "%s#%s%u%s", markup("<imm:"),
ARM_AM_getAddrOpcStr(getAM2Op((unsigned int)MCOperand_getImm(MO2))), ImmOffs,
markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = ImmOffs;
MI->flat_insn.arm.op_count++;
}
return;
}
SStream_concat(O, ARM_AM_getAddrOpcStr(getAM2Op((unsigned int)MCOperand_getImm(MO2))));
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MO1);
MI->flat_insn.arm.op_count++;
}
printRegImmShift(MI, O, getAM2ShiftOpc((unsigned int)MCOperand_getImm(MO2)),
getAM2Offset((unsigned int)MCOperand_getImm(MO2)), UseMarkup);
}
//===--------------------------------------------------------------------===//
// Addressing Mode #3
//===--------------------------------------------------------------------===//
static void printAM3PostIndexOp(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
MCOperand *MO2 = MCInst_getOperand(MI, Op+1);
MCOperand *MO3 = MCInst_getOperand(MI, Op+2);
ARM_AM_AddrOpc op = getAM3Op((unsigned int)MCOperand_getImm(MO3));
SStream_concat(O, "%s[", markup("<mem:"));
set_mem_access(MI, true);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = MCOperand_getReg(MO1);
SStream_concat(O, "], %s", markup(">"));
set_mem_access(MI, false);
if (MCOperand_getReg(MO2)) {
SStream_concat(O, "%c", (char)op);
printRegName(O, MCOperand_getReg(MO2));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MO2);
MI->flat_insn.arm.op_count++;
}
return;
}
unsigned ImmOffs = getAM3Offset((unsigned int)MCOperand_getImm(MO3));
if (ImmOffs > HEX_THRESHOLD)
SStream_concat(O, "%s#%s0x%x%s", markup("<imm:"),
ARM_AM_getAddrOpcStr(op), ImmOffs,
markup(">"));
else
SStream_concat(O, "%s#%s%u%s", markup("<imm:"),
ARM_AM_getAddrOpcStr(op), ImmOffs,
markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
if (op)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = ImmOffs;
else
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = -(int)ImmOffs;
MI->flat_insn.arm.op_count++;
}
}
static void printAM3PreOrOffsetIndexOp(MCInst *MI, unsigned Op, SStream *O,
bool AlwaysPrintImm0)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
MCOperand *MO2 = MCInst_getOperand(MI, Op+1);
MCOperand *MO3 = MCInst_getOperand(MI, Op+2);
ARM_AM_AddrOpc op = getAM3Op((unsigned int)MCOperand_getImm(MO3));
SStream_concat(O, "%s[", markup("<mem:"));
set_mem_access(MI, true);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = MCOperand_getReg(MO1);
if (MCOperand_getReg(MO2)) {
SStream_concat(O, ", %s", ARM_AM_getAddrOpcStr(op));
printRegName(O, MCOperand_getReg(MO2));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.index = MCOperand_getReg(MO2);
if (op)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.scale = -1;
}
SStream_concat(O, "]%s", markup(">"));
set_mem_access(MI, false);
return;
}
//If the op is sub we have to print the immediate even if it is 0
unsigned ImmOffs = getAM3Offset((unsigned int)MCOperand_getImm(MO3));
if (AlwaysPrintImm0 || ImmOffs || (op == ARM_AM_sub)) {
if (ImmOffs > HEX_THRESHOLD)
SStream_concat(O, ", %s#%s0x%x%s", markup("<imm:"), ARM_AM_getAddrOpcStr(op),
ImmOffs, markup(">"));
else
SStream_concat(O, ", %s#%s%u%s", markup("<imm:"), ARM_AM_getAddrOpcStr(op),
ImmOffs, markup(">"));
}
if (MI->csh->detail) {
if (op)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.disp = (int)MCOperand_getImm(MO3);
else
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.disp = (int)-MCOperand_getImm(MO3);
}
SStream_concat(O, "]%s", markup(">"));
set_mem_access(MI, false);
}
static void printAddrMode3Operand(MCInst *MI, unsigned Op, SStream *O,
bool AlwaysPrintImm0)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
if (!MCOperand_isReg(MO1)) { // For label symbolic references.
printOperand(MI, Op, O);
return;
}
MCOperand *MO3 = MCInst_getOperand(MI, Op+2);
unsigned IdxMode = getAM3IdxMode((unsigned int)MCOperand_getImm(MO3));
if (IdxMode == ARMII_IndexModePost) {
printAM3PostIndexOp(MI, Op, O);
return;
}
printAM3PreOrOffsetIndexOp(MI, Op, O, AlwaysPrintImm0);
}
static void printAddrMode3OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
ARM_AM_AddrOpc op = getAM3Op((unsigned int)MCOperand_getImm(MO2));
if (MCOperand_getReg(MO1)) {
SStream_concat(O, ARM_AM_getAddrOpcStr(op));
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = MCOperand_getReg(MO1);
MI->flat_insn.arm.op_count++;
}
return;
}
unsigned ImmOffs = getAM3Offset((unsigned int)MCOperand_getImm(MO2));
if (ImmOffs > HEX_THRESHOLD)
SStream_concat(O, "%s#%s0x%x%s", markup("<imm:"),
ARM_AM_getAddrOpcStr(op), ImmOffs,
markup(">"));
else
SStream_concat(O, "%s#%s%u%s", markup("<imm:"),
ARM_AM_getAddrOpcStr(op), ImmOffs,
markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
if (op)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = ImmOffs;
else
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = -(int)ImmOffs;
MI->flat_insn.arm.op_count++;
}
}
static void printPostIdxImm8Operand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
unsigned Imm = (unsigned int)MCOperand_getImm(MO);
if ((Imm & 0xff) > HEX_THRESHOLD)
SStream_concat(O, "%s#%s0x%x%s", markup("<imm:"), ((Imm & 256) ? "" : "-"),
(Imm & 0xff), markup(">"));
else
SStream_concat(O, "%s#%s%u%s", markup("<imm:"), ((Imm & 256) ? "" : "-"),
(Imm & 0xff), markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = Imm & 0xff;
MI->flat_insn.arm.op_count++;
}
}
static void printPostIdxRegOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
SStream_concat(O, (MCOperand_getImm(MO2) ? "" : "-"));
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MO1);
MI->flat_insn.arm.op_count++;
}
}
static void printPostIdxImm8s4Operand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
unsigned Imm = (unsigned int)MCOperand_getImm(MO);
if (((Imm & 0xff) << 2) > HEX_THRESHOLD)
SStream_concat(O, "%s#%s0x%x%s", markup("<imm:"), ((Imm & 256) ? "" : "-"),
((Imm & 0xff) << 2), markup(">"));
else
SStream_concat(O, "%s#%s%u%s", markup("<imm:"), ((Imm & 256) ? "" : "-"),
((Imm & 0xff) << 2), markup(">"));
}
static void printAddrMode5Operand(MCInst *MI, unsigned OpNum, SStream *O,
bool AlwaysPrintImm0)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
if (!MCOperand_isReg(MO1)) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, OpNum, O);
return;
}
SStream_concat(O, "%s[", markup("<mem:"));
printRegName(O, MCOperand_getReg(MO1));
unsigned ImmOffs = ARM_AM_getAM5Offset((unsigned int)MCOperand_getImm(MO2));
unsigned Op = ARM_AM_getAM5Op((unsigned int)MCOperand_getImm(MO2));
if (AlwaysPrintImm0 || ImmOffs || Op == ARM_AM_sub) {
if (ImmOffs * 4 > HEX_THRESHOLD)
SStream_concat(O, ", %s#%s0x%x%s", markup("<imm:"),
ARM_AM_getAddrOpcStr(ARM_AM_getAM5Op((unsigned int)MCOperand_getImm(MO2))),
ImmOffs * 4, markup(">"));
else
SStream_concat(O, ", %s#%s%u%s", markup("<imm:"),
ARM_AM_getAddrOpcStr(ARM_AM_getAM5Op((unsigned int)MCOperand_getImm(MO2))),
ImmOffs * 4, markup(">"));
}
SStream_concat(O, "]%s", markup(">"));
}
static void printAddrMode6Operand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
SStream_concat(O, "%s[", markup("<mem:"));
set_mem_access(MI, true);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = MCOperand_getReg(MO1);
unsigned tmp = (unsigned int)MCOperand_getImm(MO2);
if (tmp) {
if (tmp << 3 > HEX_THRESHOLD)
SStream_concat(O, ":0x%x", (tmp << 3));
else
SStream_concat(O, ":%u", (tmp << 3));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.disp = tmp << 3;
}
SStream_concat(O, "]%s", markup(">"));
set_mem_access(MI, false);
}
static void printAddrMode7Operand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
SStream_concat(O, "%s[", markup("<mem:"));
set_mem_access(MI, true);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = MCOperand_getReg(MO1);
SStream_concat(O, "]%s", markup(">"));
set_mem_access(MI, false);
}
static void printAddrMode6OffsetOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
if (MCOperand_getReg(MO) == 0)
SStream_concat(O, "!");
else {
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MO));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MO);
MI->flat_insn.arm.op_count++;
}
}
}
static void printBitfieldInvMaskImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
uint32_t v = ~(uint32_t)MCOperand_getImm(MO);
int32_t lsb = CountTrailingZeros_32(v);
int32_t width = (32 - CountLeadingZeros_32 (v)) - lsb;
//assert(MO.isImm() && "Not a valid bf_inv_mask_imm value!");
if (lsb > HEX_THRESHOLD)
SStream_concat(O, "%s#0x%x%s", markup("<imm:"), lsb, markup(">"));
else
SStream_concat(O, "%s#%u%s", markup("<imm:"), lsb, markup(">"));
if (width > HEX_THRESHOLD)
SStream_concat(O, ", %s#0x%x%s", markup("<imm:"), width, markup(">"));
else
SStream_concat(O, ", %s#%u%s", markup("<imm:"), width, markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = lsb;
MI->flat_insn.arm.op_count++;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = width;
MI->flat_insn.arm.op_count++;
}
}
static void printMemBOption(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned val = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
// FIXME: HasV80Ops becomes a mode
// SStream_concat(O, ARM_MB_MemBOptToString(val,
// ARM_getFeatureBits(MI->csh->mode) & ARM_HasV8Ops));
SStream_concat(O, ARM_MB_MemBOptToString(val, ARM_HasV8Ops));
}
void printInstSyncBOption(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned val = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
SStream_concat(O, "%s", ARM_ISB_InstSyncBOptToString(val));
}
static void printShiftImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned ShiftOp = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
bool isASR = (ShiftOp & (1 << 5)) != 0;
unsigned Amt = ShiftOp & 0x1f;
if (isASR) {
unsigned tmp = Amt == 0 ? 32 : Amt;
if (tmp > HEX_THRESHOLD)
SStream_concat(O, ", asr %s#0x%x%s", markup("<imm:"), tmp, markup(">"));
else
SStream_concat(O, ", asr %s#%u%s", markup("<imm:"), tmp, markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.type = ARM_SFT_ASR;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.value = tmp;
}
} else if (Amt) {
if (Amt > HEX_THRESHOLD)
SStream_concat(O, ", lsl %s#0x%x%s", markup("<imm:"), Amt, markup(">"));
else
SStream_concat(O, ", lsl %s#%u%s", markup("<imm:"), Amt, markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.type = ARM_SFT_LSL;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.value = Amt;
}
}
}
static void printPKHLSLShiftImm(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned Imm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (Imm == 0)
return;
//assert(Imm > 0 && Imm < 32 && "Invalid PKH shift immediate value!");
if (Imm > HEX_THRESHOLD)
SStream_concat(O, ", lsl %s#0x%x%s", markup("<imm:"), Imm, markup(">"));
else
SStream_concat(O, ", lsl %s#%u%s", markup("<imm:"), Imm, markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.type = ARM_SFT_LSL;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.value = Imm;
}
}
static void printPKHASRShiftImm(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned Imm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
// A shift amount of 32 is encoded as 0.
if (Imm == 0)
Imm = 32;
//assert(Imm > 0 && Imm <= 32 && "Invalid PKH shift immediate value!");
if (Imm > HEX_THRESHOLD)
SStream_concat(O, ", asr %s#0x%x%s", markup("<imm:"), Imm, markup(">"));
else
SStream_concat(O, ", asr %s#%u%s", markup("<imm:"), Imm, markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.type = ARM_SFT_ASR;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.value = Imm;
}
}
// FIXME: push {r1, r2, r3, ...} can exceed the number of operands in MCInst struct
static void printRegisterList(MCInst *MI, unsigned OpNum, SStream *O)
{
SStream_concat(O, "{");
unsigned i, e;
for (i = OpNum, e = MCInst_getNumOperands(MI); i != e; ++i) {
if (i != OpNum) SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, i)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, i));
MI->flat_insn.arm.op_count++;
}
}
SStream_concat(O, "}");
}
static void printGPRPairOperand(MCInst *MI, unsigned OpNum, SStream *O,
MCRegisterInfo *MRI)
{
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
printRegName(O, MCRegisterInfo_getSubReg(MRI, Reg, ARM_gsub_0));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCRegisterInfo_getSubReg(MRI, Reg, ARM_gsub_0);
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, MCRegisterInfo_getSubReg(MRI, Reg, ARM_gsub_1));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCRegisterInfo_getSubReg(MRI, Reg, ARM_gsub_1);
MI->flat_insn.arm.op_count++;
}
}
// SETEND BE/LE
static void printSetendOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNum);
if (MCOperand_getImm(Op))
SStream_concat(O, "be");
else
SStream_concat(O, "le");
}
static void printCPSIMod(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNum);
SStream_concat(O, "%s", ARM_PROC_IModToString((unsigned int)MCOperand_getImm(Op)));
}
static void printCPSIFlag(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNum);
unsigned IFlags = (unsigned int)MCOperand_getImm(Op);
int i;
for (i=2; i >= 0; --i)
if (IFlags & (1 << i))
SStream_concat(O, ARM_PROC_IFlagsToString(1 << i));
if (IFlags == 0)
SStream_concat(O, "none");
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = IFlags;
MI->flat_insn.arm.op_count++;
}
}
// TODO
static void printMSRMaskOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNum);
#if 0 // TODO once below is fixed
unsigned SpecRegRBit = (unsigned int)MCOperand_getImm(Op) >> 4;
unsigned Mask = (unsigned int)MCOperand_getImm(Op) & 0xf;
#endif
// FIXME: FeatureMClass becomes mode??
//if (ARM_getFeatureBits(MI->csh->mode) & ARM_FeatureMClass) {
//if (true)
{
unsigned SYSm = (unsigned int)MCOperand_getImm(Op);
unsigned Opcode = MCInst_getOpcode(MI);
// For reads of the special registers ignore the "mask encoding" bits
// which are only for writes.
if (Opcode == ARM_t2MRS_M)
SYSm &= 0xff;
switch (SYSm) {
default: return; //llvm_unreachable("Unexpected mask value!");
case 0:
case 0x800: SStream_concat(O, "apsr"); return; // with _nzcvq bits is an alias for aspr
case 0x400: SStream_concat(O, "apsr_g"); return;
case 0xc00: SStream_concat(O, "apsr_nzcvqg"); return;
case 1:
case 0x801: SStream_concat(O, "iapsr"); return; // with _nzcvq bits is an alias for iapsr
case 0x401: SStream_concat(O, "iapsr_g"); return;
case 0xc01: SStream_concat(O, "iapsr_nzcvqg"); return;
case 2:
case 0x802: SStream_concat(O, "eapsr"); return; // with _nzcvq bits is an alias for eapsr
case 0x402: SStream_concat(O, "eapsr_g"); return;
case 0xc02: SStream_concat(O, "eapsr_nzcvqg"); return;
case 3:
case 0x803: SStream_concat(O, "xpsr"); return; // with _nzcvq bits is an alias for xpsr
case 0x403: SStream_concat(O, "xpsr_g"); return;
case 0xc03: SStream_concat(O, "xpsr_nzcvqg"); return;
case 5:
case 0x805: SStream_concat(O, "ipsr"); return;
case 6:
case 0x806: SStream_concat(O, "epsr"); return;
case 7:
case 0x807: SStream_concat(O, "iepsr"); return;
case 8:
case 0x808: SStream_concat(O, "msp"); return;
case 9:
case 0x809: SStream_concat(O, "psp"); return;
case 0x10:
case 0x810: SStream_concat(O, "primask"); return;
case 0x11:
case 0x811: SStream_concat(O, "basepri"); return;
case 0x12:
case 0x812: SStream_concat(O, "basepri_max"); return;
case 0x13:
case 0x813: SStream_concat(O, "faultmask"); return;
case 0x14:
case 0x814: SStream_concat(O, "control"); return;
}
}
#if 0 // TODO once above is fixed
// As special cases, CPSR_f, CPSR_s and CPSR_fs prefer printing as
// APSR_nzcvq, APSR_g and APSRnzcvqg, respectively.
if (!SpecRegRBit && (Mask == 8 || Mask == 4 || Mask == 12)) {
SStream_concat(O, "apsr_");
switch (Mask) {
default: return; //llvm_unreachable("Unexpected mask value!");
case 4: SStream_concat(O, "g"); return;
case 8: SStream_concat(O, "nzcvq"); return;
case 12: SStream_concat(O, "nzcvqg"); return;
}
}
if (SpecRegRBit)
SStream_concat(O, "spsr");
else
SStream_concat(O, "cpsr");
if (Mask) {
SStream_concat(O, "_");
if (Mask & 8) SStream_concat(O, "f");
if (Mask & 4) SStream_concat(O, "s");
if (Mask & 2) SStream_concat(O, "x");
if (Mask & 1) SStream_concat(O, "c");
}
#endif
}
static void printPredicateOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
ARMCC_CondCodes CC = (ARMCC_CondCodes)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
// Handle the undefined 15 CC value here for printing so we don't abort().
if ((unsigned)CC == 15) {
SStream_concat(O, "<und>");
if (MI->csh->detail)
MI->flat_insn.arm.cc = ARM_CC_INVALID;
} else {
if (CC != ARMCC_AL) {
SStream_concat(O, ARMCC_ARMCondCodeToString(CC));
}
if (MI->csh->detail)
MI->flat_insn.arm.cc = CC + 1;
}
}
// TODO: test this
static void printMandatoryPredicateOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
ARMCC_CondCodes CC = (ARMCC_CondCodes)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
SStream_concat(O, ARMCC_ARMCondCodeToString(CC));
if (MI->csh->detail)
MI->flat_insn.arm.cc = CC + 1;
}
static void printSBitModifierOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
if (MCOperand_getReg(MCInst_getOperand(MI, OpNum))) {
//assert(MCOperand_getReg(MCInst_getOperand(MI, OpNum)) == ARM_CPSR &&
// "Expect ARM CPSR register!");
if (MI->csh->detail)
MI->flat_insn.arm.update_flags = true;
SStream_concat(O, "s");
}
}
static void printNoHashImmediate(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned tmp = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "0x%x", tmp);
else
SStream_concat(O, "%u", tmp);
if (MI->csh->detail) {
if (MI->csh->doing_mem) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.disp = tmp;
} else {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = tmp;
MI->flat_insn.arm.op_count++;
}
}
}
static void printPImmediate(MCInst *MI, unsigned OpNum, SStream *O)
{
SStream_concat(O, "p%u", MCOperand_getImm(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_PIMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
MI->flat_insn.arm.op_count++;
}
}
static void printCImmediate(MCInst *MI, unsigned OpNum, SStream *O)
{
SStream_concat(O, "c%u", MCOperand_getImm(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_CIMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
MI->flat_insn.arm.op_count++;
}
}
static void printCoprocOptionImm(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned tmp = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "{0x%x}", tmp);
else
SStream_concat(O, "{%u}", tmp);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = tmp;
MI->flat_insn.arm.op_count++;
}
}
static void printAdrLabelOperand(MCInst *MI, unsigned OpNum, SStream *O, unsigned scale)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
int32_t OffImm = (int32_t)MCOperand_getImm(MO) << scale;
SStream_concat(O, markup("<imm:"));
if (OffImm == INT32_MIN) {
SStream_concat(O, "#-0");
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = 0;
MI->flat_insn.arm.op_count++;
}
} else {
if (OffImm < 0)
SStream_concat(O, "#-0x%x", -OffImm);
else {
if (OffImm > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", OffImm);
else
SStream_concat(O, "#%u", OffImm);
}
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = OffImm;
MI->flat_insn.arm.op_count++;
}
}
SStream_concat(O, markup(">"));
}
static void printThumbS4ImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned tmp = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum)) * 4;
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "%s#0x%x", markup("<imm:"), tmp);
else
SStream_concat(O, "%s#%u", markup("<imm:"), tmp);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = tmp;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, markup(">"));
}
static void printThumbSRImm(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned Imm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
unsigned tmp = Imm == 0 ? 32 : Imm;
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "%s#0x%x", markup("<imm:"), tmp);
else
SStream_concat(O, "%s#%u", markup("<imm:"), tmp);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = tmp;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, markup(">"));
}
// TODO
static void printThumbITMask(MCInst *MI, unsigned OpNum, SStream *O)
{
// (3 - the number of trailing zeros) is the number of then / else.
unsigned Mask = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
unsigned Firstcond = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum-1));
unsigned CondBit0 = Firstcond & 1;
unsigned NumTZ = CountTrailingZeros_32(Mask);
//assert(NumTZ <= 3 && "Invalid IT mask!");
unsigned Pos, e;
for (Pos = 3, e = NumTZ; Pos > e; --Pos) {
bool T = ((Mask >> Pos) & 1) == CondBit0;
if (T)
SStream_concat(O, "t");
else
SStream_concat(O, "e");
}
}
static void printThumbAddrModeRROperand(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
MCOperand *MO2 = MCInst_getOperand(MI, Op + 1);
if (!MCOperand_isReg(MO1)) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
SStream_concat(O, markup("<mem:"));
SStream_concat(O, "[");
set_mem_access(MI, true);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = MCOperand_getReg(MO1);
unsigned RegNum = MCOperand_getReg(MO2);
if (RegNum) {
SStream_concat(O, ", ");
printRegName(O, RegNum);
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.index = RegNum;
}
SStream_concat(O, "]");
set_mem_access(MI, false);
SStream_concat(O, markup(">"));
}
static void printThumbAddrModeImm5SOperand(MCInst *MI, unsigned Op, SStream *O,
unsigned Scale)
{
MCOperand *MO1 = MCInst_getOperand(MI, Op);
MCOperand *MO2 = MCInst_getOperand(MI, Op + 1);
if (!MCOperand_isReg(MO1)) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
SStream_concat(O, markup("<mem:"));
SStream_concat(O, "[");
set_mem_access(MI, true);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = MCOperand_getReg(MO1);
unsigned ImmOffs = (unsigned int)MCOperand_getImm(MO2);
if (ImmOffs) {
unsigned tmp = ImmOffs * Scale;
SStream_concat(O, ", %s", markup("<imm:"));
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", tmp);
else
SStream_concat(O, "#%u", tmp);
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.disp = tmp;
SStream_concat(O, markup(">"));
}
SStream_concat(O, "]");
set_mem_access(MI, false);
SStream_concat(O, markup(">"));
}
static void printThumbAddrModeImm5S1Operand(MCInst *MI, unsigned Op, SStream *O)
{
printThumbAddrModeImm5SOperand(MI, Op, O, 1);
}
static void printThumbAddrModeImm5S2Operand(MCInst *MI, unsigned Op, SStream *O)
{
printThumbAddrModeImm5SOperand(MI, Op, O, 2);
}
static void printThumbAddrModeImm5S4Operand(MCInst *MI, unsigned Op, SStream *O)
{
printThumbAddrModeImm5SOperand(MI, Op, O, 4);
}
static void printThumbAddrModeSPOperand(MCInst *MI, unsigned Op, SStream *O)
{
printThumbAddrModeImm5SOperand(MI, Op, O, 4);
}
// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
// register with shift forms.
// REG 0 0 - e.g. R5
// REG IMM, SH_OPC - e.g. R5, LSL #3
static void printT2SOOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
unsigned Reg = MCOperand_getReg(MO1);
printRegName(O, Reg);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = Reg;
MI->flat_insn.arm.op_count++;
}
// Print the shift opc.
//assert(MO2.isImm() && "Not a valid t2_so_reg value!");
printRegImmShift(MI, O, ARM_AM_getSORegShOp((unsigned int)MCOperand_getImm(MO2)),
getSORegOffset((unsigned int)MCOperand_getImm(MO2)), UseMarkup);
}
static void printAddrModeImm12Operand(MCInst *MI, unsigned OpNum,
SStream *O, bool AlwaysPrintImm0)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
int32_t OffImm;
bool isSub;
if (!MCOperand_isReg(MO1)) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, OpNum, O);
return;
}
SStream_concat(O, markup("<mem:"));
SStream_concat(O, "[");
set_mem_access(MI, true);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = MCOperand_getReg(MO1);
OffImm = (int32_t)MCOperand_getImm(MO2);
isSub = OffImm < 0;
// Special value for #-0. All others are normal.
if (OffImm == INT32_MIN)
OffImm = 0;
if (isSub) {
SStream_concat(O, ", %s#-0x%x%s", markup("<imm:"), -OffImm, markup(">"));
} else if (AlwaysPrintImm0 || OffImm > 0) {
if (OffImm > HEX_THRESHOLD)
SStream_concat(O, ", %s#0x%x%s", markup("<imm:"), OffImm, markup(">"));
else
SStream_concat(O, ", %s#%u%s", markup("<imm:"), OffImm, markup(">"));
}
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.disp = OffImm;
SStream_concat(O, "]%s", markup(">"));
set_mem_access(MI, false);
}
static void printT2AddrModeImm8Operand(MCInst *MI, unsigned OpNum, SStream *O,
bool AlwaysPrintImm0)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
int32_t OffImm;
bool isSub;
SStream_concat(O, "%s[", markup("<mem:"));
set_mem_access(MI, true);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = MCOperand_getReg(MO1);
OffImm = (int32_t)MCOperand_getImm(MO2);
isSub = OffImm < 0;
// Don't print +0.
if (OffImm == INT32_MIN)
OffImm = 0;
if (isSub)
SStream_concat(O, ", %s#-0x%x%s", markup("<imm:"), -OffImm, markup(">"));
else if (AlwaysPrintImm0 || OffImm > 0) {
if (OffImm > HEX_THRESHOLD)
SStream_concat(O, ", %s#0x%x%s", markup("<imm:"), OffImm, markup(">"));
else
SStream_concat(O, ", %s#%u%s", markup("<imm:"), OffImm, markup(">"));
}
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.disp = OffImm;
SStream_concat(O, "]%s", markup(">"));
set_mem_access(MI, false);
}
static void printT2AddrModeImm8s4Operand(MCInst *MI,
unsigned OpNum, SStream *O, bool AlwaysPrintImm0)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
int32_t OffImm;
bool isSub;
if (!MCOperand_isReg(MO1)) { // For label symbolic references.
printOperand(MI, OpNum, O);
return;
}
SStream_concat(O, markup("<mem:"));
SStream_concat(O, "[");
set_mem_access(MI, true);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = MCOperand_getReg(MO1);
OffImm = (int32_t)MCOperand_getImm(MO2);
isSub = OffImm < 0;
//assert(((OffImm & 0x3) == 0) && "Not a valid immediate!");
// Don't print +0.
if (OffImm == INT32_MIN)
OffImm = 0;
if (isSub) {
SStream_concat(O, ", %s#-0x%x%s", markup("<imm:"), -OffImm, markup(">"));
} else if (AlwaysPrintImm0 || OffImm > 0) {
if (OffImm > HEX_THRESHOLD)
SStream_concat(O, ", %s#0x%x%s", markup("<imm:"), OffImm, markup(">"));
else
SStream_concat(O, ", %s#%u%s", markup("<imm:"), OffImm, markup(">"));
}
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.disp = OffImm;
SStream_concat(O, "]%s", markup(">"));
set_mem_access(MI, false);
}
static void printT2AddrModeImm0_1020s4Operand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
SStream_concat(O, markup("<mem:"));
SStream_concat(O, "[");
set_mem_access(MI, true);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = MCOperand_getReg(MO1);
if (MCOperand_getImm(MO2)) {
SStream_concat(O, ", ");
SStream_concat(O, markup("<imm:"));
unsigned tmp = (unsigned int)MCOperand_getImm(MO2) * 4;
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", tmp);
else
SStream_concat(O, "#%u", tmp);
SStream_concat(O, markup(">"));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.disp = tmp;
}
SStream_concat(O, "]%s", markup(">"));
set_mem_access(MI, false);
}
static void printT2AddrModeImm8OffsetOperand(MCInst *MI,
unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
int32_t OffImm = (int32_t)MCOperand_getImm(MO1);
SStream_concat(O, ", %s", markup("<imm:"));
if (OffImm == INT32_MIN) {
SStream_concat(O, "#-0%s", markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = 0;
MI->flat_insn.arm.op_count++;
}
} else {
if (OffImm < 0)
SStream_concat(O, "#-0x%x%s", -OffImm, markup(">"));
else {
if (OffImm > HEX_THRESHOLD)
SStream_concat(O, "#0x%x%s", OffImm, markup(">"));
else
SStream_concat(O, "#%u%s", OffImm, markup(">"));
}
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = OffImm;
MI->flat_insn.arm.op_count++;
}
}
}
static void printT2AddrModeImm8s4OffsetOperand(MCInst *MI,
unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
int32_t OffImm = (int32_t)MCOperand_getImm(MO1);
//assert(((OffImm & 0x3) == 0) && "Not a valid immediate!");
SStream_concat(O, ", %s", markup("<imm:"));
if (OffImm == INT32_MIN) {
SStream_concat(O, "#-0%s", markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = 0;
MI->flat_insn.arm.op_count++;
}
} else {
if (OffImm < 0)
SStream_concat(O, "#-0x%x%s", -OffImm, markup(">"));
else {
if (OffImm > HEX_THRESHOLD)
SStream_concat(O, "#0x%x%s", OffImm, markup(">"));
else
SStream_concat(O, "#%u%s", OffImm, markup(">"));
}
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = OffImm;
MI->flat_insn.arm.op_count++;
}
}
}
static void printT2AddrModeSoRegOperand(MCInst *MI,
unsigned OpNum, SStream *O)
{
MCOperand *MO1 = MCInst_getOperand(MI, OpNum);
MCOperand *MO2 = MCInst_getOperand(MI, OpNum+1);
MCOperand *MO3 = MCInst_getOperand(MI, OpNum+2);
SStream_concat(O, "%s[", markup("<mem:"));
set_mem_access(MI, true);
printRegName(O, MCOperand_getReg(MO1));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.base = MCOperand_getReg(MO1);
//assert(MCOperand_getReg(MO2.getReg() && "Invalid so_reg load / store address!");
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MO2));
if (MI->csh->detail)
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].mem.index = MCOperand_getReg(MO2);
unsigned ShAmt = (unsigned int)MCOperand_getImm(MO3);
if (ShAmt) {
//assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!");
SStream_concat(O, ", lsl ");
SStream_concat(O, markup("<imm:"));
SStream_concat(O, "#%d", ShAmt);
SStream_concat(O, markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.type = ARM_SFT_LSL;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.value = ShAmt;
}
}
SStream_concat(O, "]%s", markup(">"));
set_mem_access(MI, false);
}
static void printFPImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
SStream_concat(O, "%s#%f%s", markup("<imm:"), getFPImmFloat((unsigned int)MCOperand_getImm(MO)), markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_FP;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].fp = getFPImmFloat((unsigned int)MCOperand_getImm(MO));
MI->flat_insn.arm.op_count++;
}
}
static void printNEONModImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned EncodedImm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
unsigned EltBits;
uint64_t Val = ARM_AM_decodeNEONModImm(EncodedImm, &EltBits);
if (Val > HEX_THRESHOLD)
SStream_concat(O, "%s#0x%"PRIx64"%s", markup("<imm:"), Val, markup(">"));
else
SStream_concat(O, "%s#%"PRIu64"%s", markup("<imm:"), Val, markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = (unsigned int)Val;
MI->flat_insn.arm.op_count++;
}
}
static void printImmPlusOneOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned Imm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (Imm + 1 > HEX_THRESHOLD)
SStream_concat(O, "%s#0x%x%s", markup("<imm:"), Imm + 1, markup(">"));
else
SStream_concat(O, "%s#%u%s", markup("<imm:"), Imm + 1, markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = Imm + 1;
MI->flat_insn.arm.op_count++;
}
}
static void printRotImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned Imm = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (Imm == 0)
return;
SStream_concat(O, ", ror %s#", markup("<imm:"));
switch (Imm) {
default: //assert (0 && "illegal ror immediate!");
case 1: SStream_concat(O, "8"); break;
case 2: SStream_concat(O, "16"); break;
case 3: SStream_concat(O, "24"); break;
}
SStream_concat(O, markup(">"));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.type = ARM_SFT_ROR;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count - 1].shift.value = Imm * 8;
}
}
static void printFBits16(MCInst *MI, unsigned OpNum, SStream *O)
{
SStream_concat(O, markup("<imm:"));
unsigned tmp = 16 - (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", tmp);
else
SStream_concat(O, "#%u", tmp);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = tmp;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, markup(">"));
}
static void printFBits32(MCInst *MI, unsigned OpNum, SStream *O)
{
SStream_concat(O, markup("<imm:"));
unsigned tmp = 32 - (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "#0x%x", tmp);
else
SStream_concat(O, "#%u", tmp);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = tmp;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, markup(">"));
}
static void printVectorIndex(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned tmp = (unsigned int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
if (tmp > HEX_THRESHOLD)
SStream_concat(O, "[0x%x]",tmp);
else
SStream_concat(O, "[%u]",tmp);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_IMM;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].imm = tmp;
MI->flat_insn.arm.op_count++;
}
}
static void printVectorListOne(MCInst *MI, unsigned OpNum, SStream *O)
{
SStream_concat(O, "{");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "}");
}
static void printVectorListTwo(MCInst *MI, unsigned OpNum,
SStream *O, MCRegisterInfo *MRI)
{
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
unsigned Reg0 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_0);
unsigned Reg1 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_1);
SStream_concat(O, "{");
printRegName(O, Reg0);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = Reg0;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, Reg1);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = Reg1;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "}");
}
static void printVectorListTwoSpaced(MCInst *MI, unsigned OpNum,
SStream *O, MCRegisterInfo *MRI)
{
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
unsigned Reg0 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_0);
unsigned Reg1 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_2);
SStream_concat(O, "{");
printRegName(O, Reg0);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = Reg0;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, Reg1);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = Reg1;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "}");
}
static void printVectorListThree(MCInst *MI, unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat(O, "{");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "}");
}
static void printVectorListFour(MCInst *MI, unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat(O, "{");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 3);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 3;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "}");
}
static void printVectorListOneAllLanes(MCInst *MI, unsigned OpNum, SStream *O)
{
SStream_concat(O, "{");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[]}");
}
static void printVectorListTwoAllLanes(MCInst *MI, unsigned OpNum,
SStream *O, MCRegisterInfo *MRI)
{
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
unsigned Reg0 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_0);
unsigned Reg1 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_1);
SStream_concat(O, "{");
printRegName(O, Reg0);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = Reg0;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[], ");
printRegName(O, Reg1);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = Reg1;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[]}");
}
static void printVectorListThreeAllLanes(MCInst *MI, unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat(O, "{");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[], ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[], ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[]}");
}
static void printVectorListFourAllLanes(MCInst *MI, unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat(O, "{");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[], ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 1;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[], ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[], ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 3);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 3;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[]}");
}
static void printVectorListTwoSpacedAllLanes(MCInst *MI,
unsigned OpNum, SStream *O, MCRegisterInfo *MRI)
{
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
unsigned Reg0 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_0);
unsigned Reg1 = MCRegisterInfo_getSubReg(MRI, Reg, ARM_dsub_2);
SStream_concat(O, "{");
printRegName(O, Reg0);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = Reg0;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[], ");
printRegName(O, Reg1);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = Reg1;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[]}");
}
static void printVectorListThreeSpacedAllLanes(MCInst *MI,
unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat(O, "{");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[], ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[], ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[]}");
}
static void printVectorListFourSpacedAllLanes(MCInst *MI,
unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat(O, "{");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[], ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[], ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[], ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 6);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 6;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "[]}");
}
static void printVectorListThreeSpaced(MCInst *MI, unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat(O, "{");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "}");
}
static void printVectorListFourSpaced(MCInst *MI, unsigned OpNum, SStream *O)
{
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
SStream_concat(O, "{");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)));
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 2;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 4;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, ", ");
printRegName(O, MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 6);
if (MI->csh->detail) {
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].type = ARM_OP_REG;
MI->flat_insn.arm.operands[MI->flat_insn.arm.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum)) + 6;
MI->flat_insn.arm.op_count++;
}
SStream_concat(O, "}");
}