mirror of https://github.com/c-ares/c-ares.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
11649 lines
444 KiB
11649 lines
444 KiB
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
// SPDX-License-Identifier: BSD-3-Clause |
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This is the main header file a user should include. |
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ |
|
|
|
// This file implements the following syntax: |
|
// |
|
// ON_CALL(mock_object, Method(...)) |
|
// .With(...) ? |
|
// .WillByDefault(...); |
|
// |
|
// where With() is optional and WillByDefault() must appear exactly |
|
// once. |
|
// |
|
// EXPECT_CALL(mock_object, Method(...)) |
|
// .With(...) ? |
|
// .Times(...) ? |
|
// .InSequence(...) * |
|
// .WillOnce(...) * |
|
// .WillRepeatedly(...) ? |
|
// .RetiresOnSaturation() ? ; |
|
// |
|
// where all clauses are optional and WillOnce() can be repeated. |
|
|
|
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// The ACTION* family of macros can be used in a namespace scope to |
|
// define custom actions easily. The syntax: |
|
// |
|
// ACTION(name) { statements; } |
|
// |
|
// will define an action with the given name that executes the |
|
// statements. The value returned by the statements will be used as |
|
// the return value of the action. Inside the statements, you can |
|
// refer to the K-th (0-based) argument of the mock function by |
|
// 'argK', and refer to its type by 'argK_type'. For example: |
|
// |
|
// ACTION(IncrementArg1) { |
|
// arg1_type temp = arg1; |
|
// return ++(*temp); |
|
// } |
|
// |
|
// allows you to write |
|
// |
|
// ...WillOnce(IncrementArg1()); |
|
// |
|
// You can also refer to the entire argument tuple and its type by |
|
// 'args' and 'args_type', and refer to the mock function type and its |
|
// return type by 'function_type' and 'return_type'. |
|
// |
|
// Note that you don't need to specify the types of the mock function |
|
// arguments. However rest assured that your code is still type-safe: |
|
// you'll get a compiler error if *arg1 doesn't support the ++ |
|
// operator, or if the type of ++(*arg1) isn't compatible with the |
|
// mock function's return type, for example. |
|
// |
|
// Sometimes you'll want to parameterize the action. For that you can use |
|
// another macro: |
|
// |
|
// ACTION_P(name, param_name) { statements; } |
|
// |
|
// For example: |
|
// |
|
// ACTION_P(Add, n) { return arg0 + n; } |
|
// |
|
// will allow you to write: |
|
// |
|
// ...WillOnce(Add(5)); |
|
// |
|
// Note that you don't need to provide the type of the parameter |
|
// either. If you need to reference the type of a parameter named |
|
// 'foo', you can write 'foo_type'. For example, in the body of |
|
// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type |
|
// of 'n'. |
|
// |
|
// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support |
|
// multi-parameter actions. |
|
// |
|
// For the purpose of typing, you can view |
|
// |
|
// ACTION_Pk(Foo, p1, ..., pk) { ... } |
|
// |
|
// as shorthand for |
|
// |
|
// template <typename p1_type, ..., typename pk_type> |
|
// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } |
|
// |
|
// In particular, you can provide the template type arguments |
|
// explicitly when invoking Foo(), as in Foo<long, bool>(5, false); |
|
// although usually you can rely on the compiler to infer the types |
|
// for you automatically. You can assign the result of expression |
|
// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., |
|
// pk_type>. This can be useful when composing actions. |
|
// |
|
// You can also overload actions with different numbers of parameters: |
|
// |
|
// ACTION_P(Plus, a) { ... } |
|
// ACTION_P2(Plus, a, b) { ... } |
|
// |
|
// While it's tempting to always use the ACTION* macros when defining |
|
// a new action, you should also consider implementing ActionInterface |
|
// or using MakePolymorphicAction() instead, especially if you need to |
|
// use the action a lot. While these approaches require more work, |
|
// they give you more control on the types of the mock function |
|
// arguments and the action parameters, which in general leads to |
|
// better compiler error messages that pay off in the long run. They |
|
// also allow overloading actions based on parameter types (as opposed |
|
// to just based on the number of parameters). |
|
// |
|
// CAVEAT: |
|
// |
|
// ACTION*() can only be used in a namespace scope as templates cannot be |
|
// declared inside of a local class. |
|
// Users can, however, define any local functors (e.g. a lambda) that |
|
// can be used as actions. |
|
// |
|
// MORE INFORMATION: |
|
// |
|
// To learn more about using these macros, please search for 'ACTION' on |
|
// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md |
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
|
|
|
#ifndef _WIN32_WCE |
|
# include <errno.h> |
|
#endif |
|
|
|
#include <algorithm> |
|
#include <functional> |
|
#include <memory> |
|
#include <string> |
|
#include <tuple> |
|
#include <type_traits> |
|
#include <utility> |
|
|
|
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file defines some utilities useful for implementing Google |
|
// Mock. They are subject to change without notice, so please DO NOT |
|
// USE THEM IN USER CODE. |
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ |
|
|
|
#include <stdio.h> |
|
#include <ostream> // NOLINT |
|
#include <string> |
|
#include <type_traits> |
|
// Copyright 2008, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
// |
|
// Low-level types and utilities for porting Google Mock to various |
|
// platforms. All macros ending with _ and symbols defined in an |
|
// internal namespace are subject to change without notice. Code |
|
// outside Google Mock MUST NOT USE THEM DIRECTLY. Macros that don't |
|
// end with _ are part of Google Mock's public API and can be used by |
|
// code outside Google Mock. |
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ |
|
|
|
#include <assert.h> |
|
#include <stdlib.h> |
|
#include <cstdint> |
|
#include <iostream> |
|
|
|
// Most of the utilities needed for porting Google Mock are also |
|
// required for Google Test and are defined in gtest-port.h. |
|
// |
|
// Note to maintainers: to reduce code duplication, prefer adding |
|
// portability utilities to Google Test's gtest-port.h instead of |
|
// here, as Google Mock depends on Google Test. Only add a utility |
|
// here if it's truly specific to Google Mock. |
|
|
|
#include "gtest/gtest.h" |
|
// Copyright 2015, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
// Injection point for custom user configurations. See README for details |
|
// |
|
// ** Custom implementation starts here ** |
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ |
|
|
|
// For MS Visual C++, check the compiler version. At least VS 2015 is |
|
// required to compile Google Mock. |
|
#if defined(_MSC_VER) && _MSC_VER < 1900 |
|
# error "At least Visual C++ 2015 (14.0) is required to compile Google Mock." |
|
#endif |
|
|
|
// Macro for referencing flags. This is public as we want the user to |
|
// use this syntax to reference Google Mock flags. |
|
#define GMOCK_FLAG(name) FLAGS_gmock_##name |
|
|
|
#if !defined(GMOCK_DECLARE_bool_) |
|
|
|
// Macros for declaring flags. |
|
# define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name) |
|
# define GMOCK_DECLARE_int32_(name) extern GTEST_API_ int32_t GMOCK_FLAG(name) |
|
# define GMOCK_DECLARE_string_(name) \ |
|
extern GTEST_API_ ::std::string GMOCK_FLAG(name) |
|
|
|
// Macros for defining flags. |
|
# define GMOCK_DEFINE_bool_(name, default_val, doc) \ |
|
GTEST_API_ bool GMOCK_FLAG(name) = (default_val) |
|
# define GMOCK_DEFINE_int32_(name, default_val, doc) \ |
|
GTEST_API_ int32_t GMOCK_FLAG(name) = (default_val) |
|
# define GMOCK_DEFINE_string_(name, default_val, doc) \ |
|
GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val) |
|
|
|
#endif // !defined(GMOCK_DECLARE_bool_) |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ |
|
|
|
namespace testing { |
|
|
|
template <typename> |
|
class Matcher; |
|
|
|
namespace internal { |
|
|
|
// Silence MSVC C4100 (unreferenced formal parameter) and |
|
// C4805('==': unsafe mix of type 'const int' and type 'const bool') |
|
#ifdef _MSC_VER |
|
# pragma warning(push) |
|
# pragma warning(disable:4100) |
|
# pragma warning(disable:4805) |
|
#endif |
|
|
|
// Joins a vector of strings as if they are fields of a tuple; returns |
|
// the joined string. |
|
GTEST_API_ std::string JoinAsTuple(const Strings& fields); |
|
|
|
// Converts an identifier name to a space-separated list of lower-case |
|
// words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is |
|
// treated as one word. For example, both "FooBar123" and |
|
// "foo_bar_123" are converted to "foo bar 123". |
|
GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name); |
|
|
|
// GetRawPointer(p) returns the raw pointer underlying p when p is a |
|
// smart pointer, or returns p itself when p is already a raw pointer. |
|
// The following default implementation is for the smart pointer case. |
|
template <typename Pointer> |
|
inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) { |
|
return p.get(); |
|
} |
|
// This overloaded version is for the raw pointer case. |
|
template <typename Element> |
|
inline Element* GetRawPointer(Element* p) { return p; } |
|
|
|
// MSVC treats wchar_t as a native type usually, but treats it as the |
|
// same as unsigned short when the compiler option /Zc:wchar_t- is |
|
// specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t |
|
// is a native type. |
|
#if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED) |
|
// wchar_t is a typedef. |
|
#else |
|
# define GMOCK_WCHAR_T_IS_NATIVE_ 1 |
|
#endif |
|
|
|
// In what follows, we use the term "kind" to indicate whether a type |
|
// is bool, an integer type (excluding bool), a floating-point type, |
|
// or none of them. This categorization is useful for determining |
|
// when a matcher argument type can be safely converted to another |
|
// type in the implementation of SafeMatcherCast. |
|
enum TypeKind { |
|
kBool, kInteger, kFloatingPoint, kOther |
|
}; |
|
|
|
// KindOf<T>::value is the kind of type T. |
|
template <typename T> struct KindOf { |
|
enum { value = kOther }; // The default kind. |
|
}; |
|
|
|
// This macro declares that the kind of 'type' is 'kind'. |
|
#define GMOCK_DECLARE_KIND_(type, kind) \ |
|
template <> struct KindOf<type> { enum { value = kind }; } |
|
|
|
GMOCK_DECLARE_KIND_(bool, kBool); |
|
|
|
// All standard integer types. |
|
GMOCK_DECLARE_KIND_(char, kInteger); |
|
GMOCK_DECLARE_KIND_(signed char, kInteger); |
|
GMOCK_DECLARE_KIND_(unsigned char, kInteger); |
|
GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT |
|
GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT |
|
GMOCK_DECLARE_KIND_(int, kInteger); |
|
GMOCK_DECLARE_KIND_(unsigned int, kInteger); |
|
GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT |
|
GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT |
|
GMOCK_DECLARE_KIND_(long long, kInteger); // NOLINT |
|
GMOCK_DECLARE_KIND_(unsigned long long, kInteger); // NOLINT |
|
|
|
#if GMOCK_WCHAR_T_IS_NATIVE_ |
|
GMOCK_DECLARE_KIND_(wchar_t, kInteger); |
|
#endif |
|
|
|
// All standard floating-point types. |
|
GMOCK_DECLARE_KIND_(float, kFloatingPoint); |
|
GMOCK_DECLARE_KIND_(double, kFloatingPoint); |
|
GMOCK_DECLARE_KIND_(long double, kFloatingPoint); |
|
|
|
#undef GMOCK_DECLARE_KIND_ |
|
|
|
// Evaluates to the kind of 'type'. |
|
#define GMOCK_KIND_OF_(type) \ |
|
static_cast< ::testing::internal::TypeKind>( \ |
|
::testing::internal::KindOf<type>::value) |
|
|
|
// LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value |
|
// is true if and only if arithmetic type From can be losslessly converted to |
|
// arithmetic type To. |
|
// |
|
// It's the user's responsibility to ensure that both From and To are |
|
// raw (i.e. has no CV modifier, is not a pointer, and is not a |
|
// reference) built-in arithmetic types, kFromKind is the kind of |
|
// From, and kToKind is the kind of To; the value is |
|
// implementation-defined when the above pre-condition is violated. |
|
template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To> |
|
using LosslessArithmeticConvertibleImpl = std::integral_constant< |
|
bool, |
|
// clang-format off |
|
// Converting from bool is always lossless |
|
(kFromKind == kBool) ? true |
|
// Converting between any other type kinds will be lossy if the type |
|
// kinds are not the same. |
|
: (kFromKind != kToKind) ? false |
|
: (kFromKind == kInteger && |
|
// Converting between integers of different widths is allowed so long |
|
// as the conversion does not go from signed to unsigned. |
|
(((sizeof(From) < sizeof(To)) && |
|
!(std::is_signed<From>::value && !std::is_signed<To>::value)) || |
|
// Converting between integers of the same width only requires the |
|
// two types to have the same signedness. |
|
((sizeof(From) == sizeof(To)) && |
|
(std::is_signed<From>::value == std::is_signed<To>::value))) |
|
) ? true |
|
// Floating point conversions are lossless if and only if `To` is at least |
|
// as wide as `From`. |
|
: (kFromKind == kFloatingPoint && (sizeof(From) <= sizeof(To))) ? true |
|
: false |
|
// clang-format on |
|
>; |
|
|
|
// LosslessArithmeticConvertible<From, To>::value is true if and only if |
|
// arithmetic type From can be losslessly converted to arithmetic type To. |
|
// |
|
// It's the user's responsibility to ensure that both From and To are |
|
// raw (i.e. has no CV modifier, is not a pointer, and is not a |
|
// reference) built-in arithmetic types; the value is |
|
// implementation-defined when the above pre-condition is violated. |
|
template <typename From, typename To> |
|
using LosslessArithmeticConvertible = |
|
LosslessArithmeticConvertibleImpl<GMOCK_KIND_OF_(From), From, |
|
GMOCK_KIND_OF_(To), To>; |
|
|
|
// This interface knows how to report a Google Mock failure (either |
|
// non-fatal or fatal). |
|
class FailureReporterInterface { |
|
public: |
|
// The type of a failure (either non-fatal or fatal). |
|
enum FailureType { |
|
kNonfatal, kFatal |
|
}; |
|
|
|
virtual ~FailureReporterInterface() {} |
|
|
|
// Reports a failure that occurred at the given source file location. |
|
virtual void ReportFailure(FailureType type, const char* file, int line, |
|
const std::string& message) = 0; |
|
}; |
|
|
|
// Returns the failure reporter used by Google Mock. |
|
GTEST_API_ FailureReporterInterface* GetFailureReporter(); |
|
|
|
// Asserts that condition is true; aborts the process with the given |
|
// message if condition is false. We cannot use LOG(FATAL) or CHECK() |
|
// as Google Mock might be used to mock the log sink itself. We |
|
// inline this function to prevent it from showing up in the stack |
|
// trace. |
|
inline void Assert(bool condition, const char* file, int line, |
|
const std::string& msg) { |
|
if (!condition) { |
|
GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal, |
|
file, line, msg); |
|
} |
|
} |
|
inline void Assert(bool condition, const char* file, int line) { |
|
Assert(condition, file, line, "Assertion failed."); |
|
} |
|
|
|
// Verifies that condition is true; generates a non-fatal failure if |
|
// condition is false. |
|
inline void Expect(bool condition, const char* file, int line, |
|
const std::string& msg) { |
|
if (!condition) { |
|
GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal, |
|
file, line, msg); |
|
} |
|
} |
|
inline void Expect(bool condition, const char* file, int line) { |
|
Expect(condition, file, line, "Expectation failed."); |
|
} |
|
|
|
// Severity level of a log. |
|
enum LogSeverity { |
|
kInfo = 0, |
|
kWarning = 1 |
|
}; |
|
|
|
// Valid values for the --gmock_verbose flag. |
|
|
|
// All logs (informational and warnings) are printed. |
|
const char kInfoVerbosity[] = "info"; |
|
// Only warnings are printed. |
|
const char kWarningVerbosity[] = "warning"; |
|
// No logs are printed. |
|
const char kErrorVerbosity[] = "error"; |
|
|
|
// Returns true if and only if a log with the given severity is visible |
|
// according to the --gmock_verbose flag. |
|
GTEST_API_ bool LogIsVisible(LogSeverity severity); |
|
|
|
// Prints the given message to stdout if and only if 'severity' >= the level |
|
// specified by the --gmock_verbose flag. If stack_frames_to_skip >= |
|
// 0, also prints the stack trace excluding the top |
|
// stack_frames_to_skip frames. In opt mode, any positive |
|
// stack_frames_to_skip is treated as 0, since we don't know which |
|
// function calls will be inlined by the compiler and need to be |
|
// conservative. |
|
GTEST_API_ void Log(LogSeverity severity, const std::string& message, |
|
int stack_frames_to_skip); |
|
|
|
// A marker class that is used to resolve parameterless expectations to the |
|
// correct overload. This must not be instantiable, to prevent client code from |
|
// accidentally resolving to the overload; for example: |
|
// |
|
// ON_CALL(mock, Method({}, nullptr))... |
|
// |
|
class WithoutMatchers { |
|
private: |
|
WithoutMatchers() {} |
|
friend GTEST_API_ WithoutMatchers GetWithoutMatchers(); |
|
}; |
|
|
|
// Internal use only: access the singleton instance of WithoutMatchers. |
|
GTEST_API_ WithoutMatchers GetWithoutMatchers(); |
|
|
|
// Disable MSVC warnings for infinite recursion, since in this case the |
|
// the recursion is unreachable. |
|
#ifdef _MSC_VER |
|
# pragma warning(push) |
|
# pragma warning(disable:4717) |
|
#endif |
|
|
|
// Invalid<T>() is usable as an expression of type T, but will terminate |
|
// the program with an assertion failure if actually run. This is useful |
|
// when a value of type T is needed for compilation, but the statement |
|
// will not really be executed (or we don't care if the statement |
|
// crashes). |
|
template <typename T> |
|
inline T Invalid() { |
|
Assert(false, "", -1, "Internal error: attempt to return invalid value"); |
|
// This statement is unreachable, and would never terminate even if it |
|
// could be reached. It is provided only to placate compiler warnings |
|
// about missing return statements. |
|
return Invalid<T>(); |
|
} |
|
|
|
#ifdef _MSC_VER |
|
# pragma warning(pop) |
|
#endif |
|
|
|
// Given a raw type (i.e. having no top-level reference or const |
|
// modifier) RawContainer that's either an STL-style container or a |
|
// native array, class StlContainerView<RawContainer> has the |
|
// following members: |
|
// |
|
// - type is a type that provides an STL-style container view to |
|
// (i.e. implements the STL container concept for) RawContainer; |
|
// - const_reference is a type that provides a reference to a const |
|
// RawContainer; |
|
// - ConstReference(raw_container) returns a const reference to an STL-style |
|
// container view to raw_container, which is a RawContainer. |
|
// - Copy(raw_container) returns an STL-style container view of a |
|
// copy of raw_container, which is a RawContainer. |
|
// |
|
// This generic version is used when RawContainer itself is already an |
|
// STL-style container. |
|
template <class RawContainer> |
|
class StlContainerView { |
|
public: |
|
typedef RawContainer type; |
|
typedef const type& const_reference; |
|
|
|
static const_reference ConstReference(const RawContainer& container) { |
|
static_assert(!std::is_const<RawContainer>::value, |
|
"RawContainer type must not be const"); |
|
return container; |
|
} |
|
static type Copy(const RawContainer& container) { return container; } |
|
}; |
|
|
|
// This specialization is used when RawContainer is a native array type. |
|
template <typename Element, size_t N> |
|
class StlContainerView<Element[N]> { |
|
public: |
|
typedef typename std::remove_const<Element>::type RawElement; |
|
typedef internal::NativeArray<RawElement> type; |
|
// NativeArray<T> can represent a native array either by value or by |
|
// reference (selected by a constructor argument), so 'const type' |
|
// can be used to reference a const native array. We cannot |
|
// 'typedef const type& const_reference' here, as that would mean |
|
// ConstReference() has to return a reference to a local variable. |
|
typedef const type const_reference; |
|
|
|
static const_reference ConstReference(const Element (&array)[N]) { |
|
static_assert(std::is_same<Element, RawElement>::value, |
|
"Element type must not be const"); |
|
return type(array, N, RelationToSourceReference()); |
|
} |
|
static type Copy(const Element (&array)[N]) { |
|
return type(array, N, RelationToSourceCopy()); |
|
} |
|
}; |
|
|
|
// This specialization is used when RawContainer is a native array |
|
// represented as a (pointer, size) tuple. |
|
template <typename ElementPointer, typename Size> |
|
class StlContainerView< ::std::tuple<ElementPointer, Size> > { |
|
public: |
|
typedef typename std::remove_const< |
|
typename std::pointer_traits<ElementPointer>::element_type>::type |
|
RawElement; |
|
typedef internal::NativeArray<RawElement> type; |
|
typedef const type const_reference; |
|
|
|
static const_reference ConstReference( |
|
const ::std::tuple<ElementPointer, Size>& array) { |
|
return type(std::get<0>(array), std::get<1>(array), |
|
RelationToSourceReference()); |
|
} |
|
static type Copy(const ::std::tuple<ElementPointer, Size>& array) { |
|
return type(std::get<0>(array), std::get<1>(array), RelationToSourceCopy()); |
|
} |
|
}; |
|
|
|
// The following specialization prevents the user from instantiating |
|
// StlContainer with a reference type. |
|
template <typename T> class StlContainerView<T&>; |
|
|
|
// A type transform to remove constness from the first part of a pair. |
|
// Pairs like that are used as the value_type of associative containers, |
|
// and this transform produces a similar but assignable pair. |
|
template <typename T> |
|
struct RemoveConstFromKey { |
|
typedef T type; |
|
}; |
|
|
|
// Partially specialized to remove constness from std::pair<const K, V>. |
|
template <typename K, typename V> |
|
struct RemoveConstFromKey<std::pair<const K, V> > { |
|
typedef std::pair<K, V> type; |
|
}; |
|
|
|
// Emit an assertion failure due to incorrect DoDefault() usage. Out-of-lined to |
|
// reduce code size. |
|
GTEST_API_ void IllegalDoDefault(const char* file, int line); |
|
|
|
template <typename F, typename Tuple, size_t... Idx> |
|
auto ApplyImpl(F&& f, Tuple&& args, IndexSequence<Idx...>) -> decltype( |
|
std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...)) { |
|
return std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...); |
|
} |
|
|
|
// Apply the function to a tuple of arguments. |
|
template <typename F, typename Tuple> |
|
auto Apply(F&& f, Tuple&& args) -> decltype( |
|
ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args), |
|
MakeIndexSequence<std::tuple_size< |
|
typename std::remove_reference<Tuple>::type>::value>())) { |
|
return ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args), |
|
MakeIndexSequence<std::tuple_size< |
|
typename std::remove_reference<Tuple>::type>::value>()); |
|
} |
|
|
|
// Template struct Function<F>, where F must be a function type, contains |
|
// the following typedefs: |
|
// |
|
// Result: the function's return type. |
|
// Arg<N>: the type of the N-th argument, where N starts with 0. |
|
// ArgumentTuple: the tuple type consisting of all parameters of F. |
|
// ArgumentMatcherTuple: the tuple type consisting of Matchers for all |
|
// parameters of F. |
|
// MakeResultVoid: the function type obtained by substituting void |
|
// for the return type of F. |
|
// MakeResultIgnoredValue: |
|
// the function type obtained by substituting Something |
|
// for the return type of F. |
|
template <typename T> |
|
struct Function; |
|
|
|
template <typename R, typename... Args> |
|
struct Function<R(Args...)> { |
|
using Result = R; |
|
static constexpr size_t ArgumentCount = sizeof...(Args); |
|
template <size_t I> |
|
using Arg = ElemFromList<I, Args...>; |
|
using ArgumentTuple = std::tuple<Args...>; |
|
using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>; |
|
using MakeResultVoid = void(Args...); |
|
using MakeResultIgnoredValue = IgnoredValue(Args...); |
|
}; |
|
|
|
template <typename R, typename... Args> |
|
constexpr size_t Function<R(Args...)>::ArgumentCount; |
|
|
|
#ifdef _MSC_VER |
|
# pragma warning(pop) |
|
#endif |
|
|
|
} // namespace internal |
|
} // namespace testing |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ |
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ |
|
|
|
// Expands and concatenates the arguments. Constructed macros reevaluate. |
|
#define GMOCK_PP_CAT(_1, _2) GMOCK_PP_INTERNAL_CAT(_1, _2) |
|
|
|
// Expands and stringifies the only argument. |
|
#define GMOCK_PP_STRINGIZE(...) GMOCK_PP_INTERNAL_STRINGIZE(__VA_ARGS__) |
|
|
|
// Returns empty. Given a variadic number of arguments. |
|
#define GMOCK_PP_EMPTY(...) |
|
|
|
// Returns a comma. Given a variadic number of arguments. |
|
#define GMOCK_PP_COMMA(...) , |
|
|
|
// Returns the only argument. |
|
#define GMOCK_PP_IDENTITY(_1) _1 |
|
|
|
// Evaluates to the number of arguments after expansion. |
|
// |
|
// #define PAIR x, y |
|
// |
|
// GMOCK_PP_NARG() => 1 |
|
// GMOCK_PP_NARG(x) => 1 |
|
// GMOCK_PP_NARG(x, y) => 2 |
|
// GMOCK_PP_NARG(PAIR) => 2 |
|
// |
|
// Requires: the number of arguments after expansion is at most 15. |
|
#define GMOCK_PP_NARG(...) \ |
|
GMOCK_PP_INTERNAL_16TH( \ |
|
(__VA_ARGS__, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)) |
|
|
|
// Returns 1 if the expansion of arguments has an unprotected comma. Otherwise |
|
// returns 0. Requires no more than 15 unprotected commas. |
|
#define GMOCK_PP_HAS_COMMA(...) \ |
|
GMOCK_PP_INTERNAL_16TH( \ |
|
(__VA_ARGS__, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)) |
|
|
|
// Returns the first argument. |
|
#define GMOCK_PP_HEAD(...) GMOCK_PP_INTERNAL_HEAD((__VA_ARGS__, unusedArg)) |
|
|
|
// Returns the tail. A variadic list of all arguments minus the first. Requires |
|
// at least one argument. |
|
#define GMOCK_PP_TAIL(...) GMOCK_PP_INTERNAL_TAIL((__VA_ARGS__)) |
|
|
|
// Calls CAT(_Macro, NARG(__VA_ARGS__))(__VA_ARGS__) |
|
#define GMOCK_PP_VARIADIC_CALL(_Macro, ...) \ |
|
GMOCK_PP_IDENTITY( \ |
|
GMOCK_PP_CAT(_Macro, GMOCK_PP_NARG(__VA_ARGS__))(__VA_ARGS__)) |
|
|
|
// If the arguments after expansion have no tokens, evaluates to `1`. Otherwise |
|
// evaluates to `0`. |
|
// |
|
// Requires: * the number of arguments after expansion is at most 15. |
|
// * If the argument is a macro, it must be able to be called with one |
|
// argument. |
|
// |
|
// Implementation details: |
|
// |
|
// There is one case when it generates a compile error: if the argument is macro |
|
// that cannot be called with one argument. |
|
// |
|
// #define M(a, b) // it doesn't matter what it expands to |
|
// |
|
// // Expected: expands to `0`. |
|
// // Actual: compile error. |
|
// GMOCK_PP_IS_EMPTY(M) |
|
// |
|
// There are 4 cases tested: |
|
// |
|
// * __VA_ARGS__ possible expansion has no unparen'd commas. Expected 0. |
|
// * __VA_ARGS__ possible expansion is not enclosed in parenthesis. Expected 0. |
|
// * __VA_ARGS__ possible expansion is not a macro that ()-evaluates to a comma. |
|
// Expected 0 |
|
// * __VA_ARGS__ is empty, or has unparen'd commas, or is enclosed in |
|
// parenthesis, or is a macro that ()-evaluates to comma. Expected 1. |
|
// |
|
// We trigger detection on '0001', i.e. on empty. |
|
#define GMOCK_PP_IS_EMPTY(...) \ |
|
GMOCK_PP_INTERNAL_IS_EMPTY(GMOCK_PP_HAS_COMMA(__VA_ARGS__), \ |
|
GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__), \ |
|
GMOCK_PP_HAS_COMMA(__VA_ARGS__()), \ |
|
GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__())) |
|
|
|
// Evaluates to _Then if _Cond is 1 and _Else if _Cond is 0. |
|
#define GMOCK_PP_IF(_Cond, _Then, _Else) \ |
|
GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IF_, _Cond)(_Then, _Else) |
|
|
|
// Similar to GMOCK_PP_IF but takes _Then and _Else in parentheses. |
|
// |
|
// GMOCK_PP_GENERIC_IF(1, (a, b, c), (d, e, f)) => a, b, c |
|
// GMOCK_PP_GENERIC_IF(0, (a, b, c), (d, e, f)) => d, e, f |
|
// |
|
#define GMOCK_PP_GENERIC_IF(_Cond, _Then, _Else) \ |
|
GMOCK_PP_REMOVE_PARENS(GMOCK_PP_IF(_Cond, _Then, _Else)) |
|
|
|
// Evaluates to the number of arguments after expansion. Identifies 'empty' as |
|
// 0. |
|
// |
|
// #define PAIR x, y |
|
// |
|
// GMOCK_PP_NARG0() => 0 |
|
// GMOCK_PP_NARG0(x) => 1 |
|
// GMOCK_PP_NARG0(x, y) => 2 |
|
// GMOCK_PP_NARG0(PAIR) => 2 |
|
// |
|
// Requires: * the number of arguments after expansion is at most 15. |
|
// * If the argument is a macro, it must be able to be called with one |
|
// argument. |
|
#define GMOCK_PP_NARG0(...) \ |
|
GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(__VA_ARGS__), 0, GMOCK_PP_NARG(__VA_ARGS__)) |
|
|
|
// Expands to 1 if the first argument starts with something in parentheses, |
|
// otherwise to 0. |
|
#define GMOCK_PP_IS_BEGIN_PARENS(...) \ |
|
GMOCK_PP_HEAD(GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_, \ |
|
GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C __VA_ARGS__)) |
|
|
|
// Expands to 1 is there is only one argument and it is enclosed in parentheses. |
|
#define GMOCK_PP_IS_ENCLOSED_PARENS(...) \ |
|
GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(__VA_ARGS__), \ |
|
GMOCK_PP_IS_EMPTY(GMOCK_PP_EMPTY __VA_ARGS__), 0) |
|
|
|
// Remove the parens, requires GMOCK_PP_IS_ENCLOSED_PARENS(args) => 1. |
|
#define GMOCK_PP_REMOVE_PARENS(...) GMOCK_PP_INTERNAL_REMOVE_PARENS __VA_ARGS__ |
|
|
|
// Expands to _Macro(0, _Data, e1) _Macro(1, _Data, e2) ... _Macro(K -1, _Data, |
|
// eK) as many of GMOCK_INTERNAL_NARG0 _Tuple. |
|
// Requires: * |_Macro| can be called with 3 arguments. |
|
// * |_Tuple| expansion has no more than 15 elements. |
|
#define GMOCK_PP_FOR_EACH(_Macro, _Data, _Tuple) \ |
|
GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, GMOCK_PP_NARG0 _Tuple) \ |
|
(0, _Macro, _Data, _Tuple) |
|
|
|
// Expands to _Macro(0, _Data, ) _Macro(1, _Data, ) ... _Macro(K - 1, _Data, ) |
|
// Empty if _K = 0. |
|
// Requires: * |_Macro| can be called with 3 arguments. |
|
// * |_K| literal between 0 and 15 |
|
#define GMOCK_PP_REPEAT(_Macro, _Data, _N) \ |
|
GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, _N) \ |
|
(0, _Macro, _Data, GMOCK_PP_INTENRAL_EMPTY_TUPLE) |
|
|
|
// Increments the argument, requires the argument to be between 0 and 15. |
|
#define GMOCK_PP_INC(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_INC_, _i) |
|
|
|
// Returns comma if _i != 0. Requires _i to be between 0 and 15. |
|
#define GMOCK_PP_COMMA_IF(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_COMMA_IF_, _i) |
|
|
|
// Internal details follow. Do not use any of these symbols outside of this |
|
// file or we will break your code. |
|
#define GMOCK_PP_INTENRAL_EMPTY_TUPLE (, , , , , , , , , , , , , , , ) |
|
#define GMOCK_PP_INTERNAL_CAT(_1, _2) _1##_2 |
|
#define GMOCK_PP_INTERNAL_STRINGIZE(...) #__VA_ARGS__ |
|
#define GMOCK_PP_INTERNAL_CAT_5(_1, _2, _3, _4, _5) _1##_2##_3##_4##_5 |
|
#define GMOCK_PP_INTERNAL_IS_EMPTY(_1, _2, _3, _4) \ |
|
GMOCK_PP_HAS_COMMA(GMOCK_PP_INTERNAL_CAT_5(GMOCK_PP_INTERNAL_IS_EMPTY_CASE_, \ |
|
_1, _2, _3, _4)) |
|
#define GMOCK_PP_INTERNAL_IS_EMPTY_CASE_0001 , |
|
#define GMOCK_PP_INTERNAL_IF_1(_Then, _Else) _Then |
|
#define GMOCK_PP_INTERNAL_IF_0(_Then, _Else) _Else |
|
|
|
// Because of MSVC treating a token with a comma in it as a single token when |
|
// passed to another macro, we need to force it to evaluate it as multiple |
|
// tokens. We do that by using a "IDENTITY(MACRO PARENTHESIZED_ARGS)" macro. We |
|
// define one per possible macro that relies on this behavior. Note "_Args" must |
|
// be parenthesized. |
|
#define GMOCK_PP_INTERNAL_INTERNAL_16TH(_1, _2, _3, _4, _5, _6, _7, _8, _9, \ |
|
_10, _11, _12, _13, _14, _15, _16, \ |
|
...) \ |
|
_16 |
|
#define GMOCK_PP_INTERNAL_16TH(_Args) \ |
|
GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_16TH _Args) |
|
#define GMOCK_PP_INTERNAL_INTERNAL_HEAD(_1, ...) _1 |
|
#define GMOCK_PP_INTERNAL_HEAD(_Args) \ |
|
GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_HEAD _Args) |
|
#define GMOCK_PP_INTERNAL_INTERNAL_TAIL(_1, ...) __VA_ARGS__ |
|
#define GMOCK_PP_INTERNAL_TAIL(_Args) \ |
|
GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_TAIL _Args) |
|
|
|
#define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C(...) 1 _ |
|
#define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_1 1, |
|
#define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C \ |
|
0, |
|
#define GMOCK_PP_INTERNAL_REMOVE_PARENS(...) __VA_ARGS__ |
|
#define GMOCK_PP_INTERNAL_INC_0 1 |
|
#define GMOCK_PP_INTERNAL_INC_1 2 |
|
#define GMOCK_PP_INTERNAL_INC_2 3 |
|
#define GMOCK_PP_INTERNAL_INC_3 4 |
|
#define GMOCK_PP_INTERNAL_INC_4 5 |
|
#define GMOCK_PP_INTERNAL_INC_5 6 |
|
#define GMOCK_PP_INTERNAL_INC_6 7 |
|
#define GMOCK_PP_INTERNAL_INC_7 8 |
|
#define GMOCK_PP_INTERNAL_INC_8 9 |
|
#define GMOCK_PP_INTERNAL_INC_9 10 |
|
#define GMOCK_PP_INTERNAL_INC_10 11 |
|
#define GMOCK_PP_INTERNAL_INC_11 12 |
|
#define GMOCK_PP_INTERNAL_INC_12 13 |
|
#define GMOCK_PP_INTERNAL_INC_13 14 |
|
#define GMOCK_PP_INTERNAL_INC_14 15 |
|
#define GMOCK_PP_INTERNAL_INC_15 16 |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_0 |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_1 , |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_2 , |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_3 , |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_4 , |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_5 , |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_6 , |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_7 , |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_8 , |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_9 , |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_10 , |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_11 , |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_12 , |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_13 , |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_14 , |
|
#define GMOCK_PP_INTERNAL_COMMA_IF_15 , |
|
#define GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, _element) \ |
|
_Macro(_i, _Data, _element) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_0(_i, _Macro, _Data, _Tuple) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(GMOCK_PP_INC(_i), _Macro, _Data, \ |
|
(GMOCK_PP_TAIL _Tuple)) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(GMOCK_PP_INC(_i), _Macro, _Data, \ |
|
(GMOCK_PP_TAIL _Tuple)) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(GMOCK_PP_INC(_i), _Macro, _Data, \ |
|
(GMOCK_PP_TAIL _Tuple)) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(GMOCK_PP_INC(_i), _Macro, _Data, \ |
|
(GMOCK_PP_TAIL _Tuple)) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(GMOCK_PP_INC(_i), _Macro, _Data, \ |
|
(GMOCK_PP_TAIL _Tuple)) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(GMOCK_PP_INC(_i), _Macro, _Data, \ |
|
(GMOCK_PP_TAIL _Tuple)) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(GMOCK_PP_INC(_i), _Macro, _Data, \ |
|
(GMOCK_PP_TAIL _Tuple)) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(GMOCK_PP_INC(_i), _Macro, _Data, \ |
|
(GMOCK_PP_TAIL _Tuple)) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(GMOCK_PP_INC(_i), _Macro, _Data, \ |
|
(GMOCK_PP_TAIL _Tuple)) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(GMOCK_PP_INC(_i), _Macro, _Data, \ |
|
(GMOCK_PP_TAIL _Tuple)) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(GMOCK_PP_INC(_i), _Macro, _Data, \ |
|
(GMOCK_PP_TAIL _Tuple)) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(GMOCK_PP_INC(_i), _Macro, _Data, \ |
|
(GMOCK_PP_TAIL _Tuple)) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(GMOCK_PP_INC(_i), _Macro, _Data, \ |
|
(GMOCK_PP_TAIL _Tuple)) |
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_15(_i, _Macro, _Data, _Tuple) \ |
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(GMOCK_PP_INC(_i), _Macro, _Data, \ |
|
(GMOCK_PP_TAIL _Tuple)) |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ |
|
|
|
#ifdef _MSC_VER |
|
# pragma warning(push) |
|
# pragma warning(disable:4100) |
|
#endif |
|
|
|
namespace testing { |
|
|
|
// To implement an action Foo, define: |
|
// 1. a class FooAction that implements the ActionInterface interface, and |
|
// 2. a factory function that creates an Action object from a |
|
// const FooAction*. |
|
// |
|
// The two-level delegation design follows that of Matcher, providing |
|
// consistency for extension developers. It also eases ownership |
|
// management as Action objects can now be copied like plain values. |
|
|
|
namespace internal { |
|
|
|
// BuiltInDefaultValueGetter<T, true>::Get() returns a |
|
// default-constructed T value. BuiltInDefaultValueGetter<T, |
|
// false>::Get() crashes with an error. |
|
// |
|
// This primary template is used when kDefaultConstructible is true. |
|
template <typename T, bool kDefaultConstructible> |
|
struct BuiltInDefaultValueGetter { |
|
static T Get() { return T(); } |
|
}; |
|
template <typename T> |
|
struct BuiltInDefaultValueGetter<T, false> { |
|
static T Get() { |
|
Assert(false, __FILE__, __LINE__, |
|
"Default action undefined for the function return type."); |
|
return internal::Invalid<T>(); |
|
// The above statement will never be reached, but is required in |
|
// order for this function to compile. |
|
} |
|
}; |
|
|
|
// BuiltInDefaultValue<T>::Get() returns the "built-in" default value |
|
// for type T, which is NULL when T is a raw pointer type, 0 when T is |
|
// a numeric type, false when T is bool, or "" when T is string or |
|
// std::string. In addition, in C++11 and above, it turns a |
|
// default-constructed T value if T is default constructible. For any |
|
// other type T, the built-in default T value is undefined, and the |
|
// function will abort the process. |
|
template <typename T> |
|
class BuiltInDefaultValue { |
|
public: |
|
// This function returns true if and only if type T has a built-in default |
|
// value. |
|
static bool Exists() { |
|
return ::std::is_default_constructible<T>::value; |
|
} |
|
|
|
static T Get() { |
|
return BuiltInDefaultValueGetter< |
|
T, ::std::is_default_constructible<T>::value>::Get(); |
|
} |
|
}; |
|
|
|
// This partial specialization says that we use the same built-in |
|
// default value for T and const T. |
|
template <typename T> |
|
class BuiltInDefaultValue<const T> { |
|
public: |
|
static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } |
|
static T Get() { return BuiltInDefaultValue<T>::Get(); } |
|
}; |
|
|
|
// This partial specialization defines the default values for pointer |
|
// types. |
|
template <typename T> |
|
class BuiltInDefaultValue<T*> { |
|
public: |
|
static bool Exists() { return true; } |
|
static T* Get() { return nullptr; } |
|
}; |
|
|
|
// The following specializations define the default values for |
|
// specific types we care about. |
|
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ |
|
template <> \ |
|
class BuiltInDefaultValue<type> { \ |
|
public: \ |
|
static bool Exists() { return true; } \ |
|
static type Get() { return value; } \ |
|
} |
|
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); |
|
|
|
// There's no need for a default action for signed wchar_t, as that |
|
// type is the same as wchar_t for gcc, and invalid for MSVC. |
|
// |
|
// There's also no need for a default action for unsigned wchar_t, as |
|
// that type is the same as unsigned int for gcc, and invalid for |
|
// MSVC. |
|
#if GMOCK_WCHAR_T_IS_NATIVE_ |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT |
|
#endif |
|
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); |
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); |
|
|
|
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ |
|
|
|
// Simple two-arg form of std::disjunction. |
|
template <typename P, typename Q> |
|
using disjunction = typename ::std::conditional<P::value, P, Q>::type; |
|
|
|
} // namespace internal |
|
|
|
// When an unexpected function call is encountered, Google Mock will |
|
// let it return a default value if the user has specified one for its |
|
// return type, or if the return type has a built-in default value; |
|
// otherwise Google Mock won't know what value to return and will have |
|
// to abort the process. |
|
// |
|
// The DefaultValue<T> class allows a user to specify the |
|
// default value for a type T that is both copyable and publicly |
|
// destructible (i.e. anything that can be used as a function return |
|
// type). The usage is: |
|
// |
|
// // Sets the default value for type T to be foo. |
|
// DefaultValue<T>::Set(foo); |
|
template <typename T> |
|
class DefaultValue { |
|
public: |
|
// Sets the default value for type T; requires T to be |
|
// copy-constructable and have a public destructor. |
|
static void Set(T x) { |
|
delete producer_; |
|
producer_ = new FixedValueProducer(x); |
|
} |
|
|
|
// Provides a factory function to be called to generate the default value. |
|
// This method can be used even if T is only move-constructible, but it is not |
|
// limited to that case. |
|
typedef T (*FactoryFunction)(); |
|
static void SetFactory(FactoryFunction factory) { |
|
delete producer_; |
|
producer_ = new FactoryValueProducer(factory); |
|
} |
|
|
|
// Unsets the default value for type T. |
|
static void Clear() { |
|
delete producer_; |
|
producer_ = nullptr; |
|
} |
|
|
|
// Returns true if and only if the user has set the default value for type T. |
|
static bool IsSet() { return producer_ != nullptr; } |
|
|
|
// Returns true if T has a default return value set by the user or there |
|
// exists a built-in default value. |
|
static bool Exists() { |
|
return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); |
|
} |
|
|
|
// Returns the default value for type T if the user has set one; |
|
// otherwise returns the built-in default value. Requires that Exists() |
|
// is true, which ensures that the return value is well-defined. |
|
static T Get() { |
|
return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() |
|
: producer_->Produce(); |
|
} |
|
|
|
private: |
|
class ValueProducer { |
|
public: |
|
virtual ~ValueProducer() {} |
|
virtual T Produce() = 0; |
|
}; |
|
|
|
class FixedValueProducer : public ValueProducer { |
|
public: |
|
explicit FixedValueProducer(T value) : value_(value) {} |
|
T Produce() override { return value_; } |
|
|
|
private: |
|
const T value_; |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); |
|
}; |
|
|
|
class FactoryValueProducer : public ValueProducer { |
|
public: |
|
explicit FactoryValueProducer(FactoryFunction factory) |
|
: factory_(factory) {} |
|
T Produce() override { return factory_(); } |
|
|
|
private: |
|
const FactoryFunction factory_; |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); |
|
}; |
|
|
|
static ValueProducer* producer_; |
|
}; |
|
|
|
// This partial specialization allows a user to set default values for |
|
// reference types. |
|
template <typename T> |
|
class DefaultValue<T&> { |
|
public: |
|
// Sets the default value for type T&. |
|
static void Set(T& x) { // NOLINT |
|
address_ = &x; |
|
} |
|
|
|
// Unsets the default value for type T&. |
|
static void Clear() { address_ = nullptr; } |
|
|
|
// Returns true if and only if the user has set the default value for type T&. |
|
static bool IsSet() { return address_ != nullptr; } |
|
|
|
// Returns true if T has a default return value set by the user or there |
|
// exists a built-in default value. |
|
static bool Exists() { |
|
return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); |
|
} |
|
|
|
// Returns the default value for type T& if the user has set one; |
|
// otherwise returns the built-in default value if there is one; |
|
// otherwise aborts the process. |
|
static T& Get() { |
|
return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() |
|
: *address_; |
|
} |
|
|
|
private: |
|
static T* address_; |
|
}; |
|
|
|
// This specialization allows DefaultValue<void>::Get() to |
|
// compile. |
|
template <> |
|
class DefaultValue<void> { |
|
public: |
|
static bool Exists() { return true; } |
|
static void Get() {} |
|
}; |
|
|
|
// Points to the user-set default value for type T. |
|
template <typename T> |
|
typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; |
|
|
|
// Points to the user-set default value for type T&. |
|
template <typename T> |
|
T* DefaultValue<T&>::address_ = nullptr; |
|
|
|
// Implement this interface to define an action for function type F. |
|
template <typename F> |
|
class ActionInterface { |
|
public: |
|
typedef typename internal::Function<F>::Result Result; |
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
ActionInterface() {} |
|
virtual ~ActionInterface() {} |
|
|
|
// Performs the action. This method is not const, as in general an |
|
// action can have side effects and be stateful. For example, a |
|
// get-the-next-element-from-the-collection action will need to |
|
// remember the current element. |
|
virtual Result Perform(const ArgumentTuple& args) = 0; |
|
|
|
private: |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); |
|
}; |
|
|
|
// An Action<F> is a copyable and IMMUTABLE (except by assignment) |
|
// object that represents an action to be taken when a mock function |
|
// of type F is called. The implementation of Action<T> is just a |
|
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! |
|
// You can view an object implementing ActionInterface<F> as a |
|
// concrete action (including its current state), and an Action<F> |
|
// object as a handle to it. |
|
template <typename F> |
|
class Action { |
|
// Adapter class to allow constructing Action from a legacy ActionInterface. |
|
// New code should create Actions from functors instead. |
|
struct ActionAdapter { |
|
// Adapter must be copyable to satisfy std::function requirements. |
|
::std::shared_ptr<ActionInterface<F>> impl_; |
|
|
|
template <typename... Args> |
|
typename internal::Function<F>::Result operator()(Args&&... args) { |
|
return impl_->Perform( |
|
::std::forward_as_tuple(::std::forward<Args>(args)...)); |
|
} |
|
}; |
|
|
|
template <typename G> |
|
using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; |
|
|
|
public: |
|
typedef typename internal::Function<F>::Result Result; |
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
// Constructs a null Action. Needed for storing Action objects in |
|
// STL containers. |
|
Action() {} |
|
|
|
// Construct an Action from a specified callable. |
|
// This cannot take std::function directly, because then Action would not be |
|
// directly constructible from lambda (it would require two conversions). |
|
template < |
|
typename G, |
|
typename = typename std::enable_if<internal::disjunction< |
|
IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, |
|
G>>::value>::type> |
|
Action(G&& fun) { // NOLINT |
|
Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); |
|
} |
|
|
|
// Constructs an Action from its implementation. |
|
explicit Action(ActionInterface<F>* impl) |
|
: fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} |
|
|
|
// This constructor allows us to turn an Action<Func> object into an |
|
// Action<F>, as long as F's arguments can be implicitly converted |
|
// to Func's and Func's return type can be implicitly converted to F's. |
|
template <typename Func> |
|
explicit Action(const Action<Func>& action) : fun_(action.fun_) {} |
|
|
|
// Returns true if and only if this is the DoDefault() action. |
|
bool IsDoDefault() const { return fun_ == nullptr; } |
|
|
|
// Performs the action. Note that this method is const even though |
|
// the corresponding method in ActionInterface is not. The reason |
|
// is that a const Action<F> means that it cannot be re-bound to |
|
// another concrete action, not that the concrete action it binds to |
|
// cannot change state. (Think of the difference between a const |
|
// pointer and a pointer to const.) |
|
Result Perform(ArgumentTuple args) const { |
|
if (IsDoDefault()) { |
|
internal::IllegalDoDefault(__FILE__, __LINE__); |
|
} |
|
return internal::Apply(fun_, ::std::move(args)); |
|
} |
|
|
|
private: |
|
template <typename G> |
|
friend class Action; |
|
|
|
template <typename G> |
|
void Init(G&& g, ::std::true_type) { |
|
fun_ = ::std::forward<G>(g); |
|
} |
|
|
|
template <typename G> |
|
void Init(G&& g, ::std::false_type) { |
|
fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; |
|
} |
|
|
|
template <typename FunctionImpl> |
|
struct IgnoreArgs { |
|
template <typename... Args> |
|
Result operator()(const Args&...) const { |
|
return function_impl(); |
|
} |
|
|
|
FunctionImpl function_impl; |
|
}; |
|
|
|
// fun_ is an empty function if and only if this is the DoDefault() action. |
|
::std::function<F> fun_; |
|
}; |
|
|
|
// The PolymorphicAction class template makes it easy to implement a |
|
// polymorphic action (i.e. an action that can be used in mock |
|
// functions of than one type, e.g. Return()). |
|
// |
|
// To define a polymorphic action, a user first provides a COPYABLE |
|
// implementation class that has a Perform() method template: |
|
// |
|
// class FooAction { |
|
// public: |
|
// template <typename Result, typename ArgumentTuple> |
|
// Result Perform(const ArgumentTuple& args) const { |
|
// // Processes the arguments and returns a result, using |
|
// // std::get<N>(args) to get the N-th (0-based) argument in the tuple. |
|
// } |
|
// ... |
|
// }; |
|
// |
|
// Then the user creates the polymorphic action using |
|
// MakePolymorphicAction(object) where object has type FooAction. See |
|
// the definition of Return(void) and SetArgumentPointee<N>(value) for |
|
// complete examples. |
|
template <typename Impl> |
|
class PolymorphicAction { |
|
public: |
|
explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} |
|
|
|
template <typename F> |
|
operator Action<F>() const { |
|
return Action<F>(new MonomorphicImpl<F>(impl_)); |
|
} |
|
|
|
private: |
|
template <typename F> |
|
class MonomorphicImpl : public ActionInterface<F> { |
|
public: |
|
typedef typename internal::Function<F>::Result Result; |
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} |
|
|
|
Result Perform(const ArgumentTuple& args) override { |
|
return impl_.template Perform<Result>(args); |
|
} |
|
|
|
private: |
|
Impl impl_; |
|
}; |
|
|
|
Impl impl_; |
|
}; |
|
|
|
// Creates an Action from its implementation and returns it. The |
|
// created Action object owns the implementation. |
|
template <typename F> |
|
Action<F> MakeAction(ActionInterface<F>* impl) { |
|
return Action<F>(impl); |
|
} |
|
|
|
// Creates a polymorphic action from its implementation. This is |
|
// easier to use than the PolymorphicAction<Impl> constructor as it |
|
// doesn't require you to explicitly write the template argument, e.g. |
|
// |
|
// MakePolymorphicAction(foo); |
|
// vs |
|
// PolymorphicAction<TypeOfFoo>(foo); |
|
template <typename Impl> |
|
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { |
|
return PolymorphicAction<Impl>(impl); |
|
} |
|
|
|
namespace internal { |
|
|
|
// Helper struct to specialize ReturnAction to execute a move instead of a copy |
|
// on return. Useful for move-only types, but could be used on any type. |
|
template <typename T> |
|
struct ByMoveWrapper { |
|
explicit ByMoveWrapper(T value) : payload(std::move(value)) {} |
|
T payload; |
|
}; |
|
|
|
// Implements the polymorphic Return(x) action, which can be used in |
|
// any function that returns the type of x, regardless of the argument |
|
// types. |
|
// |
|
// Note: The value passed into Return must be converted into |
|
// Function<F>::Result when this action is cast to Action<F> rather than |
|
// when that action is performed. This is important in scenarios like |
|
// |
|
// MOCK_METHOD1(Method, T(U)); |
|
// ... |
|
// { |
|
// Foo foo; |
|
// X x(&foo); |
|
// EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); |
|
// } |
|
// |
|
// In the example above the variable x holds reference to foo which leaves |
|
// scope and gets destroyed. If copying X just copies a reference to foo, |
|
// that copy will be left with a hanging reference. If conversion to T |
|
// makes a copy of foo, the above code is safe. To support that scenario, we |
|
// need to make sure that the type conversion happens inside the EXPECT_CALL |
|
// statement, and conversion of the result of Return to Action<T(U)> is a |
|
// good place for that. |
|
// |
|
// The real life example of the above scenario happens when an invocation |
|
// of gtl::Container() is passed into Return. |
|
// |
|
template <typename R> |
|
class ReturnAction { |
|
public: |
|
// Constructs a ReturnAction object from the value to be returned. |
|
// 'value' is passed by value instead of by const reference in order |
|
// to allow Return("string literal") to compile. |
|
explicit ReturnAction(R value) : value_(new R(std::move(value))) {} |
|
|
|
// This template type conversion operator allows Return(x) to be |
|
// used in ANY function that returns x's type. |
|
template <typename F> |
|
operator Action<F>() const { // NOLINT |
|
// Assert statement belongs here because this is the best place to verify |
|
// conditions on F. It produces the clearest error messages |
|
// in most compilers. |
|
// Impl really belongs in this scope as a local class but can't |
|
// because MSVC produces duplicate symbols in different translation units |
|
// in this case. Until MS fixes that bug we put Impl into the class scope |
|
// and put the typedef both here (for use in assert statement) and |
|
// in the Impl class. But both definitions must be the same. |
|
typedef typename Function<F>::Result Result; |
|
GTEST_COMPILE_ASSERT_( |
|
!std::is_reference<Result>::value, |
|
use_ReturnRef_instead_of_Return_to_return_a_reference); |
|
static_assert(!std::is_void<Result>::value, |
|
"Can't use Return() on an action expected to return `void`."); |
|
return Action<F>(new Impl<R, F>(value_)); |
|
} |
|
|
|
private: |
|
// Implements the Return(x) action for a particular function type F. |
|
template <typename R_, typename F> |
|
class Impl : public ActionInterface<F> { |
|
public: |
|
typedef typename Function<F>::Result Result; |
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
// The implicit cast is necessary when Result has more than one |
|
// single-argument constructor (e.g. Result is std::vector<int>) and R |
|
// has a type conversion operator template. In that case, value_(value) |
|
// won't compile as the compiler doesn't known which constructor of |
|
// Result to call. ImplicitCast_ forces the compiler to convert R to |
|
// Result without considering explicit constructors, thus resolving the |
|
// ambiguity. value_ is then initialized using its copy constructor. |
|
explicit Impl(const std::shared_ptr<R>& value) |
|
: value_before_cast_(*value), |
|
value_(ImplicitCast_<Result>(value_before_cast_)) {} |
|
|
|
Result Perform(const ArgumentTuple&) override { return value_; } |
|
|
|
private: |
|
GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value, |
|
Result_cannot_be_a_reference_type); |
|
// We save the value before casting just in case it is being cast to a |
|
// wrapper type. |
|
R value_before_cast_; |
|
Result value_; |
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); |
|
}; |
|
|
|
// Partially specialize for ByMoveWrapper. This version of ReturnAction will |
|
// move its contents instead. |
|
template <typename R_, typename F> |
|
class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> { |
|
public: |
|
typedef typename Function<F>::Result Result; |
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
explicit Impl(const std::shared_ptr<R>& wrapper) |
|
: performed_(false), wrapper_(wrapper) {} |
|
|
|
Result Perform(const ArgumentTuple&) override { |
|
GTEST_CHECK_(!performed_) |
|
<< "A ByMove() action should only be performed once."; |
|
performed_ = true; |
|
return std::move(wrapper_->payload); |
|
} |
|
|
|
private: |
|
bool performed_; |
|
const std::shared_ptr<R> wrapper_; |
|
}; |
|
|
|
const std::shared_ptr<R> value_; |
|
}; |
|
|
|
// Implements the ReturnNull() action. |
|
class ReturnNullAction { |
|
public: |
|
// Allows ReturnNull() to be used in any pointer-returning function. In C++11 |
|
// this is enforced by returning nullptr, and in non-C++11 by asserting a |
|
// pointer type on compile time. |
|
template <typename Result, typename ArgumentTuple> |
|
static Result Perform(const ArgumentTuple&) { |
|
return nullptr; |
|
} |
|
}; |
|
|
|
// Implements the Return() action. |
|
class ReturnVoidAction { |
|
public: |
|
// Allows Return() to be used in any void-returning function. |
|
template <typename Result, typename ArgumentTuple> |
|
static void Perform(const ArgumentTuple&) { |
|
static_assert(std::is_void<Result>::value, "Result should be void."); |
|
} |
|
}; |
|
|
|
// Implements the polymorphic ReturnRef(x) action, which can be used |
|
// in any function that returns a reference to the type of x, |
|
// regardless of the argument types. |
|
template <typename T> |
|
class ReturnRefAction { |
|
public: |
|
// Constructs a ReturnRefAction object from the reference to be returned. |
|
explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT |
|
|
|
// This template type conversion operator allows ReturnRef(x) to be |
|
// used in ANY function that returns a reference to x's type. |
|
template <typename F> |
|
operator Action<F>() const { |
|
typedef typename Function<F>::Result Result; |
|
// Asserts that the function return type is a reference. This |
|
// catches the user error of using ReturnRef(x) when Return(x) |
|
// should be used, and generates some helpful error message. |
|
GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value, |
|
use_Return_instead_of_ReturnRef_to_return_a_value); |
|
return Action<F>(new Impl<F>(ref_)); |
|
} |
|
|
|
private: |
|
// Implements the ReturnRef(x) action for a particular function type F. |
|
template <typename F> |
|
class Impl : public ActionInterface<F> { |
|
public: |
|
typedef typename Function<F>::Result Result; |
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
explicit Impl(T& ref) : ref_(ref) {} // NOLINT |
|
|
|
Result Perform(const ArgumentTuple&) override { return ref_; } |
|
|
|
private: |
|
T& ref_; |
|
}; |
|
|
|
T& ref_; |
|
}; |
|
|
|
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be |
|
// used in any function that returns a reference to the type of x, |
|
// regardless of the argument types. |
|
template <typename T> |
|
class ReturnRefOfCopyAction { |
|
public: |
|
// Constructs a ReturnRefOfCopyAction object from the reference to |
|
// be returned. |
|
explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT |
|
|
|
// This template type conversion operator allows ReturnRefOfCopy(x) to be |
|
// used in ANY function that returns a reference to x's type. |
|
template <typename F> |
|
operator Action<F>() const { |
|
typedef typename Function<F>::Result Result; |
|
// Asserts that the function return type is a reference. This |
|
// catches the user error of using ReturnRefOfCopy(x) when Return(x) |
|
// should be used, and generates some helpful error message. |
|
GTEST_COMPILE_ASSERT_( |
|
std::is_reference<Result>::value, |
|
use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); |
|
return Action<F>(new Impl<F>(value_)); |
|
} |
|
|
|
private: |
|
// Implements the ReturnRefOfCopy(x) action for a particular function type F. |
|
template <typename F> |
|
class Impl : public ActionInterface<F> { |
|
public: |
|
typedef typename Function<F>::Result Result; |
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
explicit Impl(const T& value) : value_(value) {} // NOLINT |
|
|
|
Result Perform(const ArgumentTuple&) override { return value_; } |
|
|
|
private: |
|
T value_; |
|
}; |
|
|
|
const T value_; |
|
}; |
|
|
|
// Implements the polymorphic ReturnRoundRobin(v) action, which can be |
|
// used in any function that returns the element_type of v. |
|
template <typename T> |
|
class ReturnRoundRobinAction { |
|
public: |
|
explicit ReturnRoundRobinAction(std::vector<T> values) { |
|
GTEST_CHECK_(!values.empty()) |
|
<< "ReturnRoundRobin requires at least one element."; |
|
state_->values = std::move(values); |
|
} |
|
|
|
template <typename... Args> |
|
T operator()(Args&&...) const { |
|
return state_->Next(); |
|
} |
|
|
|
private: |
|
struct State { |
|
T Next() { |
|
T ret_val = values[i++]; |
|
if (i == values.size()) i = 0; |
|
return ret_val; |
|
} |
|
|
|
std::vector<T> values; |
|
size_t i = 0; |
|
}; |
|
std::shared_ptr<State> state_ = std::make_shared<State>(); |
|
}; |
|
|
|
// Implements the polymorphic DoDefault() action. |
|
class DoDefaultAction { |
|
public: |
|
// This template type conversion operator allows DoDefault() to be |
|
// used in any function. |
|
template <typename F> |
|
operator Action<F>() const { return Action<F>(); } // NOLINT |
|
}; |
|
|
|
// Implements the Assign action to set a given pointer referent to a |
|
// particular value. |
|
template <typename T1, typename T2> |
|
class AssignAction { |
|
public: |
|
AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} |
|
|
|
template <typename Result, typename ArgumentTuple> |
|
void Perform(const ArgumentTuple& /* args */) const { |
|
*ptr_ = value_; |
|
} |
|
|
|
private: |
|
T1* const ptr_; |
|
const T2 value_; |
|
}; |
|
|
|
#if !GTEST_OS_WINDOWS_MOBILE |
|
|
|
// Implements the SetErrnoAndReturn action to simulate return from |
|
// various system calls and libc functions. |
|
template <typename T> |
|
class SetErrnoAndReturnAction { |
|
public: |
|
SetErrnoAndReturnAction(int errno_value, T result) |
|
: errno_(errno_value), |
|
result_(result) {} |
|
template <typename Result, typename ArgumentTuple> |
|
Result Perform(const ArgumentTuple& /* args */) const { |
|
errno = errno_; |
|
return result_; |
|
} |
|
|
|
private: |
|
const int errno_; |
|
const T result_; |
|
}; |
|
|
|
#endif // !GTEST_OS_WINDOWS_MOBILE |
|
|
|
// Implements the SetArgumentPointee<N>(x) action for any function |
|
// whose N-th argument (0-based) is a pointer to x's type. |
|
template <size_t N, typename A, typename = void> |
|
struct SetArgumentPointeeAction { |
|
A value; |
|
|
|
template <typename... Args> |
|
void operator()(const Args&... args) const { |
|
*::std::get<N>(std::tie(args...)) = value; |
|
} |
|
}; |
|
|
|
// Implements the Invoke(object_ptr, &Class::Method) action. |
|
template <class Class, typename MethodPtr> |
|
struct InvokeMethodAction { |
|
Class* const obj_ptr; |
|
const MethodPtr method_ptr; |
|
|
|
template <typename... Args> |
|
auto operator()(Args&&... args) const |
|
-> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { |
|
return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); |
|
} |
|
}; |
|
|
|
// Implements the InvokeWithoutArgs(f) action. The template argument |
|
// FunctionImpl is the implementation type of f, which can be either a |
|
// function pointer or a functor. InvokeWithoutArgs(f) can be used as an |
|
// Action<F> as long as f's type is compatible with F. |
|
template <typename FunctionImpl> |
|
struct InvokeWithoutArgsAction { |
|
FunctionImpl function_impl; |
|
|
|
// Allows InvokeWithoutArgs(f) to be used as any action whose type is |
|
// compatible with f. |
|
template <typename... Args> |
|
auto operator()(const Args&...) -> decltype(function_impl()) { |
|
return function_impl(); |
|
} |
|
}; |
|
|
|
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. |
|
template <class Class, typename MethodPtr> |
|
struct InvokeMethodWithoutArgsAction { |
|
Class* const obj_ptr; |
|
const MethodPtr method_ptr; |
|
|
|
using ReturnType = |
|
decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); |
|
|
|
template <typename... Args> |
|
ReturnType operator()(const Args&...) const { |
|
return (obj_ptr->*method_ptr)(); |
|
} |
|
}; |
|
|
|
// Implements the IgnoreResult(action) action. |
|
template <typename A> |
|
class IgnoreResultAction { |
|
public: |
|
explicit IgnoreResultAction(const A& action) : action_(action) {} |
|
|
|
template <typename F> |
|
operator Action<F>() const { |
|
// Assert statement belongs here because this is the best place to verify |
|
// conditions on F. It produces the clearest error messages |
|
// in most compilers. |
|
// Impl really belongs in this scope as a local class but can't |
|
// because MSVC produces duplicate symbols in different translation units |
|
// in this case. Until MS fixes that bug we put Impl into the class scope |
|
// and put the typedef both here (for use in assert statement) and |
|
// in the Impl class. But both definitions must be the same. |
|
typedef typename internal::Function<F>::Result Result; |
|
|
|
// Asserts at compile time that F returns void. |
|
static_assert(std::is_void<Result>::value, "Result type should be void."); |
|
|
|
return Action<F>(new Impl<F>(action_)); |
|
} |
|
|
|
private: |
|
template <typename F> |
|
class Impl : public ActionInterface<F> { |
|
public: |
|
typedef typename internal::Function<F>::Result Result; |
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
|
|
|
explicit Impl(const A& action) : action_(action) {} |
|
|
|
void Perform(const ArgumentTuple& args) override { |
|
// Performs the action and ignores its result. |
|
action_.Perform(args); |
|
} |
|
|
|
private: |
|
// Type OriginalFunction is the same as F except that its return |
|
// type is IgnoredValue. |
|
typedef typename internal::Function<F>::MakeResultIgnoredValue |
|
OriginalFunction; |
|
|
|
const Action<OriginalFunction> action_; |
|
}; |
|
|
|
const A action_; |
|
}; |
|
|
|
template <typename InnerAction, size_t... I> |
|
struct WithArgsAction { |
|
InnerAction action; |
|
|
|
// The inner action could be anything convertible to Action<X>. |
|
// We use the conversion operator to detect the signature of the inner Action. |
|
template <typename R, typename... Args> |
|
operator Action<R(Args...)>() const { // NOLINT |
|
using TupleType = std::tuple<Args...>; |
|
Action<R(typename std::tuple_element<I, TupleType>::type...)> |
|
converted(action); |
|
|
|
return [converted](Args... args) -> R { |
|
return converted.Perform(std::forward_as_tuple( |
|
std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); |
|
}; |
|
} |
|
}; |
|
|
|
template <typename... Actions> |
|
struct DoAllAction { |
|
private: |
|
template <typename T> |
|
using NonFinalType = |
|
typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; |
|
|
|
template <typename ActionT, size_t... I> |
|
std::vector<ActionT> Convert(IndexSequence<I...>) const { |
|
return {ActionT(std::get<I>(actions))...}; |
|
} |
|
|
|
public: |
|
std::tuple<Actions...> actions; |
|
|
|
template <typename R, typename... Args> |
|
operator Action<R(Args...)>() const { // NOLINT |
|
struct Op { |
|
std::vector<Action<void(NonFinalType<Args>...)>> converted; |
|
Action<R(Args...)> last; |
|
R operator()(Args... args) const { |
|
auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...); |
|
for (auto& a : converted) { |
|
a.Perform(tuple_args); |
|
} |
|
return last.Perform(std::move(tuple_args)); |
|
} |
|
}; |
|
return Op{Convert<Action<void(NonFinalType<Args>...)>>( |
|
MakeIndexSequence<sizeof...(Actions) - 1>()), |
|
std::get<sizeof...(Actions) - 1>(actions)}; |
|
} |
|
}; |
|
|
|
template <typename T, typename... Params> |
|
struct ReturnNewAction { |
|
T* operator()() const { |
|
return internal::Apply( |
|
[](const Params&... unpacked_params) { |
|
return new T(unpacked_params...); |
|
}, |
|
params); |
|
} |
|
std::tuple<Params...> params; |
|
}; |
|
|
|
template <size_t k> |
|
struct ReturnArgAction { |
|
template <typename... Args> |
|
auto operator()(const Args&... args) const -> |
|
typename std::tuple_element<k, std::tuple<Args...>>::type { |
|
return std::get<k>(std::tie(args...)); |
|
} |
|
}; |
|
|
|
template <size_t k, typename Ptr> |
|
struct SaveArgAction { |
|
Ptr pointer; |
|
|
|
template <typename... Args> |
|
void operator()(const Args&... args) const { |
|
*pointer = std::get<k>(std::tie(args...)); |
|
} |
|
}; |
|
|
|
template <size_t k, typename Ptr> |
|
struct SaveArgPointeeAction { |
|
Ptr pointer; |
|
|
|
template <typename... Args> |
|
void operator()(const Args&... args) const { |
|
*pointer = *std::get<k>(std::tie(args...)); |
|
} |
|
}; |
|
|
|
template <size_t k, typename T> |
|
struct SetArgRefereeAction { |
|
T value; |
|
|
|
template <typename... Args> |
|
void operator()(Args&&... args) const { |
|
using argk_type = |
|
typename ::std::tuple_element<k, std::tuple<Args...>>::type; |
|
static_assert(std::is_lvalue_reference<argk_type>::value, |
|
"Argument must be a reference type."); |
|
std::get<k>(std::tie(args...)) = value; |
|
} |
|
}; |
|
|
|
template <size_t k, typename I1, typename I2> |
|
struct SetArrayArgumentAction { |
|
I1 first; |
|
I2 last; |
|
|
|
template <typename... Args> |
|
void operator()(const Args&... args) const { |
|
auto value = std::get<k>(std::tie(args...)); |
|
for (auto it = first; it != last; ++it, (void)++value) { |
|
*value = *it; |
|
} |
|
} |
|
}; |
|
|
|
template <size_t k> |
|
struct DeleteArgAction { |
|
template <typename... Args> |
|
void operator()(const Args&... args) const { |
|
delete std::get<k>(std::tie(args...)); |
|
} |
|
}; |
|
|
|
template <typename Ptr> |
|
struct ReturnPointeeAction { |
|
Ptr pointer; |
|
template <typename... Args> |
|
auto operator()(const Args&...) const -> decltype(*pointer) { |
|
return *pointer; |
|
} |
|
}; |
|
|
|
#if GTEST_HAS_EXCEPTIONS |
|
template <typename T> |
|
struct ThrowAction { |
|
T exception; |
|
// We use a conversion operator to adapt to any return type. |
|
template <typename R, typename... Args> |
|
operator Action<R(Args...)>() const { // NOLINT |
|
T copy = exception; |
|
return [copy](Args...) -> R { throw copy; }; |
|
} |
|
}; |
|
#endif // GTEST_HAS_EXCEPTIONS |
|
|
|
} // namespace internal |
|
|
|
// An Unused object can be implicitly constructed from ANY value. |
|
// This is handy when defining actions that ignore some or all of the |
|
// mock function arguments. For example, given |
|
// |
|
// MOCK_METHOD3(Foo, double(const string& label, double x, double y)); |
|
// MOCK_METHOD3(Bar, double(int index, double x, double y)); |
|
// |
|
// instead of |
|
// |
|
// double DistanceToOriginWithLabel(const string& label, double x, double y) { |
|
// return sqrt(x*x + y*y); |
|
// } |
|
// double DistanceToOriginWithIndex(int index, double x, double y) { |
|
// return sqrt(x*x + y*y); |
|
// } |
|
// ... |
|
// EXPECT_CALL(mock, Foo("abc", _, _)) |
|
// .WillOnce(Invoke(DistanceToOriginWithLabel)); |
|
// EXPECT_CALL(mock, Bar(5, _, _)) |
|
// .WillOnce(Invoke(DistanceToOriginWithIndex)); |
|
// |
|
// you could write |
|
// |
|
// // We can declare any uninteresting argument as Unused. |
|
// double DistanceToOrigin(Unused, double x, double y) { |
|
// return sqrt(x*x + y*y); |
|
// } |
|
// ... |
|
// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); |
|
// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); |
|
typedef internal::IgnoredValue Unused; |
|
|
|
// Creates an action that does actions a1, a2, ..., sequentially in |
|
// each invocation. All but the last action will have a readonly view of the |
|
// arguments. |
|
template <typename... Action> |
|
internal::DoAllAction<typename std::decay<Action>::type...> DoAll( |
|
Action&&... action) { |
|
return {std::forward_as_tuple(std::forward<Action>(action)...)}; |
|
} |
|
|
|
// WithArg<k>(an_action) creates an action that passes the k-th |
|
// (0-based) argument of the mock function to an_action and performs |
|
// it. It adapts an action accepting one argument to one that accepts |
|
// multiple arguments. For convenience, we also provide |
|
// WithArgs<k>(an_action) (defined below) as a synonym. |
|
template <size_t k, typename InnerAction> |
|
internal::WithArgsAction<typename std::decay<InnerAction>::type, k> |
|
WithArg(InnerAction&& action) { |
|
return {std::forward<InnerAction>(action)}; |
|
} |
|
|
|
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes |
|
// the selected arguments of the mock function to an_action and |
|
// performs it. It serves as an adaptor between actions with |
|
// different argument lists. |
|
template <size_t k, size_t... ks, typename InnerAction> |
|
internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> |
|
WithArgs(InnerAction&& action) { |
|
return {std::forward<InnerAction>(action)}; |
|
} |
|
|
|
// WithoutArgs(inner_action) can be used in a mock function with a |
|
// non-empty argument list to perform inner_action, which takes no |
|
// argument. In other words, it adapts an action accepting no |
|
// argument to one that accepts (and ignores) arguments. |
|
template <typename InnerAction> |
|
internal::WithArgsAction<typename std::decay<InnerAction>::type> |
|
WithoutArgs(InnerAction&& action) { |
|
return {std::forward<InnerAction>(action)}; |
|
} |
|
|
|
// Creates an action that returns 'value'. 'value' is passed by value |
|
// instead of const reference - otherwise Return("string literal") |
|
// will trigger a compiler error about using array as initializer. |
|
template <typename R> |
|
internal::ReturnAction<R> Return(R value) { |
|
return internal::ReturnAction<R>(std::move(value)); |
|
} |
|
|
|
// Creates an action that returns NULL. |
|
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { |
|
return MakePolymorphicAction(internal::ReturnNullAction()); |
|
} |
|
|
|
// Creates an action that returns from a void function. |
|
inline PolymorphicAction<internal::ReturnVoidAction> Return() { |
|
return MakePolymorphicAction(internal::ReturnVoidAction()); |
|
} |
|
|
|
// Creates an action that returns the reference to a variable. |
|
template <typename R> |
|
inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT |
|
return internal::ReturnRefAction<R>(x); |
|
} |
|
|
|
// Prevent using ReturnRef on reference to temporary. |
|
template <typename R, R* = nullptr> |
|
internal::ReturnRefAction<R> ReturnRef(R&&) = delete; |
|
|
|
// Creates an action that returns the reference to a copy of the |
|
// argument. The copy is created when the action is constructed and |
|
// lives as long as the action. |
|
template <typename R> |
|
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { |
|
return internal::ReturnRefOfCopyAction<R>(x); |
|
} |
|
|
|
// Modifies the parent action (a Return() action) to perform a move of the |
|
// argument instead of a copy. |
|
// Return(ByMove()) actions can only be executed once and will assert this |
|
// invariant. |
|
template <typename R> |
|
internal::ByMoveWrapper<R> ByMove(R x) { |
|
return internal::ByMoveWrapper<R>(std::move(x)); |
|
} |
|
|
|
// Creates an action that returns an element of `vals`. Calling this action will |
|
// repeatedly return the next value from `vals` until it reaches the end and |
|
// will restart from the beginning. |
|
template <typename T> |
|
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { |
|
return internal::ReturnRoundRobinAction<T>(std::move(vals)); |
|
} |
|
|
|
// Creates an action that returns an element of `vals`. Calling this action will |
|
// repeatedly return the next value from `vals` until it reaches the end and |
|
// will restart from the beginning. |
|
template <typename T> |
|
internal::ReturnRoundRobinAction<T> ReturnRoundRobin( |
|
std::initializer_list<T> vals) { |
|
return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); |
|
} |
|
|
|
// Creates an action that does the default action for the give mock function. |
|
inline internal::DoDefaultAction DoDefault() { |
|
return internal::DoDefaultAction(); |
|
} |
|
|
|
// Creates an action that sets the variable pointed by the N-th |
|
// (0-based) function argument to 'value'. |
|
template <size_t N, typename T> |
|
internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { |
|
return {std::move(value)}; |
|
} |
|
|
|
// The following version is DEPRECATED. |
|
template <size_t N, typename T> |
|
internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { |
|
return {std::move(value)}; |
|
} |
|
|
|
// Creates an action that sets a pointer referent to a given value. |
|
template <typename T1, typename T2> |
|
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { |
|
return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); |
|
} |
|
|
|
#if !GTEST_OS_WINDOWS_MOBILE |
|
|
|
// Creates an action that sets errno and returns the appropriate error. |
|
template <typename T> |
|
PolymorphicAction<internal::SetErrnoAndReturnAction<T> > |
|
SetErrnoAndReturn(int errval, T result) { |
|
return MakePolymorphicAction( |
|
internal::SetErrnoAndReturnAction<T>(errval, result)); |
|
} |
|
|
|
#endif // !GTEST_OS_WINDOWS_MOBILE |
|
|
|
// Various overloads for Invoke(). |
|
|
|
// Legacy function. |
|
// Actions can now be implicitly constructed from callables. No need to create |
|
// wrapper objects. |
|
// This function exists for backwards compatibility. |
|
template <typename FunctionImpl> |
|
typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { |
|
return std::forward<FunctionImpl>(function_impl); |
|
} |
|
|
|
// Creates an action that invokes the given method on the given object |
|
// with the mock function's arguments. |
|
template <class Class, typename MethodPtr> |
|
internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, |
|
MethodPtr method_ptr) { |
|
return {obj_ptr, method_ptr}; |
|
} |
|
|
|
// Creates an action that invokes 'function_impl' with no argument. |
|
template <typename FunctionImpl> |
|
internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> |
|
InvokeWithoutArgs(FunctionImpl function_impl) { |
|
return {std::move(function_impl)}; |
|
} |
|
|
|
// Creates an action that invokes the given method on the given object |
|
// with no argument. |
|
template <class Class, typename MethodPtr> |
|
internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( |
|
Class* obj_ptr, MethodPtr method_ptr) { |
|
return {obj_ptr, method_ptr}; |
|
} |
|
|
|
// Creates an action that performs an_action and throws away its |
|
// result. In other words, it changes the return type of an_action to |
|
// void. an_action MUST NOT return void, or the code won't compile. |
|
template <typename A> |
|
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { |
|
return internal::IgnoreResultAction<A>(an_action); |
|
} |
|
|
|
// Creates a reference wrapper for the given L-value. If necessary, |
|
// you can explicitly specify the type of the reference. For example, |
|
// suppose 'derived' is an object of type Derived, ByRef(derived) |
|
// would wrap a Derived&. If you want to wrap a const Base& instead, |
|
// where Base is a base class of Derived, just write: |
|
// |
|
// ByRef<const Base>(derived) |
|
// |
|
// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. |
|
// However, it may still be used for consistency with ByMove(). |
|
template <typename T> |
|
inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT |
|
return ::std::reference_wrapper<T>(l_value); |
|
} |
|
|
|
// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new |
|
// instance of type T, constructed on the heap with constructor arguments |
|
// a1, a2, ..., and a_k. The caller assumes ownership of the returned value. |
|
template <typename T, typename... Params> |
|
internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( |
|
Params&&... params) { |
|
return {std::forward_as_tuple(std::forward<Params>(params)...)}; |
|
} |
|
|
|
// Action ReturnArg<k>() returns the k-th argument of the mock function. |
|
template <size_t k> |
|
internal::ReturnArgAction<k> ReturnArg() { |
|
return {}; |
|
} |
|
|
|
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the |
|
// mock function to *pointer. |
|
template <size_t k, typename Ptr> |
|
internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { |
|
return {pointer}; |
|
} |
|
|
|
// Action SaveArgPointee<k>(pointer) saves the value pointed to |
|
// by the k-th (0-based) argument of the mock function to *pointer. |
|
template <size_t k, typename Ptr> |
|
internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { |
|
return {pointer}; |
|
} |
|
|
|
// Action SetArgReferee<k>(value) assigns 'value' to the variable |
|
// referenced by the k-th (0-based) argument of the mock function. |
|
template <size_t k, typename T> |
|
internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( |
|
T&& value) { |
|
return {std::forward<T>(value)}; |
|
} |
|
|
|
// Action SetArrayArgument<k>(first, last) copies the elements in |
|
// source range [first, last) to the array pointed to by the k-th |
|
// (0-based) argument, which can be either a pointer or an |
|
// iterator. The action does not take ownership of the elements in the |
|
// source range. |
|
template <size_t k, typename I1, typename I2> |
|
internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, |
|
I2 last) { |
|
return {first, last}; |
|
} |
|
|
|
// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock |
|
// function. |
|
template <size_t k> |
|
internal::DeleteArgAction<k> DeleteArg() { |
|
return {}; |
|
} |
|
|
|
// This action returns the value pointed to by 'pointer'. |
|
template <typename Ptr> |
|
internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { |
|
return {pointer}; |
|
} |
|
|
|
// Action Throw(exception) can be used in a mock function of any type |
|
// to throw the given exception. Any copyable value can be thrown. |
|
#if GTEST_HAS_EXCEPTIONS |
|
template <typename T> |
|
internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) { |
|
return {std::forward<T>(exception)}; |
|
} |
|
#endif // GTEST_HAS_EXCEPTIONS |
|
|
|
namespace internal { |
|
|
|
// A macro from the ACTION* family (defined later in gmock-generated-actions.h) |
|
// defines an action that can be used in a mock function. Typically, |
|
// these actions only care about a subset of the arguments of the mock |
|
// function. For example, if such an action only uses the second |
|
// argument, it can be used in any mock function that takes >= 2 |
|
// arguments where the type of the second argument is compatible. |
|
// |
|
// Therefore, the action implementation must be prepared to take more |
|
// arguments than it needs. The ExcessiveArg type is used to |
|
// represent those excessive arguments. In order to keep the compiler |
|
// error messages tractable, we define it in the testing namespace |
|
// instead of testing::internal. However, this is an INTERNAL TYPE |
|
// and subject to change without notice, so a user MUST NOT USE THIS |
|
// TYPE DIRECTLY. |
|
struct ExcessiveArg {}; |
|
|
|
// Builds an implementation of an Action<> for some particular signature, using |
|
// a class defined by an ACTION* macro. |
|
template <typename F, typename Impl> struct ActionImpl; |
|
|
|
template <typename Impl> |
|
struct ImplBase { |
|
struct Holder { |
|
// Allows each copy of the Action<> to get to the Impl. |
|
explicit operator const Impl&() const { return *ptr; } |
|
std::shared_ptr<Impl> ptr; |
|
}; |
|
using type = typename std::conditional<std::is_constructible<Impl>::value, |
|
Impl, Holder>::type; |
|
}; |
|
|
|
template <typename R, typename... Args, typename Impl> |
|
struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { |
|
using Base = typename ImplBase<Impl>::type; |
|
using function_type = R(Args...); |
|
using args_type = std::tuple<Args...>; |
|
|
|
ActionImpl() = default; // Only defined if appropriate for Base. |
|
explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { } |
|
|
|
R operator()(Args&&... arg) const { |
|
static constexpr size_t kMaxArgs = |
|
sizeof...(Args) <= 10 ? sizeof...(Args) : 10; |
|
return Apply(MakeIndexSequence<kMaxArgs>{}, |
|
MakeIndexSequence<10 - kMaxArgs>{}, |
|
args_type{std::forward<Args>(arg)...}); |
|
} |
|
|
|
template <std::size_t... arg_id, std::size_t... excess_id> |
|
R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, |
|
const args_type& args) const { |
|
// Impl need not be specific to the signature of action being implemented; |
|
// only the implementing function body needs to have all of the specific |
|
// types instantiated. Up to 10 of the args that are provided by the |
|
// args_type get passed, followed by a dummy of unspecified type for the |
|
// remainder up to 10 explicit args. |
|
static constexpr ExcessiveArg kExcessArg{}; |
|
return static_cast<const Impl&>(*this).template gmock_PerformImpl< |
|
/*function_type=*/function_type, /*return_type=*/R, |
|
/*args_type=*/args_type, |
|
/*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>( |
|
/*args=*/args, std::get<arg_id>(args)..., |
|
((void)excess_id, kExcessArg)...); |
|
} |
|
}; |
|
|
|
// Stores a default-constructed Impl as part of the Action<>'s |
|
// std::function<>. The Impl should be trivial to copy. |
|
template <typename F, typename Impl> |
|
::testing::Action<F> MakeAction() { |
|
return ::testing::Action<F>(ActionImpl<F, Impl>()); |
|
} |
|
|
|
// Stores just the one given instance of Impl. |
|
template <typename F, typename Impl> |
|
::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { |
|
return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); |
|
} |
|
|
|
#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ |
|
, const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ |
|
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ |
|
const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ |
|
GMOCK_INTERNAL_ARG_UNUSED, , 10) |
|
|
|
#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i |
|
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ |
|
const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) |
|
|
|
#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type |
|
#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ |
|
GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) |
|
|
|
#define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type |
|
#define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ |
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) |
|
|
|
#define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type |
|
#define GMOCK_ACTION_TYPE_PARAMS_(params) \ |
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) |
|
|
|
#define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ |
|
, param##_type gmock_p##i |
|
#define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ |
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) |
|
|
|
#define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ |
|
, std::forward<param##_type>(gmock_p##i) |
|
#define GMOCK_ACTION_GVALUE_PARAMS_(params) \ |
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) |
|
|
|
#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ |
|
, param(::std::forward<param##_type>(gmock_p##i)) |
|
#define GMOCK_ACTION_INIT_PARAMS_(params) \ |
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) |
|
|
|
#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; |
|
#define GMOCK_ACTION_FIELD_PARAMS_(params) \ |
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) |
|
|
|
#define GMOCK_INTERNAL_ACTION(name, full_name, params) \ |
|
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ |
|
class full_name { \ |
|
public: \ |
|
explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ |
|
: impl_(std::make_shared<gmock_Impl>( \ |
|
GMOCK_ACTION_GVALUE_PARAMS_(params))) { } \ |
|
full_name(const full_name&) = default; \ |
|
full_name(full_name&&) noexcept = default; \ |
|
template <typename F> \ |
|
operator ::testing::Action<F>() const { \ |
|
return ::testing::internal::MakeAction<F>(impl_); \ |
|
} \ |
|
private: \ |
|
class gmock_Impl { \ |
|
public: \ |
|
explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ |
|
: GMOCK_ACTION_INIT_PARAMS_(params) {} \ |
|
template <typename function_type, typename return_type, \ |
|
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
|
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ |
|
GMOCK_ACTION_FIELD_PARAMS_(params) \ |
|
}; \ |
|
std::shared_ptr<const gmock_Impl> impl_; \ |
|
}; \ |
|
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ |
|
inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ |
|
GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ |
|
return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ |
|
GMOCK_ACTION_GVALUE_PARAMS_(params)); \ |
|
} \ |
|
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ |
|
template <typename function_type, typename return_type, typename args_type, \ |
|
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
|
return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl:: \ |
|
gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
|
|
|
} // namespace internal |
|
|
|
// Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. |
|
#define ACTION(name) \ |
|
class name##Action { \ |
|
public: \ |
|
explicit name##Action() noexcept {} \ |
|
name##Action(const name##Action&) noexcept {} \ |
|
template <typename F> \ |
|
operator ::testing::Action<F>() const { \ |
|
return ::testing::internal::MakeAction<F, gmock_Impl>(); \ |
|
} \ |
|
private: \ |
|
class gmock_Impl { \ |
|
public: \ |
|
template <typename function_type, typename return_type, \ |
|
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
|
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ |
|
}; \ |
|
}; \ |
|
inline name##Action name() GTEST_MUST_USE_RESULT_; \ |
|
inline name##Action name() { return name##Action(); } \ |
|
template <typename function_type, typename return_type, typename args_type, \ |
|
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
|
return_type name##Action::gmock_Impl::gmock_PerformImpl( \ |
|
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
|
|
|
#define ACTION_P(name, ...) \ |
|
GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) |
|
|
|
#define ACTION_P2(name, ...) \ |
|
GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) |
|
|
|
#define ACTION_P3(name, ...) \ |
|
GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) |
|
|
|
#define ACTION_P4(name, ...) \ |
|
GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) |
|
|
|
#define ACTION_P5(name, ...) \ |
|
GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) |
|
|
|
#define ACTION_P6(name, ...) \ |
|
GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) |
|
|
|
#define ACTION_P7(name, ...) \ |
|
GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) |
|
|
|
#define ACTION_P8(name, ...) \ |
|
GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) |
|
|
|
#define ACTION_P9(name, ...) \ |
|
GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) |
|
|
|
#define ACTION_P10(name, ...) \ |
|
GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) |
|
|
|
} // namespace testing |
|
|
|
#ifdef _MSC_VER |
|
# pragma warning(pop) |
|
#endif |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
|
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file implements some commonly used cardinalities. More |
|
// cardinalities can be defined by the user implementing the |
|
// CardinalityInterface interface if necessary. |
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ |
|
|
|
#include <limits.h> |
|
#include <memory> |
|
#include <ostream> // NOLINT |
|
|
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ |
|
/* class A needs to have dll-interface to be used by clients of class B */) |
|
|
|
namespace testing { |
|
|
|
// To implement a cardinality Foo, define: |
|
// 1. a class FooCardinality that implements the |
|
// CardinalityInterface interface, and |
|
// 2. a factory function that creates a Cardinality object from a |
|
// const FooCardinality*. |
|
// |
|
// The two-level delegation design follows that of Matcher, providing |
|
// consistency for extension developers. It also eases ownership |
|
// management as Cardinality objects can now be copied like plain values. |
|
|
|
// The implementation of a cardinality. |
|
class CardinalityInterface { |
|
public: |
|
virtual ~CardinalityInterface() {} |
|
|
|
// Conservative estimate on the lower/upper bound of the number of |
|
// calls allowed. |
|
virtual int ConservativeLowerBound() const { return 0; } |
|
virtual int ConservativeUpperBound() const { return INT_MAX; } |
|
|
|
// Returns true if and only if call_count calls will satisfy this |
|
// cardinality. |
|
virtual bool IsSatisfiedByCallCount(int call_count) const = 0; |
|
|
|
// Returns true if and only if call_count calls will saturate this |
|
// cardinality. |
|
virtual bool IsSaturatedByCallCount(int call_count) const = 0; |
|
|
|
// Describes self to an ostream. |
|
virtual void DescribeTo(::std::ostream* os) const = 0; |
|
}; |
|
|
|
// A Cardinality is a copyable and IMMUTABLE (except by assignment) |
|
// object that specifies how many times a mock function is expected to |
|
// be called. The implementation of Cardinality is just a std::shared_ptr |
|
// to const CardinalityInterface. Don't inherit from Cardinality! |
|
class GTEST_API_ Cardinality { |
|
public: |
|
// Constructs a null cardinality. Needed for storing Cardinality |
|
// objects in STL containers. |
|
Cardinality() {} |
|
|
|
// Constructs a Cardinality from its implementation. |
|
explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {} |
|
|
|
// Conservative estimate on the lower/upper bound of the number of |
|
// calls allowed. |
|
int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); } |
|
int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); } |
|
|
|
// Returns true if and only if call_count calls will satisfy this |
|
// cardinality. |
|
bool IsSatisfiedByCallCount(int call_count) const { |
|
return impl_->IsSatisfiedByCallCount(call_count); |
|
} |
|
|
|
// Returns true if and only if call_count calls will saturate this |
|
// cardinality. |
|
bool IsSaturatedByCallCount(int call_count) const { |
|
return impl_->IsSaturatedByCallCount(call_count); |
|
} |
|
|
|
// Returns true if and only if call_count calls will over-saturate this |
|
// cardinality, i.e. exceed the maximum number of allowed calls. |
|
bool IsOverSaturatedByCallCount(int call_count) const { |
|
return impl_->IsSaturatedByCallCount(call_count) && |
|
!impl_->IsSatisfiedByCallCount(call_count); |
|
} |
|
|
|
// Describes self to an ostream |
|
void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } |
|
|
|
// Describes the given actual call count to an ostream. |
|
static void DescribeActualCallCountTo(int actual_call_count, |
|
::std::ostream* os); |
|
|
|
private: |
|
std::shared_ptr<const CardinalityInterface> impl_; |
|
}; |
|
|
|
// Creates a cardinality that allows at least n calls. |
|
GTEST_API_ Cardinality AtLeast(int n); |
|
|
|
// Creates a cardinality that allows at most n calls. |
|
GTEST_API_ Cardinality AtMost(int n); |
|
|
|
// Creates a cardinality that allows any number of calls. |
|
GTEST_API_ Cardinality AnyNumber(); |
|
|
|
// Creates a cardinality that allows between min and max calls. |
|
GTEST_API_ Cardinality Between(int min, int max); |
|
|
|
// Creates a cardinality that allows exactly n calls. |
|
GTEST_API_ Cardinality Exactly(int n); |
|
|
|
// Creates a cardinality from its implementation. |
|
inline Cardinality MakeCardinality(const CardinalityInterface* c) { |
|
return Cardinality(c); |
|
} |
|
|
|
} // namespace testing |
|
|
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ |
|
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file implements MOCK_METHOD. |
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT |
|
|
|
#include <type_traits> // IWYU pragma: keep |
|
#include <utility> // IWYU pragma: keep |
|
|
|
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file implements the ON_CALL() and EXPECT_CALL() macros. |
|
// |
|
// A user can use the ON_CALL() macro to specify the default action of |
|
// a mock method. The syntax is: |
|
// |
|
// ON_CALL(mock_object, Method(argument-matchers)) |
|
// .With(multi-argument-matcher) |
|
// .WillByDefault(action); |
|
// |
|
// where the .With() clause is optional. |
|
// |
|
// A user can use the EXPECT_CALL() macro to specify an expectation on |
|
// a mock method. The syntax is: |
|
// |
|
// EXPECT_CALL(mock_object, Method(argument-matchers)) |
|
// .With(multi-argument-matchers) |
|
// .Times(cardinality) |
|
// .InSequence(sequences) |
|
// .After(expectations) |
|
// .WillOnce(action) |
|
// .WillRepeatedly(action) |
|
// .RetiresOnSaturation(); |
|
// |
|
// where all clauses are optional, and .InSequence()/.After()/ |
|
// .WillOnce() can appear any number of times. |
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ |
|
|
|
#include <functional> |
|
#include <map> |
|
#include <memory> |
|
#include <set> |
|
#include <sstream> |
|
#include <string> |
|
#include <type_traits> |
|
#include <utility> |
|
#include <vector> |
|
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// The MATCHER* family of macros can be used in a namespace scope to |
|
// define custom matchers easily. |
|
// |
|
// Basic Usage |
|
// =========== |
|
// |
|
// The syntax |
|
// |
|
// MATCHER(name, description_string) { statements; } |
|
// |
|
// defines a matcher with the given name that executes the statements, |
|
// which must return a bool to indicate if the match succeeds. Inside |
|
// the statements, you can refer to the value being matched by 'arg', |
|
// and refer to its type by 'arg_type'. |
|
// |
|
// The description string documents what the matcher does, and is used |
|
// to generate the failure message when the match fails. Since a |
|
// MATCHER() is usually defined in a header file shared by multiple |
|
// C++ source files, we require the description to be a C-string |
|
// literal to avoid possible side effects. It can be empty, in which |
|
// case we'll use the sequence of words in the matcher name as the |
|
// description. |
|
// |
|
// For example: |
|
// |
|
// MATCHER(IsEven, "") { return (arg % 2) == 0; } |
|
// |
|
// allows you to write |
|
// |
|
// // Expects mock_foo.Bar(n) to be called where n is even. |
|
// EXPECT_CALL(mock_foo, Bar(IsEven())); |
|
// |
|
// or, |
|
// |
|
// // Verifies that the value of some_expression is even. |
|
// EXPECT_THAT(some_expression, IsEven()); |
|
// |
|
// If the above assertion fails, it will print something like: |
|
// |
|
// Value of: some_expression |
|
// Expected: is even |
|
// Actual: 7 |
|
// |
|
// where the description "is even" is automatically calculated from the |
|
// matcher name IsEven. |
|
// |
|
// Argument Type |
|
// ============= |
|
// |
|
// Note that the type of the value being matched (arg_type) is |
|
// determined by the context in which you use the matcher and is |
|
// supplied to you by the compiler, so you don't need to worry about |
|
// declaring it (nor can you). This allows the matcher to be |
|
// polymorphic. For example, IsEven() can be used to match any type |
|
// where the value of "(arg % 2) == 0" can be implicitly converted to |
|
// a bool. In the "Bar(IsEven())" example above, if method Bar() |
|
// takes an int, 'arg_type' will be int; if it takes an unsigned long, |
|
// 'arg_type' will be unsigned long; and so on. |
|
// |
|
// Parameterizing Matchers |
|
// ======================= |
|
// |
|
// Sometimes you'll want to parameterize the matcher. For that you |
|
// can use another macro: |
|
// |
|
// MATCHER_P(name, param_name, description_string) { statements; } |
|
// |
|
// For example: |
|
// |
|
// MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } |
|
// |
|
// will allow you to write: |
|
// |
|
// EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); |
|
// |
|
// which may lead to this message (assuming n is 10): |
|
// |
|
// Value of: Blah("a") |
|
// Expected: has absolute value 10 |
|
// Actual: -9 |
|
// |
|
// Note that both the matcher description and its parameter are |
|
// printed, making the message human-friendly. |
|
// |
|
// In the matcher definition body, you can write 'foo_type' to |
|
// reference the type of a parameter named 'foo'. For example, in the |
|
// body of MATCHER_P(HasAbsoluteValue, value) above, you can write |
|
// 'value_type' to refer to the type of 'value'. |
|
// |
|
// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to |
|
// support multi-parameter matchers. |
|
// |
|
// Describing Parameterized Matchers |
|
// ================================= |
|
// |
|
// The last argument to MATCHER*() is a string-typed expression. The |
|
// expression can reference all of the matcher's parameters and a |
|
// special bool-typed variable named 'negation'. When 'negation' is |
|
// false, the expression should evaluate to the matcher's description; |
|
// otherwise it should evaluate to the description of the negation of |
|
// the matcher. For example, |
|
// |
|
// using testing::PrintToString; |
|
// |
|
// MATCHER_P2(InClosedRange, low, hi, |
|
// std::string(negation ? "is not" : "is") + " in range [" + |
|
// PrintToString(low) + ", " + PrintToString(hi) + "]") { |
|
// return low <= arg && arg <= hi; |
|
// } |
|
// ... |
|
// EXPECT_THAT(3, InClosedRange(4, 6)); |
|
// EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
|
// |
|
// would generate two failures that contain the text: |
|
// |
|
// Expected: is in range [4, 6] |
|
// ... |
|
// Expected: is not in range [2, 4] |
|
// |
|
// If you specify "" as the description, the failure message will |
|
// contain the sequence of words in the matcher name followed by the |
|
// parameter values printed as a tuple. For example, |
|
// |
|
// MATCHER_P2(InClosedRange, low, hi, "") { ... } |
|
// ... |
|
// EXPECT_THAT(3, InClosedRange(4, 6)); |
|
// EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
|
// |
|
// would generate two failures that contain the text: |
|
// |
|
// Expected: in closed range (4, 6) |
|
// ... |
|
// Expected: not (in closed range (2, 4)) |
|
// |
|
// Types of Matcher Parameters |
|
// =========================== |
|
// |
|
// For the purpose of typing, you can view |
|
// |
|
// MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } |
|
// |
|
// as shorthand for |
|
// |
|
// template <typename p1_type, ..., typename pk_type> |
|
// FooMatcherPk<p1_type, ..., pk_type> |
|
// Foo(p1_type p1, ..., pk_type pk) { ... } |
|
// |
|
// When you write Foo(v1, ..., vk), the compiler infers the types of |
|
// the parameters v1, ..., and vk for you. If you are not happy with |
|
// the result of the type inference, you can specify the types by |
|
// explicitly instantiating the template, as in Foo<long, bool>(5, |
|
// false). As said earlier, you don't get to (or need to) specify |
|
// 'arg_type' as that's determined by the context in which the matcher |
|
// is used. You can assign the result of expression Foo(p1, ..., pk) |
|
// to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This |
|
// can be useful when composing matchers. |
|
// |
|
// While you can instantiate a matcher template with reference types, |
|
// passing the parameters by pointer usually makes your code more |
|
// readable. If, however, you still want to pass a parameter by |
|
// reference, be aware that in the failure message generated by the |
|
// matcher you will see the value of the referenced object but not its |
|
// address. |
|
// |
|
// Explaining Match Results |
|
// ======================== |
|
// |
|
// Sometimes the matcher description alone isn't enough to explain why |
|
// the match has failed or succeeded. For example, when expecting a |
|
// long string, it can be very helpful to also print the diff between |
|
// the expected string and the actual one. To achieve that, you can |
|
// optionally stream additional information to a special variable |
|
// named result_listener, whose type is a pointer to class |
|
// MatchResultListener: |
|
// |
|
// MATCHER_P(EqualsLongString, str, "") { |
|
// if (arg == str) return true; |
|
// |
|
// *result_listener << "the difference: " |
|
/// << DiffStrings(str, arg); |
|
// return false; |
|
// } |
|
// |
|
// Overloading Matchers |
|
// ==================== |
|
// |
|
// You can overload matchers with different numbers of parameters: |
|
// |
|
// MATCHER_P(Blah, a, description_string1) { ... } |
|
// MATCHER_P2(Blah, a, b, description_string2) { ... } |
|
// |
|
// Caveats |
|
// ======= |
|
// |
|
// When defining a new matcher, you should also consider implementing |
|
// MatcherInterface or using MakePolymorphicMatcher(). These |
|
// approaches require more work than the MATCHER* macros, but also |
|
// give you more control on the types of the value being matched and |
|
// the matcher parameters, which may leads to better compiler error |
|
// messages when the matcher is used wrong. They also allow |
|
// overloading matchers based on parameter types (as opposed to just |
|
// based on the number of parameters). |
|
// |
|
// MATCHER*() can only be used in a namespace scope as templates cannot be |
|
// declared inside of a local class. |
|
// |
|
// More Information |
|
// ================ |
|
// |
|
// To learn more about using these macros, please search for 'MATCHER' |
|
// on |
|
// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md |
|
// |
|
// This file also implements some commonly used argument matchers. More |
|
// matchers can be defined by the user implementing the |
|
// MatcherInterface<T> interface if necessary. |
|
// |
|
// See googletest/include/gtest/gtest-matchers.h for the definition of class |
|
// Matcher, class MatcherInterface, and others. |
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
|
|
|
#include <algorithm> |
|
#include <cmath> |
|
#include <initializer_list> |
|
#include <iterator> |
|
#include <limits> |
|
#include <memory> |
|
#include <ostream> // NOLINT |
|
#include <sstream> |
|
#include <string> |
|
#include <type_traits> |
|
#include <utility> |
|
#include <vector> |
|
|
|
|
|
// MSVC warning C5046 is new as of VS2017 version 15.8. |
|
#if defined(_MSC_VER) && _MSC_VER >= 1915 |
|
#define GMOCK_MAYBE_5046_ 5046 |
|
#else |
|
#define GMOCK_MAYBE_5046_ |
|
#endif |
|
|
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_( |
|
4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by |
|
clients of class B */ |
|
/* Symbol involving type with internal linkage not defined */) |
|
|
|
namespace testing { |
|
|
|
// To implement a matcher Foo for type T, define: |
|
// 1. a class FooMatcherImpl that implements the |
|
// MatcherInterface<T> interface, and |
|
// 2. a factory function that creates a Matcher<T> object from a |
|
// FooMatcherImpl*. |
|
// |
|
// The two-level delegation design makes it possible to allow a user |
|
// to write "v" instead of "Eq(v)" where a Matcher is expected, which |
|
// is impossible if we pass matchers by pointers. It also eases |
|
// ownership management as Matcher objects can now be copied like |
|
// plain values. |
|
|
|
// A match result listener that stores the explanation in a string. |
|
class StringMatchResultListener : public MatchResultListener { |
|
public: |
|
StringMatchResultListener() : MatchResultListener(&ss_) {} |
|
|
|
// Returns the explanation accumulated so far. |
|
std::string str() const { return ss_.str(); } |
|
|
|
// Clears the explanation accumulated so far. |
|
void Clear() { ss_.str(""); } |
|
|
|
private: |
|
::std::stringstream ss_; |
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); |
|
}; |
|
|
|
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
|
// and MUST NOT BE USED IN USER CODE!!! |
|
namespace internal { |
|
|
|
// The MatcherCastImpl class template is a helper for implementing |
|
// MatcherCast(). We need this helper in order to partially |
|
// specialize the implementation of MatcherCast() (C++ allows |
|
// class/struct templates to be partially specialized, but not |
|
// function templates.). |
|
|
|
// This general version is used when MatcherCast()'s argument is a |
|
// polymorphic matcher (i.e. something that can be converted to a |
|
// Matcher but is not one yet; for example, Eq(value)) or a value (for |
|
// example, "hello"). |
|
template <typename T, typename M> |
|
class MatcherCastImpl { |
|
public: |
|
static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
|
// M can be a polymorphic matcher, in which case we want to use |
|
// its conversion operator to create Matcher<T>. Or it can be a value |
|
// that should be passed to the Matcher<T>'s constructor. |
|
// |
|
// We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a |
|
// polymorphic matcher because it'll be ambiguous if T has an implicit |
|
// constructor from M (this usually happens when T has an implicit |
|
// constructor from any type). |
|
// |
|
// It won't work to unconditionally implicit_cast |
|
// polymorphic_matcher_or_value to Matcher<T> because it won't trigger |
|
// a user-defined conversion from M to T if one exists (assuming M is |
|
// a value). |
|
return CastImpl(polymorphic_matcher_or_value, |
|
std::is_convertible<M, Matcher<T>>{}, |
|
std::is_convertible<M, T>{}); |
|
} |
|
|
|
private: |
|
template <bool Ignore> |
|
static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, |
|
std::true_type /* convertible_to_matcher */, |
|
std::integral_constant<bool, Ignore>) { |
|
// M is implicitly convertible to Matcher<T>, which means that either |
|
// M is a polymorphic matcher or Matcher<T> has an implicit constructor |
|
// from M. In both cases using the implicit conversion will produce a |
|
// matcher. |
|
// |
|
// Even if T has an implicit constructor from M, it won't be called because |
|
// creating Matcher<T> would require a chain of two user-defined conversions |
|
// (first to create T from M and then to create Matcher<T> from T). |
|
return polymorphic_matcher_or_value; |
|
} |
|
|
|
// M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic |
|
// matcher. It's a value of a type implicitly convertible to T. Use direct |
|
// initialization to create a matcher. |
|
static Matcher<T> CastImpl(const M& value, |
|
std::false_type /* convertible_to_matcher */, |
|
std::true_type /* convertible_to_T */) { |
|
return Matcher<T>(ImplicitCast_<T>(value)); |
|
} |
|
|
|
// M can't be implicitly converted to either Matcher<T> or T. Attempt to use |
|
// polymorphic matcher Eq(value) in this case. |
|
// |
|
// Note that we first attempt to perform an implicit cast on the value and |
|
// only fall back to the polymorphic Eq() matcher afterwards because the |
|
// latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end |
|
// which might be undefined even when Rhs is implicitly convertible to Lhs |
|
// (e.g. std::pair<const int, int> vs. std::pair<int, int>). |
|
// |
|
// We don't define this method inline as we need the declaration of Eq(). |
|
static Matcher<T> CastImpl(const M& value, |
|
std::false_type /* convertible_to_matcher */, |
|
std::false_type /* convertible_to_T */); |
|
}; |
|
|
|
// This more specialized version is used when MatcherCast()'s argument |
|
// is already a Matcher. This only compiles when type T can be |
|
// statically converted to type U. |
|
template <typename T, typename U> |
|
class MatcherCastImpl<T, Matcher<U> > { |
|
public: |
|
static Matcher<T> Cast(const Matcher<U>& source_matcher) { |
|
return Matcher<T>(new Impl(source_matcher)); |
|
} |
|
|
|
private: |
|
class Impl : public MatcherInterface<T> { |
|
public: |
|
explicit Impl(const Matcher<U>& source_matcher) |
|
: source_matcher_(source_matcher) {} |
|
|
|
// We delegate the matching logic to the source matcher. |
|
bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
|
using FromType = typename std::remove_cv<typename std::remove_pointer< |
|
typename std::remove_reference<T>::type>::type>::type; |
|
using ToType = typename std::remove_cv<typename std::remove_pointer< |
|
typename std::remove_reference<U>::type>::type>::type; |
|
// Do not allow implicitly converting base*/& to derived*/&. |
|
static_assert( |
|
// Do not trigger if only one of them is a pointer. That implies a |
|
// regular conversion and not a down_cast. |
|
(std::is_pointer<typename std::remove_reference<T>::type>::value != |
|
std::is_pointer<typename std::remove_reference<U>::type>::value) || |
|
std::is_same<FromType, ToType>::value || |
|
!std::is_base_of<FromType, ToType>::value, |
|
"Can't implicitly convert from <base> to <derived>"); |
|
|
|
// Do the cast to `U` explicitly if necessary. |
|
// Otherwise, let implicit conversions do the trick. |
|
using CastType = |
|
typename std::conditional<std::is_convertible<T&, const U&>::value, |
|
T&, U>::type; |
|
|
|
return source_matcher_.MatchAndExplain(static_cast<CastType>(x), |
|
listener); |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
source_matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
source_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
private: |
|
const Matcher<U> source_matcher_; |
|
}; |
|
}; |
|
|
|
// This even more specialized version is used for efficiently casting |
|
// a matcher to its own type. |
|
template <typename T> |
|
class MatcherCastImpl<T, Matcher<T> > { |
|
public: |
|
static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } |
|
}; |
|
|
|
// Template specialization for parameterless Matcher. |
|
template <typename Derived> |
|
class MatcherBaseImpl { |
|
public: |
|
MatcherBaseImpl() = default; |
|
|
|
template <typename T> |
|
operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit) |
|
return ::testing::Matcher<T>(new |
|
typename Derived::template gmock_Impl<T>()); |
|
} |
|
}; |
|
|
|
// Template specialization for Matcher with parameters. |
|
template <template <typename...> class Derived, typename... Ts> |
|
class MatcherBaseImpl<Derived<Ts...>> { |
|
public: |
|
// Mark the constructor explicit for single argument T to avoid implicit |
|
// conversions. |
|
template <typename E = std::enable_if<sizeof...(Ts) == 1>, |
|
typename E::type* = nullptr> |
|
explicit MatcherBaseImpl(Ts... params) |
|
: params_(std::forward<Ts>(params)...) {} |
|
template <typename E = std::enable_if<sizeof...(Ts) != 1>, |
|
typename = typename E::type> |
|
MatcherBaseImpl(Ts... params) // NOLINT |
|
: params_(std::forward<Ts>(params)...) {} |
|
|
|
template <typename F> |
|
operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit) |
|
return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{}); |
|
} |
|
|
|
private: |
|
template <typename F, std::size_t... tuple_ids> |
|
::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const { |
|
return ::testing::Matcher<F>( |
|
new typename Derived<Ts...>::template gmock_Impl<F>( |
|
std::get<tuple_ids>(params_)...)); |
|
} |
|
|
|
const std::tuple<Ts...> params_; |
|
}; |
|
|
|
} // namespace internal |
|
|
|
// In order to be safe and clear, casting between different matcher |
|
// types is done explicitly via MatcherCast<T>(m), which takes a |
|
// matcher m and returns a Matcher<T>. It compiles only when T can be |
|
// statically converted to the argument type of m. |
|
template <typename T, typename M> |
|
inline Matcher<T> MatcherCast(const M& matcher) { |
|
return internal::MatcherCastImpl<T, M>::Cast(matcher); |
|
} |
|
|
|
// This overload handles polymorphic matchers and values only since |
|
// monomorphic matchers are handled by the next one. |
|
template <typename T, typename M> |
|
inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) { |
|
return MatcherCast<T>(polymorphic_matcher_or_value); |
|
} |
|
|
|
// This overload handles monomorphic matchers. |
|
// |
|
// In general, if type T can be implicitly converted to type U, we can |
|
// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is |
|
// contravariant): just keep a copy of the original Matcher<U>, convert the |
|
// argument from type T to U, and then pass it to the underlying Matcher<U>. |
|
// The only exception is when U is a reference and T is not, as the |
|
// underlying Matcher<U> may be interested in the argument's address, which |
|
// is not preserved in the conversion from T to U. |
|
template <typename T, typename U> |
|
inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) { |
|
// Enforce that T can be implicitly converted to U. |
|
static_assert(std::is_convertible<const T&, const U&>::value, |
|
"T must be implicitly convertible to U"); |
|
// Enforce that we are not converting a non-reference type T to a reference |
|
// type U. |
|
GTEST_COMPILE_ASSERT_( |
|
std::is_reference<T>::value || !std::is_reference<U>::value, |
|
cannot_convert_non_reference_arg_to_reference); |
|
// In case both T and U are arithmetic types, enforce that the |
|
// conversion is not lossy. |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; |
|
constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; |
|
constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; |
|
GTEST_COMPILE_ASSERT_( |
|
kTIsOther || kUIsOther || |
|
(internal::LosslessArithmeticConvertible<RawT, RawU>::value), |
|
conversion_of_arithmetic_types_must_be_lossless); |
|
return MatcherCast<T>(matcher); |
|
} |
|
|
|
// A<T>() returns a matcher that matches any value of type T. |
|
template <typename T> |
|
Matcher<T> A(); |
|
|
|
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
|
// and MUST NOT BE USED IN USER CODE!!! |
|
namespace internal { |
|
|
|
// If the explanation is not empty, prints it to the ostream. |
|
inline void PrintIfNotEmpty(const std::string& explanation, |
|
::std::ostream* os) { |
|
if (explanation != "" && os != nullptr) { |
|
*os << ", " << explanation; |
|
} |
|
} |
|
|
|
// Returns true if the given type name is easy to read by a human. |
|
// This is used to decide whether printing the type of a value might |
|
// be helpful. |
|
inline bool IsReadableTypeName(const std::string& type_name) { |
|
// We consider a type name readable if it's short or doesn't contain |
|
// a template or function type. |
|
return (type_name.length() <= 20 || |
|
type_name.find_first_of("<(") == std::string::npos); |
|
} |
|
|
|
// Matches the value against the given matcher, prints the value and explains |
|
// the match result to the listener. Returns the match result. |
|
// 'listener' must not be NULL. |
|
// Value cannot be passed by const reference, because some matchers take a |
|
// non-const argument. |
|
template <typename Value, typename T> |
|
bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, |
|
MatchResultListener* listener) { |
|
if (!listener->IsInterested()) { |
|
// If the listener is not interested, we do not need to construct the |
|
// inner explanation. |
|
return matcher.Matches(value); |
|
} |
|
|
|
StringMatchResultListener inner_listener; |
|
const bool match = matcher.MatchAndExplain(value, &inner_listener); |
|
|
|
UniversalPrint(value, listener->stream()); |
|
#if GTEST_HAS_RTTI |
|
const std::string& type_name = GetTypeName<Value>(); |
|
if (IsReadableTypeName(type_name)) |
|
*listener->stream() << " (of type " << type_name << ")"; |
|
#endif |
|
PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
|
|
|
return match; |
|
} |
|
|
|
// An internal helper class for doing compile-time loop on a tuple's |
|
// fields. |
|
template <size_t N> |
|
class TuplePrefix { |
|
public: |
|
// TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true |
|
// if and only if the first N fields of matcher_tuple matches |
|
// the first N fields of value_tuple, respectively. |
|
template <typename MatcherTuple, typename ValueTuple> |
|
static bool Matches(const MatcherTuple& matcher_tuple, |
|
const ValueTuple& value_tuple) { |
|
return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && |
|
std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); |
|
} |
|
|
|
// TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) |
|
// describes failures in matching the first N fields of matchers |
|
// against the first N fields of values. If there is no failure, |
|
// nothing will be streamed to os. |
|
template <typename MatcherTuple, typename ValueTuple> |
|
static void ExplainMatchFailuresTo(const MatcherTuple& matchers, |
|
const ValueTuple& values, |
|
::std::ostream* os) { |
|
// First, describes failures in the first N - 1 fields. |
|
TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); |
|
|
|
// Then describes the failure (if any) in the (N - 1)-th (0-based) |
|
// field. |
|
typename std::tuple_element<N - 1, MatcherTuple>::type matcher = |
|
std::get<N - 1>(matchers); |
|
typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; |
|
const Value& value = std::get<N - 1>(values); |
|
StringMatchResultListener listener; |
|
if (!matcher.MatchAndExplain(value, &listener)) { |
|
*os << " Expected arg #" << N - 1 << ": "; |
|
std::get<N - 1>(matchers).DescribeTo(os); |
|
*os << "\n Actual: "; |
|
// We remove the reference in type Value to prevent the |
|
// universal printer from printing the address of value, which |
|
// isn't interesting to the user most of the time. The |
|
// matcher's MatchAndExplain() method handles the case when |
|
// the address is interesting. |
|
internal::UniversalPrint(value, os); |
|
PrintIfNotEmpty(listener.str(), os); |
|
*os << "\n"; |
|
} |
|
} |
|
}; |
|
|
|
// The base case. |
|
template <> |
|
class TuplePrefix<0> { |
|
public: |
|
template <typename MatcherTuple, typename ValueTuple> |
|
static bool Matches(const MatcherTuple& /* matcher_tuple */, |
|
const ValueTuple& /* value_tuple */) { |
|
return true; |
|
} |
|
|
|
template <typename MatcherTuple, typename ValueTuple> |
|
static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, |
|
const ValueTuple& /* values */, |
|
::std::ostream* /* os */) {} |
|
}; |
|
|
|
// TupleMatches(matcher_tuple, value_tuple) returns true if and only if |
|
// all matchers in matcher_tuple match the corresponding fields in |
|
// value_tuple. It is a compiler error if matcher_tuple and |
|
// value_tuple have different number of fields or incompatible field |
|
// types. |
|
template <typename MatcherTuple, typename ValueTuple> |
|
bool TupleMatches(const MatcherTuple& matcher_tuple, |
|
const ValueTuple& value_tuple) { |
|
// Makes sure that matcher_tuple and value_tuple have the same |
|
// number of fields. |
|
GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value == |
|
std::tuple_size<ValueTuple>::value, |
|
matcher_and_value_have_different_numbers_of_fields); |
|
return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, |
|
value_tuple); |
|
} |
|
|
|
// Describes failures in matching matchers against values. If there |
|
// is no failure, nothing will be streamed to os. |
|
template <typename MatcherTuple, typename ValueTuple> |
|
void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, |
|
const ValueTuple& values, |
|
::std::ostream* os) { |
|
TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( |
|
matchers, values, os); |
|
} |
|
|
|
// TransformTupleValues and its helper. |
|
// |
|
// TransformTupleValuesHelper hides the internal machinery that |
|
// TransformTupleValues uses to implement a tuple traversal. |
|
template <typename Tuple, typename Func, typename OutIter> |
|
class TransformTupleValuesHelper { |
|
private: |
|
typedef ::std::tuple_size<Tuple> TupleSize; |
|
|
|
public: |
|
// For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. |
|
// Returns the final value of 'out' in case the caller needs it. |
|
static OutIter Run(Func f, const Tuple& t, OutIter out) { |
|
return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); |
|
} |
|
|
|
private: |
|
template <typename Tup, size_t kRemainingSize> |
|
struct IterateOverTuple { |
|
OutIter operator() (Func f, const Tup& t, OutIter out) const { |
|
*out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); |
|
return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); |
|
} |
|
}; |
|
template <typename Tup> |
|
struct IterateOverTuple<Tup, 0> { |
|
OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { |
|
return out; |
|
} |
|
}; |
|
}; |
|
|
|
// Successively invokes 'f(element)' on each element of the tuple 't', |
|
// appending each result to the 'out' iterator. Returns the final value |
|
// of 'out'. |
|
template <typename Tuple, typename Func, typename OutIter> |
|
OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { |
|
return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); |
|
} |
|
|
|
// Implements _, a matcher that matches any value of any |
|
// type. This is a polymorphic matcher, so we need a template type |
|
// conversion operator to make it appearing as a Matcher<T> for any |
|
// type T. |
|
class AnythingMatcher { |
|
public: |
|
using is_gtest_matcher = void; |
|
|
|
template <typename T> |
|
bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const { |
|
return true; |
|
} |
|
void DescribeTo(std::ostream* os) const { *os << "is anything"; } |
|
void DescribeNegationTo(::std::ostream* os) const { |
|
// This is mostly for completeness' sake, as it's not very useful |
|
// to write Not(A<bool>()). However we cannot completely rule out |
|
// such a possibility, and it doesn't hurt to be prepared. |
|
*os << "never matches"; |
|
} |
|
}; |
|
|
|
// Implements the polymorphic IsNull() matcher, which matches any raw or smart |
|
// pointer that is NULL. |
|
class IsNullMatcher { |
|
public: |
|
template <typename Pointer> |
|
bool MatchAndExplain(const Pointer& p, |
|
MatchResultListener* /* listener */) const { |
|
return p == nullptr; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } |
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "isn't NULL"; |
|
} |
|
}; |
|
|
|
// Implements the polymorphic NotNull() matcher, which matches any raw or smart |
|
// pointer that is not NULL. |
|
class NotNullMatcher { |
|
public: |
|
template <typename Pointer> |
|
bool MatchAndExplain(const Pointer& p, |
|
MatchResultListener* /* listener */) const { |
|
return p != nullptr; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } |
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "is NULL"; |
|
} |
|
}; |
|
|
|
// Ref(variable) matches any argument that is a reference to |
|
// 'variable'. This matcher is polymorphic as it can match any |
|
// super type of the type of 'variable'. |
|
// |
|
// The RefMatcher template class implements Ref(variable). It can |
|
// only be instantiated with a reference type. This prevents a user |
|
// from mistakenly using Ref(x) to match a non-reference function |
|
// argument. For example, the following will righteously cause a |
|
// compiler error: |
|
// |
|
// int n; |
|
// Matcher<int> m1 = Ref(n); // This won't compile. |
|
// Matcher<int&> m2 = Ref(n); // This will compile. |
|
template <typename T> |
|
class RefMatcher; |
|
|
|
template <typename T> |
|
class RefMatcher<T&> { |
|
// Google Mock is a generic framework and thus needs to support |
|
// mocking any function types, including those that take non-const |
|
// reference arguments. Therefore the template parameter T (and |
|
// Super below) can be instantiated to either a const type or a |
|
// non-const type. |
|
public: |
|
// RefMatcher() takes a T& instead of const T&, as we want the |
|
// compiler to catch using Ref(const_value) as a matcher for a |
|
// non-const reference. |
|
explicit RefMatcher(T& x) : object_(x) {} // NOLINT |
|
|
|
template <typename Super> |
|
operator Matcher<Super&>() const { |
|
// By passing object_ (type T&) to Impl(), which expects a Super&, |
|
// we make sure that Super is a super type of T. In particular, |
|
// this catches using Ref(const_value) as a matcher for a |
|
// non-const reference, as you cannot implicitly convert a const |
|
// reference to a non-const reference. |
|
return MakeMatcher(new Impl<Super>(object_)); |
|
} |
|
|
|
private: |
|
template <typename Super> |
|
class Impl : public MatcherInterface<Super&> { |
|
public: |
|
explicit Impl(Super& x) : object_(x) {} // NOLINT |
|
|
|
// MatchAndExplain() takes a Super& (as opposed to const Super&) |
|
// in order to match the interface MatcherInterface<Super&>. |
|
bool MatchAndExplain(Super& x, |
|
MatchResultListener* listener) const override { |
|
*listener << "which is located @" << static_cast<const void*>(&x); |
|
return &x == &object_; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "references the variable "; |
|
UniversalPrinter<Super&>::Print(object_, os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "does not reference the variable "; |
|
UniversalPrinter<Super&>::Print(object_, os); |
|
} |
|
|
|
private: |
|
const Super& object_; |
|
}; |
|
|
|
T& object_; |
|
}; |
|
|
|
// Polymorphic helper functions for narrow and wide string matchers. |
|
inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { |
|
return String::CaseInsensitiveCStringEquals(lhs, rhs); |
|
} |
|
|
|
inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, |
|
const wchar_t* rhs) { |
|
return String::CaseInsensitiveWideCStringEquals(lhs, rhs); |
|
} |
|
|
|
// String comparison for narrow or wide strings that can have embedded NUL |
|
// characters. |
|
template <typename StringType> |
|
bool CaseInsensitiveStringEquals(const StringType& s1, |
|
const StringType& s2) { |
|
// Are the heads equal? |
|
if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { |
|
return false; |
|
} |
|
|
|
// Skip the equal heads. |
|
const typename StringType::value_type nul = 0; |
|
const size_t i1 = s1.find(nul), i2 = s2.find(nul); |
|
|
|
// Are we at the end of either s1 or s2? |
|
if (i1 == StringType::npos || i2 == StringType::npos) { |
|
return i1 == i2; |
|
} |
|
|
|
// Are the tails equal? |
|
return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); |
|
} |
|
|
|
// String matchers. |
|
|
|
// Implements equality-based string matchers like StrEq, StrCaseNe, and etc. |
|
template <typename StringType> |
|
class StrEqualityMatcher { |
|
public: |
|
StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive) |
|
: string_(std::move(str)), |
|
expect_eq_(expect_eq), |
|
case_sensitive_(case_sensitive) {} |
|
|
|
#if GTEST_INTERNAL_HAS_STRING_VIEW |
|
bool MatchAndExplain(const internal::StringView& s, |
|
MatchResultListener* listener) const { |
|
// This should fail to compile if StringView is used with wide |
|
// strings. |
|
const StringType& str = std::string(s); |
|
return MatchAndExplain(str, listener); |
|
} |
|
#endif // GTEST_INTERNAL_HAS_STRING_VIEW |
|
|
|
// Accepts pointer types, particularly: |
|
// const char* |
|
// char* |
|
// const wchar_t* |
|
// wchar_t* |
|
template <typename CharType> |
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
|
if (s == nullptr) { |
|
return !expect_eq_; |
|
} |
|
return MatchAndExplain(StringType(s), listener); |
|
} |
|
|
|
// Matches anything that can convert to StringType. |
|
// |
|
// This is a template, not just a plain function with const StringType&, |
|
// because StringView has some interfering non-explicit constructors. |
|
template <typename MatcheeStringType> |
|
bool MatchAndExplain(const MatcheeStringType& s, |
|
MatchResultListener* /* listener */) const { |
|
const StringType s2(s); |
|
const bool eq = case_sensitive_ ? s2 == string_ : |
|
CaseInsensitiveStringEquals(s2, string_); |
|
return expect_eq_ == eq; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
DescribeToHelper(expect_eq_, os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
DescribeToHelper(!expect_eq_, os); |
|
} |
|
|
|
private: |
|
void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { |
|
*os << (expect_eq ? "is " : "isn't "); |
|
*os << "equal to "; |
|
if (!case_sensitive_) { |
|
*os << "(ignoring case) "; |
|
} |
|
UniversalPrint(string_, os); |
|
} |
|
|
|
const StringType string_; |
|
const bool expect_eq_; |
|
const bool case_sensitive_; |
|
}; |
|
|
|
// Implements the polymorphic HasSubstr(substring) matcher, which |
|
// can be used as a Matcher<T> as long as T can be converted to a |
|
// string. |
|
template <typename StringType> |
|
class HasSubstrMatcher { |
|
public: |
|
explicit HasSubstrMatcher(const StringType& substring) |
|
: substring_(substring) {} |
|
|
|
#if GTEST_INTERNAL_HAS_STRING_VIEW |
|
bool MatchAndExplain(const internal::StringView& s, |
|
MatchResultListener* listener) const { |
|
// This should fail to compile if StringView is used with wide |
|
// strings. |
|
const StringType& str = std::string(s); |
|
return MatchAndExplain(str, listener); |
|
} |
|
#endif // GTEST_INTERNAL_HAS_STRING_VIEW |
|
|
|
// Accepts pointer types, particularly: |
|
// const char* |
|
// char* |
|
// const wchar_t* |
|
// wchar_t* |
|
template <typename CharType> |
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
|
return s != nullptr && MatchAndExplain(StringType(s), listener); |
|
} |
|
|
|
// Matches anything that can convert to StringType. |
|
// |
|
// This is a template, not just a plain function with const StringType&, |
|
// because StringView has some interfering non-explicit constructors. |
|
template <typename MatcheeStringType> |
|
bool MatchAndExplain(const MatcheeStringType& s, |
|
MatchResultListener* /* listener */) const { |
|
return StringType(s).find(substring_) != StringType::npos; |
|
} |
|
|
|
// Describes what this matcher matches. |
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "has substring "; |
|
UniversalPrint(substring_, os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "has no substring "; |
|
UniversalPrint(substring_, os); |
|
} |
|
|
|
private: |
|
const StringType substring_; |
|
}; |
|
|
|
// Implements the polymorphic StartsWith(substring) matcher, which |
|
// can be used as a Matcher<T> as long as T can be converted to a |
|
// string. |
|
template <typename StringType> |
|
class StartsWithMatcher { |
|
public: |
|
explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { |
|
} |
|
|
|
#if GTEST_INTERNAL_HAS_STRING_VIEW |
|
bool MatchAndExplain(const internal::StringView& s, |
|
MatchResultListener* listener) const { |
|
// This should fail to compile if StringView is used with wide |
|
// strings. |
|
const StringType& str = std::string(s); |
|
return MatchAndExplain(str, listener); |
|
} |
|
#endif // GTEST_INTERNAL_HAS_STRING_VIEW |
|
|
|
// Accepts pointer types, particularly: |
|
// const char* |
|
// char* |
|
// const wchar_t* |
|
// wchar_t* |
|
template <typename CharType> |
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
|
return s != nullptr && MatchAndExplain(StringType(s), listener); |
|
} |
|
|
|
// Matches anything that can convert to StringType. |
|
// |
|
// This is a template, not just a plain function with const StringType&, |
|
// because StringView has some interfering non-explicit constructors. |
|
template <typename MatcheeStringType> |
|
bool MatchAndExplain(const MatcheeStringType& s, |
|
MatchResultListener* /* listener */) const { |
|
const StringType& s2(s); |
|
return s2.length() >= prefix_.length() && |
|
s2.substr(0, prefix_.length()) == prefix_; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "starts with "; |
|
UniversalPrint(prefix_, os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "doesn't start with "; |
|
UniversalPrint(prefix_, os); |
|
} |
|
|
|
private: |
|
const StringType prefix_; |
|
}; |
|
|
|
// Implements the polymorphic EndsWith(substring) matcher, which |
|
// can be used as a Matcher<T> as long as T can be converted to a |
|
// string. |
|
template <typename StringType> |
|
class EndsWithMatcher { |
|
public: |
|
explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} |
|
|
|
#if GTEST_INTERNAL_HAS_STRING_VIEW |
|
bool MatchAndExplain(const internal::StringView& s, |
|
MatchResultListener* listener) const { |
|
// This should fail to compile if StringView is used with wide |
|
// strings. |
|
const StringType& str = std::string(s); |
|
return MatchAndExplain(str, listener); |
|
} |
|
#endif // GTEST_INTERNAL_HAS_STRING_VIEW |
|
|
|
// Accepts pointer types, particularly: |
|
// const char* |
|
// char* |
|
// const wchar_t* |
|
// wchar_t* |
|
template <typename CharType> |
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
|
return s != nullptr && MatchAndExplain(StringType(s), listener); |
|
} |
|
|
|
// Matches anything that can convert to StringType. |
|
// |
|
// This is a template, not just a plain function with const StringType&, |
|
// because StringView has some interfering non-explicit constructors. |
|
template <typename MatcheeStringType> |
|
bool MatchAndExplain(const MatcheeStringType& s, |
|
MatchResultListener* /* listener */) const { |
|
const StringType& s2(s); |
|
return s2.length() >= suffix_.length() && |
|
s2.substr(s2.length() - suffix_.length()) == suffix_; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "ends with "; |
|
UniversalPrint(suffix_, os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "doesn't end with "; |
|
UniversalPrint(suffix_, os); |
|
} |
|
|
|
private: |
|
const StringType suffix_; |
|
}; |
|
|
|
// Implements a matcher that compares the two fields of a 2-tuple |
|
// using one of the ==, <=, <, etc, operators. The two fields being |
|
// compared don't have to have the same type. |
|
// |
|
// The matcher defined here is polymorphic (for example, Eq() can be |
|
// used to match a std::tuple<int, short>, a std::tuple<const long&, double>, |
|
// etc). Therefore we use a template type conversion operator in the |
|
// implementation. |
|
template <typename D, typename Op> |
|
class PairMatchBase { |
|
public: |
|
template <typename T1, typename T2> |
|
operator Matcher<::std::tuple<T1, T2>>() const { |
|
return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); |
|
} |
|
template <typename T1, typename T2> |
|
operator Matcher<const ::std::tuple<T1, T2>&>() const { |
|
return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); |
|
} |
|
|
|
private: |
|
static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
|
return os << D::Desc(); |
|
} |
|
|
|
template <typename Tuple> |
|
class Impl : public MatcherInterface<Tuple> { |
|
public: |
|
bool MatchAndExplain(Tuple args, |
|
MatchResultListener* /* listener */) const override { |
|
return Op()(::std::get<0>(args), ::std::get<1>(args)); |
|
} |
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "are " << GetDesc; |
|
} |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "aren't " << GetDesc; |
|
} |
|
}; |
|
}; |
|
|
|
class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { |
|
public: |
|
static const char* Desc() { return "an equal pair"; } |
|
}; |
|
class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { |
|
public: |
|
static const char* Desc() { return "an unequal pair"; } |
|
}; |
|
class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { |
|
public: |
|
static const char* Desc() { return "a pair where the first < the second"; } |
|
}; |
|
class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { |
|
public: |
|
static const char* Desc() { return "a pair where the first > the second"; } |
|
}; |
|
class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { |
|
public: |
|
static const char* Desc() { return "a pair where the first <= the second"; } |
|
}; |
|
class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { |
|
public: |
|
static const char* Desc() { return "a pair where the first >= the second"; } |
|
}; |
|
|
|
// Implements the Not(...) matcher for a particular argument type T. |
|
// We do not nest it inside the NotMatcher class template, as that |
|
// will prevent different instantiations of NotMatcher from sharing |
|
// the same NotMatcherImpl<T> class. |
|
template <typename T> |
|
class NotMatcherImpl : public MatcherInterface<const T&> { |
|
public: |
|
explicit NotMatcherImpl(const Matcher<T>& matcher) |
|
: matcher_(matcher) {} |
|
|
|
bool MatchAndExplain(const T& x, |
|
MatchResultListener* listener) const override { |
|
return !matcher_.MatchAndExplain(x, listener); |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
private: |
|
const Matcher<T> matcher_; |
|
}; |
|
|
|
// Implements the Not(m) matcher, which matches a value that doesn't |
|
// match matcher m. |
|
template <typename InnerMatcher> |
|
class NotMatcher { |
|
public: |
|
explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} |
|
|
|
// This template type conversion operator allows Not(m) to be used |
|
// to match any type m can match. |
|
template <typename T> |
|
operator Matcher<T>() const { |
|
return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); |
|
} |
|
|
|
private: |
|
InnerMatcher matcher_; |
|
}; |
|
|
|
// Implements the AllOf(m1, m2) matcher for a particular argument type |
|
// T. We do not nest it inside the BothOfMatcher class template, as |
|
// that will prevent different instantiations of BothOfMatcher from |
|
// sharing the same BothOfMatcherImpl<T> class. |
|
template <typename T> |
|
class AllOfMatcherImpl : public MatcherInterface<const T&> { |
|
public: |
|
explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers) |
|
: matchers_(std::move(matchers)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "("; |
|
for (size_t i = 0; i < matchers_.size(); ++i) { |
|
if (i != 0) *os << ") and ("; |
|
matchers_[i].DescribeTo(os); |
|
} |
|
*os << ")"; |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "("; |
|
for (size_t i = 0; i < matchers_.size(); ++i) { |
|
if (i != 0) *os << ") or ("; |
|
matchers_[i].DescribeNegationTo(os); |
|
} |
|
*os << ")"; |
|
} |
|
|
|
bool MatchAndExplain(const T& x, |
|
MatchResultListener* listener) const override { |
|
// If either matcher1_ or matcher2_ doesn't match x, we only need |
|
// to explain why one of them fails. |
|
std::string all_match_result; |
|
|
|
for (size_t i = 0; i < matchers_.size(); ++i) { |
|
StringMatchResultListener slistener; |
|
if (matchers_[i].MatchAndExplain(x, &slistener)) { |
|
if (all_match_result.empty()) { |
|
all_match_result = slistener.str(); |
|
} else { |
|
std::string result = slistener.str(); |
|
if (!result.empty()) { |
|
all_match_result += ", and "; |
|
all_match_result += result; |
|
} |
|
} |
|
} else { |
|
*listener << slistener.str(); |
|
return false; |
|
} |
|
} |
|
|
|
// Otherwise we need to explain why *both* of them match. |
|
*listener << all_match_result; |
|
return true; |
|
} |
|
|
|
private: |
|
const std::vector<Matcher<T> > matchers_; |
|
}; |
|
|
|
// VariadicMatcher is used for the variadic implementation of |
|
// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). |
|
// CombiningMatcher<T> is used to recursively combine the provided matchers |
|
// (of type Args...). |
|
template <template <typename T> class CombiningMatcher, typename... Args> |
|
class VariadicMatcher { |
|
public: |
|
VariadicMatcher(const Args&... matchers) // NOLINT |
|
: matchers_(matchers...) { |
|
static_assert(sizeof...(Args) > 0, "Must have at least one matcher."); |
|
} |
|
|
|
VariadicMatcher(const VariadicMatcher&) = default; |
|
VariadicMatcher& operator=(const VariadicMatcher&) = delete; |
|
|
|
// This template type conversion operator allows an |
|
// VariadicMatcher<Matcher1, Matcher2...> object to match any type that |
|
// all of the provided matchers (Matcher1, Matcher2, ...) can match. |
|
template <typename T> |
|
operator Matcher<T>() const { |
|
std::vector<Matcher<T> > values; |
|
CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); |
|
return Matcher<T>(new CombiningMatcher<T>(std::move(values))); |
|
} |
|
|
|
private: |
|
template <typename T, size_t I> |
|
void CreateVariadicMatcher(std::vector<Matcher<T> >* values, |
|
std::integral_constant<size_t, I>) const { |
|
values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); |
|
CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); |
|
} |
|
|
|
template <typename T> |
|
void CreateVariadicMatcher( |
|
std::vector<Matcher<T> >*, |
|
std::integral_constant<size_t, sizeof...(Args)>) const {} |
|
|
|
std::tuple<Args...> matchers_; |
|
}; |
|
|
|
template <typename... Args> |
|
using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; |
|
|
|
// Implements the AnyOf(m1, m2) matcher for a particular argument type |
|
// T. We do not nest it inside the AnyOfMatcher class template, as |
|
// that will prevent different instantiations of AnyOfMatcher from |
|
// sharing the same EitherOfMatcherImpl<T> class. |
|
template <typename T> |
|
class AnyOfMatcherImpl : public MatcherInterface<const T&> { |
|
public: |
|
explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers) |
|
: matchers_(std::move(matchers)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "("; |
|
for (size_t i = 0; i < matchers_.size(); ++i) { |
|
if (i != 0) *os << ") or ("; |
|
matchers_[i].DescribeTo(os); |
|
} |
|
*os << ")"; |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "("; |
|
for (size_t i = 0; i < matchers_.size(); ++i) { |
|
if (i != 0) *os << ") and ("; |
|
matchers_[i].DescribeNegationTo(os); |
|
} |
|
*os << ")"; |
|
} |
|
|
|
bool MatchAndExplain(const T& x, |
|
MatchResultListener* listener) const override { |
|
std::string no_match_result; |
|
|
|
// If either matcher1_ or matcher2_ matches x, we just need to |
|
// explain why *one* of them matches. |
|
for (size_t i = 0; i < matchers_.size(); ++i) { |
|
StringMatchResultListener slistener; |
|
if (matchers_[i].MatchAndExplain(x, &slistener)) { |
|
*listener << slistener.str(); |
|
return true; |
|
} else { |
|
if (no_match_result.empty()) { |
|
no_match_result = slistener.str(); |
|
} else { |
|
std::string result = slistener.str(); |
|
if (!result.empty()) { |
|
no_match_result += ", and "; |
|
no_match_result += result; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Otherwise we need to explain why *both* of them fail. |
|
*listener << no_match_result; |
|
return false; |
|
} |
|
|
|
private: |
|
const std::vector<Matcher<T> > matchers_; |
|
}; |
|
|
|
// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). |
|
template <typename... Args> |
|
using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; |
|
|
|
// Wrapper for implementation of Any/AllOfArray(). |
|
template <template <class> class MatcherImpl, typename T> |
|
class SomeOfArrayMatcher { |
|
public: |
|
// Constructs the matcher from a sequence of element values or |
|
// element matchers. |
|
template <typename Iter> |
|
SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
|
|
|
template <typename U> |
|
operator Matcher<U>() const { // NOLINT |
|
using RawU = typename std::decay<U>::type; |
|
std::vector<Matcher<RawU>> matchers; |
|
for (const auto& matcher : matchers_) { |
|
matchers.push_back(MatcherCast<RawU>(matcher)); |
|
} |
|
return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); |
|
} |
|
|
|
private: |
|
const ::std::vector<T> matchers_; |
|
}; |
|
|
|
template <typename T> |
|
using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>; |
|
|
|
template <typename T> |
|
using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>; |
|
|
|
// Used for implementing Truly(pred), which turns a predicate into a |
|
// matcher. |
|
template <typename Predicate> |
|
class TrulyMatcher { |
|
public: |
|
explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} |
|
|
|
// This method template allows Truly(pred) to be used as a matcher |
|
// for type T where T is the argument type of predicate 'pred'. The |
|
// argument is passed by reference as the predicate may be |
|
// interested in the address of the argument. |
|
template <typename T> |
|
bool MatchAndExplain(T& x, // NOLINT |
|
MatchResultListener* listener) const { |
|
// Without the if-statement, MSVC sometimes warns about converting |
|
// a value to bool (warning 4800). |
|
// |
|
// We cannot write 'return !!predicate_(x);' as that doesn't work |
|
// when predicate_(x) returns a class convertible to bool but |
|
// having no operator!(). |
|
if (predicate_(x)) |
|
return true; |
|
*listener << "didn't satisfy the given predicate"; |
|
return false; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "satisfies the given predicate"; |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "doesn't satisfy the given predicate"; |
|
} |
|
|
|
private: |
|
Predicate predicate_; |
|
}; |
|
|
|
// Used for implementing Matches(matcher), which turns a matcher into |
|
// a predicate. |
|
template <typename M> |
|
class MatcherAsPredicate { |
|
public: |
|
explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} |
|
|
|
// This template operator() allows Matches(m) to be used as a |
|
// predicate on type T where m is a matcher on type T. |
|
// |
|
// The argument x is passed by reference instead of by value, as |
|
// some matcher may be interested in its address (e.g. as in |
|
// Matches(Ref(n))(x)). |
|
template <typename T> |
|
bool operator()(const T& x) const { |
|
// We let matcher_ commit to a particular type here instead of |
|
// when the MatcherAsPredicate object was constructed. This |
|
// allows us to write Matches(m) where m is a polymorphic matcher |
|
// (e.g. Eq(5)). |
|
// |
|
// If we write Matcher<T>(matcher_).Matches(x) here, it won't |
|
// compile when matcher_ has type Matcher<const T&>; if we write |
|
// Matcher<const T&>(matcher_).Matches(x) here, it won't compile |
|
// when matcher_ has type Matcher<T>; if we just write |
|
// matcher_.Matches(x), it won't compile when matcher_ is |
|
// polymorphic, e.g. Eq(5). |
|
// |
|
// MatcherCast<const T&>() is necessary for making the code work |
|
// in all of the above situations. |
|
return MatcherCast<const T&>(matcher_).Matches(x); |
|
} |
|
|
|
private: |
|
M matcher_; |
|
}; |
|
|
|
// For implementing ASSERT_THAT() and EXPECT_THAT(). The template |
|
// argument M must be a type that can be converted to a matcher. |
|
template <typename M> |
|
class PredicateFormatterFromMatcher { |
|
public: |
|
explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {} |
|
|
|
// This template () operator allows a PredicateFormatterFromMatcher |
|
// object to act as a predicate-formatter suitable for using with |
|
// Google Test's EXPECT_PRED_FORMAT1() macro. |
|
template <typename T> |
|
AssertionResult operator()(const char* value_text, const T& x) const { |
|
// We convert matcher_ to a Matcher<const T&> *now* instead of |
|
// when the PredicateFormatterFromMatcher object was constructed, |
|
// as matcher_ may be polymorphic (e.g. NotNull()) and we won't |
|
// know which type to instantiate it to until we actually see the |
|
// type of x here. |
|
// |
|
// We write SafeMatcherCast<const T&>(matcher_) instead of |
|
// Matcher<const T&>(matcher_), as the latter won't compile when |
|
// matcher_ has type Matcher<T> (e.g. An<int>()). |
|
// We don't write MatcherCast<const T&> either, as that allows |
|
// potentially unsafe downcasting of the matcher argument. |
|
const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); |
|
|
|
// The expected path here is that the matcher should match (i.e. that most |
|
// tests pass) so optimize for this case. |
|
if (matcher.Matches(x)) { |
|
return AssertionSuccess(); |
|
} |
|
|
|
::std::stringstream ss; |
|
ss << "Value of: " << value_text << "\n" |
|
<< "Expected: "; |
|
matcher.DescribeTo(&ss); |
|
|
|
// Rerun the matcher to "PrintAndExplain" the failure. |
|
StringMatchResultListener listener; |
|
if (MatchPrintAndExplain(x, matcher, &listener)) { |
|
ss << "\n The matcher failed on the initial attempt; but passed when " |
|
"rerun to generate the explanation."; |
|
} |
|
ss << "\n Actual: " << listener.str(); |
|
return AssertionFailure() << ss.str(); |
|
} |
|
|
|
private: |
|
const M matcher_; |
|
}; |
|
|
|
// A helper function for converting a matcher to a predicate-formatter |
|
// without the user needing to explicitly write the type. This is |
|
// used for implementing ASSERT_THAT() and EXPECT_THAT(). |
|
// Implementation detail: 'matcher' is received by-value to force decaying. |
|
template <typename M> |
|
inline PredicateFormatterFromMatcher<M> |
|
MakePredicateFormatterFromMatcher(M matcher) { |
|
return PredicateFormatterFromMatcher<M>(std::move(matcher)); |
|
} |
|
|
|
// Implements the polymorphic IsNan() matcher, which matches any floating type |
|
// value that is Nan. |
|
class IsNanMatcher { |
|
public: |
|
template <typename FloatType> |
|
bool MatchAndExplain(const FloatType& f, |
|
MatchResultListener* /* listener */) const { |
|
return (::std::isnan)(f); |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "is NaN"; } |
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "isn't NaN"; |
|
} |
|
}; |
|
|
|
// Implements the polymorphic floating point equality matcher, which matches |
|
// two float values using ULP-based approximation or, optionally, a |
|
// user-specified epsilon. The template is meant to be instantiated with |
|
// FloatType being either float or double. |
|
template <typename FloatType> |
|
class FloatingEqMatcher { |
|
public: |
|
// Constructor for FloatingEqMatcher. |
|
// The matcher's input will be compared with expected. The matcher treats two |
|
// NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, |
|
// equality comparisons between NANs will always return false. We specify a |
|
// negative max_abs_error_ term to indicate that ULP-based approximation will |
|
// be used for comparison. |
|
FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : |
|
expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { |
|
} |
|
|
|
// Constructor that supports a user-specified max_abs_error that will be used |
|
// for comparison instead of ULP-based approximation. The max absolute |
|
// should be non-negative. |
|
FloatingEqMatcher(FloatType expected, bool nan_eq_nan, |
|
FloatType max_abs_error) |
|
: expected_(expected), |
|
nan_eq_nan_(nan_eq_nan), |
|
max_abs_error_(max_abs_error) { |
|
GTEST_CHECK_(max_abs_error >= 0) |
|
<< ", where max_abs_error is" << max_abs_error; |
|
} |
|
|
|
// Implements floating point equality matcher as a Matcher<T>. |
|
template <typename T> |
|
class Impl : public MatcherInterface<T> { |
|
public: |
|
Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) |
|
: expected_(expected), |
|
nan_eq_nan_(nan_eq_nan), |
|
max_abs_error_(max_abs_error) {} |
|
|
|
bool MatchAndExplain(T value, |
|
MatchResultListener* listener) const override { |
|
const FloatingPoint<FloatType> actual(value), expected(expected_); |
|
|
|
// Compares NaNs first, if nan_eq_nan_ is true. |
|
if (actual.is_nan() || expected.is_nan()) { |
|
if (actual.is_nan() && expected.is_nan()) { |
|
return nan_eq_nan_; |
|
} |
|
// One is nan; the other is not nan. |
|
return false; |
|
} |
|
if (HasMaxAbsError()) { |
|
// We perform an equality check so that inf will match inf, regardless |
|
// of error bounds. If the result of value - expected_ would result in |
|
// overflow or if either value is inf, the default result is infinity, |
|
// which should only match if max_abs_error_ is also infinity. |
|
if (value == expected_) { |
|
return true; |
|
} |
|
|
|
const FloatType diff = value - expected_; |
|
if (::std::fabs(diff) <= max_abs_error_) { |
|
return true; |
|
} |
|
|
|
if (listener->IsInterested()) { |
|
*listener << "which is " << diff << " from " << expected_; |
|
} |
|
return false; |
|
} else { |
|
return actual.AlmostEquals(expected); |
|
} |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
// os->precision() returns the previously set precision, which we |
|
// store to restore the ostream to its original configuration |
|
// after outputting. |
|
const ::std::streamsize old_precision = os->precision( |
|
::std::numeric_limits<FloatType>::digits10 + 2); |
|
if (FloatingPoint<FloatType>(expected_).is_nan()) { |
|
if (nan_eq_nan_) { |
|
*os << "is NaN"; |
|
} else { |
|
*os << "never matches"; |
|
} |
|
} else { |
|
*os << "is approximately " << expected_; |
|
if (HasMaxAbsError()) { |
|
*os << " (absolute error <= " << max_abs_error_ << ")"; |
|
} |
|
} |
|
os->precision(old_precision); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
// As before, get original precision. |
|
const ::std::streamsize old_precision = os->precision( |
|
::std::numeric_limits<FloatType>::digits10 + 2); |
|
if (FloatingPoint<FloatType>(expected_).is_nan()) { |
|
if (nan_eq_nan_) { |
|
*os << "isn't NaN"; |
|
} else { |
|
*os << "is anything"; |
|
} |
|
} else { |
|
*os << "isn't approximately " << expected_; |
|
if (HasMaxAbsError()) { |
|
*os << " (absolute error > " << max_abs_error_ << ")"; |
|
} |
|
} |
|
// Restore original precision. |
|
os->precision(old_precision); |
|
} |
|
|
|
private: |
|
bool HasMaxAbsError() const { |
|
return max_abs_error_ >= 0; |
|
} |
|
|
|
const FloatType expected_; |
|
const bool nan_eq_nan_; |
|
// max_abs_error will be used for value comparison when >= 0. |
|
const FloatType max_abs_error_; |
|
}; |
|
|
|
// The following 3 type conversion operators allow FloatEq(expected) and |
|
// NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a |
|
// Matcher<const float&>, or a Matcher<float&>, but nothing else. |
|
operator Matcher<FloatType>() const { |
|
return MakeMatcher( |
|
new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); |
|
} |
|
|
|
operator Matcher<const FloatType&>() const { |
|
return MakeMatcher( |
|
new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
|
} |
|
|
|
operator Matcher<FloatType&>() const { |
|
return MakeMatcher( |
|
new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
|
} |
|
|
|
private: |
|
const FloatType expected_; |
|
const bool nan_eq_nan_; |
|
// max_abs_error will be used for value comparison when >= 0. |
|
const FloatType max_abs_error_; |
|
}; |
|
|
|
// A 2-tuple ("binary") wrapper around FloatingEqMatcher: |
|
// FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) |
|
// against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) |
|
// against y. The former implements "Eq", the latter "Near". At present, there |
|
// is no version that compares NaNs as equal. |
|
template <typename FloatType> |
|
class FloatingEq2Matcher { |
|
public: |
|
FloatingEq2Matcher() { Init(-1, false); } |
|
|
|
explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } |
|
|
|
explicit FloatingEq2Matcher(FloatType max_abs_error) { |
|
Init(max_abs_error, false); |
|
} |
|
|
|
FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { |
|
Init(max_abs_error, nan_eq_nan); |
|
} |
|
|
|
template <typename T1, typename T2> |
|
operator Matcher<::std::tuple<T1, T2>>() const { |
|
return MakeMatcher( |
|
new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); |
|
} |
|
template <typename T1, typename T2> |
|
operator Matcher<const ::std::tuple<T1, T2>&>() const { |
|
return MakeMatcher( |
|
new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); |
|
} |
|
|
|
private: |
|
static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
|
return os << "an almost-equal pair"; |
|
} |
|
|
|
template <typename Tuple> |
|
class Impl : public MatcherInterface<Tuple> { |
|
public: |
|
Impl(FloatType max_abs_error, bool nan_eq_nan) : |
|
max_abs_error_(max_abs_error), |
|
nan_eq_nan_(nan_eq_nan) {} |
|
|
|
bool MatchAndExplain(Tuple args, |
|
MatchResultListener* listener) const override { |
|
if (max_abs_error_ == -1) { |
|
FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); |
|
return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
|
::std::get<1>(args), listener); |
|
} else { |
|
FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, |
|
max_abs_error_); |
|
return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
|
::std::get<1>(args), listener); |
|
} |
|
} |
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "are " << GetDesc; |
|
} |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "aren't " << GetDesc; |
|
} |
|
|
|
private: |
|
FloatType max_abs_error_; |
|
const bool nan_eq_nan_; |
|
}; |
|
|
|
void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { |
|
max_abs_error_ = max_abs_error_val; |
|
nan_eq_nan_ = nan_eq_nan_val; |
|
} |
|
FloatType max_abs_error_; |
|
bool nan_eq_nan_; |
|
}; |
|
|
|
// Implements the Pointee(m) matcher for matching a pointer whose |
|
// pointee matches matcher m. The pointer can be either raw or smart. |
|
template <typename InnerMatcher> |
|
class PointeeMatcher { |
|
public: |
|
explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
|
|
|
// This type conversion operator template allows Pointee(m) to be |
|
// used as a matcher for any pointer type whose pointee type is |
|
// compatible with the inner matcher, where type Pointer can be |
|
// either a raw pointer or a smart pointer. |
|
// |
|
// The reason we do this instead of relying on |
|
// MakePolymorphicMatcher() is that the latter is not flexible |
|
// enough for implementing the DescribeTo() method of Pointee(). |
|
template <typename Pointer> |
|
operator Matcher<Pointer>() const { |
|
return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); |
|
} |
|
|
|
private: |
|
// The monomorphic implementation that works for a particular pointer type. |
|
template <typename Pointer> |
|
class Impl : public MatcherInterface<Pointer> { |
|
public: |
|
using Pointee = |
|
typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( |
|
Pointer)>::element_type; |
|
|
|
explicit Impl(const InnerMatcher& matcher) |
|
: matcher_(MatcherCast<const Pointee&>(matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "points to a value that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "does not point to a value that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Pointer pointer, |
|
MatchResultListener* listener) const override { |
|
if (GetRawPointer(pointer) == nullptr) return false; |
|
|
|
*listener << "which points to "; |
|
return MatchPrintAndExplain(*pointer, matcher_, listener); |
|
} |
|
|
|
private: |
|
const Matcher<const Pointee&> matcher_; |
|
}; |
|
|
|
const InnerMatcher matcher_; |
|
}; |
|
|
|
// Implements the Pointer(m) matcher |
|
// Implements the Pointer(m) matcher for matching a pointer that matches matcher |
|
// m. The pointer can be either raw or smart, and will match `m` against the |
|
// raw pointer. |
|
template <typename InnerMatcher> |
|
class PointerMatcher { |
|
public: |
|
explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
|
|
|
// This type conversion operator template allows Pointer(m) to be |
|
// used as a matcher for any pointer type whose pointer type is |
|
// compatible with the inner matcher, where type PointerType can be |
|
// either a raw pointer or a smart pointer. |
|
// |
|
// The reason we do this instead of relying on |
|
// MakePolymorphicMatcher() is that the latter is not flexible |
|
// enough for implementing the DescribeTo() method of Pointer(). |
|
template <typename PointerType> |
|
operator Matcher<PointerType>() const { // NOLINT |
|
return Matcher<PointerType>(new Impl<const PointerType&>(matcher_)); |
|
} |
|
|
|
private: |
|
// The monomorphic implementation that works for a particular pointer type. |
|
template <typename PointerType> |
|
class Impl : public MatcherInterface<PointerType> { |
|
public: |
|
using Pointer = |
|
const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( |
|
PointerType)>::element_type*; |
|
|
|
explicit Impl(const InnerMatcher& matcher) |
|
: matcher_(MatcherCast<Pointer>(matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "is a pointer that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "is not a pointer that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
bool MatchAndExplain(PointerType pointer, |
|
MatchResultListener* listener) const override { |
|
*listener << "which is a pointer that "; |
|
Pointer p = GetRawPointer(pointer); |
|
return MatchPrintAndExplain(p, matcher_, listener); |
|
} |
|
|
|
private: |
|
Matcher<Pointer> matcher_; |
|
}; |
|
|
|
const InnerMatcher matcher_; |
|
}; |
|
|
|
#if GTEST_HAS_RTTI |
|
// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or |
|
// reference that matches inner_matcher when dynamic_cast<T> is applied. |
|
// The result of dynamic_cast<To> is forwarded to the inner matcher. |
|
// If To is a pointer and the cast fails, the inner matcher will receive NULL. |
|
// If To is a reference and the cast fails, this matcher returns false |
|
// immediately. |
|
template <typename To> |
|
class WhenDynamicCastToMatcherBase { |
|
public: |
|
explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) |
|
: matcher_(matcher) {} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
GetCastTypeDescription(os); |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
GetCastTypeDescription(os); |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
protected: |
|
const Matcher<To> matcher_; |
|
|
|
static std::string GetToName() { |
|
return GetTypeName<To>(); |
|
} |
|
|
|
private: |
|
static void GetCastTypeDescription(::std::ostream* os) { |
|
*os << "when dynamic_cast to " << GetToName() << ", "; |
|
} |
|
}; |
|
|
|
// Primary template. |
|
// To is a pointer. Cast and forward the result. |
|
template <typename To> |
|
class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { |
|
public: |
|
explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) |
|
: WhenDynamicCastToMatcherBase<To>(matcher) {} |
|
|
|
template <typename From> |
|
bool MatchAndExplain(From from, MatchResultListener* listener) const { |
|
To to = dynamic_cast<To>(from); |
|
return MatchPrintAndExplain(to, this->matcher_, listener); |
|
} |
|
}; |
|
|
|
// Specialize for references. |
|
// In this case we return false if the dynamic_cast fails. |
|
template <typename To> |
|
class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { |
|
public: |
|
explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) |
|
: WhenDynamicCastToMatcherBase<To&>(matcher) {} |
|
|
|
template <typename From> |
|
bool MatchAndExplain(From& from, MatchResultListener* listener) const { |
|
// We don't want an std::bad_cast here, so do the cast with pointers. |
|
To* to = dynamic_cast<To*>(&from); |
|
if (to == nullptr) { |
|
*listener << "which cannot be dynamic_cast to " << this->GetToName(); |
|
return false; |
|
} |
|
return MatchPrintAndExplain(*to, this->matcher_, listener); |
|
} |
|
}; |
|
#endif // GTEST_HAS_RTTI |
|
|
|
// Implements the Field() matcher for matching a field (i.e. member |
|
// variable) of an object. |
|
template <typename Class, typename FieldType> |
|
class FieldMatcher { |
|
public: |
|
FieldMatcher(FieldType Class::*field, |
|
const Matcher<const FieldType&>& matcher) |
|
: field_(field), matcher_(matcher), whose_field_("whose given field ") {} |
|
|
|
FieldMatcher(const std::string& field_name, FieldType Class::*field, |
|
const Matcher<const FieldType&>& matcher) |
|
: field_(field), |
|
matcher_(matcher), |
|
whose_field_("whose field `" + field_name + "` ") {} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "is an object " << whose_field_; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "is an object " << whose_field_; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
template <typename T> |
|
bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
|
// FIXME: The dispatch on std::is_pointer was introduced as a workaround for |
|
// a compiler bug, and can now be removed. |
|
return MatchAndExplainImpl( |
|
typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
|
value, listener); |
|
} |
|
|
|
private: |
|
bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
|
const Class& obj, |
|
MatchResultListener* listener) const { |
|
*listener << whose_field_ << "is "; |
|
return MatchPrintAndExplain(obj.*field_, matcher_, listener); |
|
} |
|
|
|
bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
|
MatchResultListener* listener) const { |
|
if (p == nullptr) return false; |
|
|
|
*listener << "which points to an object "; |
|
// Since *p has a field, it must be a class/struct/union type and |
|
// thus cannot be a pointer. Therefore we pass false_type() as |
|
// the first argument. |
|
return MatchAndExplainImpl(std::false_type(), *p, listener); |
|
} |
|
|
|
const FieldType Class::*field_; |
|
const Matcher<const FieldType&> matcher_; |
|
|
|
// Contains either "whose given field " if the name of the field is unknown |
|
// or "whose field `name_of_field` " if the name is known. |
|
const std::string whose_field_; |
|
}; |
|
|
|
// Implements the Property() matcher for matching a property |
|
// (i.e. return value of a getter method) of an object. |
|
// |
|
// Property is a const-qualified member function of Class returning |
|
// PropertyType. |
|
template <typename Class, typename PropertyType, typename Property> |
|
class PropertyMatcher { |
|
public: |
|
typedef const PropertyType& RefToConstProperty; |
|
|
|
PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) |
|
: property_(property), |
|
matcher_(matcher), |
|
whose_property_("whose given property ") {} |
|
|
|
PropertyMatcher(const std::string& property_name, Property property, |
|
const Matcher<RefToConstProperty>& matcher) |
|
: property_(property), |
|
matcher_(matcher), |
|
whose_property_("whose property `" + property_name + "` ") {} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "is an object " << whose_property_; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "is an object " << whose_property_; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
template <typename T> |
|
bool MatchAndExplain(const T&value, MatchResultListener* listener) const { |
|
return MatchAndExplainImpl( |
|
typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
|
value, listener); |
|
} |
|
|
|
private: |
|
bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
|
const Class& obj, |
|
MatchResultListener* listener) const { |
|
*listener << whose_property_ << "is "; |
|
// Cannot pass the return value (for example, int) to MatchPrintAndExplain, |
|
// which takes a non-const reference as argument. |
|
RefToConstProperty result = (obj.*property_)(); |
|
return MatchPrintAndExplain(result, matcher_, listener); |
|
} |
|
|
|
bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
|
MatchResultListener* listener) const { |
|
if (p == nullptr) return false; |
|
|
|
*listener << "which points to an object "; |
|
// Since *p has a property method, it must be a class/struct/union |
|
// type and thus cannot be a pointer. Therefore we pass |
|
// false_type() as the first argument. |
|
return MatchAndExplainImpl(std::false_type(), *p, listener); |
|
} |
|
|
|
Property property_; |
|
const Matcher<RefToConstProperty> matcher_; |
|
|
|
// Contains either "whose given property " if the name of the property is |
|
// unknown or "whose property `name_of_property` " if the name is known. |
|
const std::string whose_property_; |
|
}; |
|
|
|
// Type traits specifying various features of different functors for ResultOf. |
|
// The default template specifies features for functor objects. |
|
template <typename Functor> |
|
struct CallableTraits { |
|
typedef Functor StorageType; |
|
|
|
static void CheckIsValid(Functor /* functor */) {} |
|
|
|
template <typename T> |
|
static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) { |
|
return f(arg); |
|
} |
|
}; |
|
|
|
// Specialization for function pointers. |
|
template <typename ArgType, typename ResType> |
|
struct CallableTraits<ResType(*)(ArgType)> { |
|
typedef ResType ResultType; |
|
typedef ResType(*StorageType)(ArgType); |
|
|
|
static void CheckIsValid(ResType(*f)(ArgType)) { |
|
GTEST_CHECK_(f != nullptr) |
|
<< "NULL function pointer is passed into ResultOf()."; |
|
} |
|
template <typename T> |
|
static ResType Invoke(ResType(*f)(ArgType), T arg) { |
|
return (*f)(arg); |
|
} |
|
}; |
|
|
|
// Implements the ResultOf() matcher for matching a return value of a |
|
// unary function of an object. |
|
template <typename Callable, typename InnerMatcher> |
|
class ResultOfMatcher { |
|
public: |
|
ResultOfMatcher(Callable callable, InnerMatcher matcher) |
|
: callable_(std::move(callable)), matcher_(std::move(matcher)) { |
|
CallableTraits<Callable>::CheckIsValid(callable_); |
|
} |
|
|
|
template <typename T> |
|
operator Matcher<T>() const { |
|
return Matcher<T>(new Impl<const T&>(callable_, matcher_)); |
|
} |
|
|
|
private: |
|
typedef typename CallableTraits<Callable>::StorageType CallableStorageType; |
|
|
|
template <typename T> |
|
class Impl : public MatcherInterface<T> { |
|
using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( |
|
std::declval<CallableStorageType>(), std::declval<T>())); |
|
|
|
public: |
|
template <typename M> |
|
Impl(const CallableStorageType& callable, const M& matcher) |
|
: callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "is mapped by the given callable to a value that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "is mapped by the given callable to a value that "; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(T obj, MatchResultListener* listener) const override { |
|
*listener << "which is mapped by the given callable to "; |
|
// Cannot pass the return value directly to MatchPrintAndExplain, which |
|
// takes a non-const reference as argument. |
|
// Also, specifying template argument explicitly is needed because T could |
|
// be a non-const reference (e.g. Matcher<Uncopyable&>). |
|
ResultType result = |
|
CallableTraits<Callable>::template Invoke<T>(callable_, obj); |
|
return MatchPrintAndExplain(result, matcher_, listener); |
|
} |
|
|
|
private: |
|
// Functors often define operator() as non-const method even though |
|
// they are actually stateless. But we need to use them even when |
|
// 'this' is a const pointer. It's the user's responsibility not to |
|
// use stateful callables with ResultOf(), which doesn't guarantee |
|
// how many times the callable will be invoked. |
|
mutable CallableStorageType callable_; |
|
const Matcher<ResultType> matcher_; |
|
}; // class Impl |
|
|
|
const CallableStorageType callable_; |
|
const InnerMatcher matcher_; |
|
}; |
|
|
|
// Implements a matcher that checks the size of an STL-style container. |
|
template <typename SizeMatcher> |
|
class SizeIsMatcher { |
|
public: |
|
explicit SizeIsMatcher(const SizeMatcher& size_matcher) |
|
: size_matcher_(size_matcher) { |
|
} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
return Matcher<Container>(new Impl<const Container&>(size_matcher_)); |
|
} |
|
|
|
template <typename Container> |
|
class Impl : public MatcherInterface<Container> { |
|
public: |
|
using SizeType = decltype(std::declval<Container>().size()); |
|
explicit Impl(const SizeMatcher& size_matcher) |
|
: size_matcher_(MatcherCast<SizeType>(size_matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "size "; |
|
size_matcher_.DescribeTo(os); |
|
} |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "size "; |
|
size_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Container container, |
|
MatchResultListener* listener) const override { |
|
SizeType size = container.size(); |
|
StringMatchResultListener size_listener; |
|
const bool result = size_matcher_.MatchAndExplain(size, &size_listener); |
|
*listener |
|
<< "whose size " << size << (result ? " matches" : " doesn't match"); |
|
PrintIfNotEmpty(size_listener.str(), listener->stream()); |
|
return result; |
|
} |
|
|
|
private: |
|
const Matcher<SizeType> size_matcher_; |
|
}; |
|
|
|
private: |
|
const SizeMatcher size_matcher_; |
|
}; |
|
|
|
// Implements a matcher that checks the begin()..end() distance of an STL-style |
|
// container. |
|
template <typename DistanceMatcher> |
|
class BeginEndDistanceIsMatcher { |
|
public: |
|
explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) |
|
: distance_matcher_(distance_matcher) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); |
|
} |
|
|
|
template <typename Container> |
|
class Impl : public MatcherInterface<Container> { |
|
public: |
|
typedef internal::StlContainerView< |
|
GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; |
|
typedef typename std::iterator_traits< |
|
typename ContainerView::type::const_iterator>::difference_type |
|
DistanceType; |
|
explicit Impl(const DistanceMatcher& distance_matcher) |
|
: distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "distance between begin() and end() "; |
|
distance_matcher_.DescribeTo(os); |
|
} |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "distance between begin() and end() "; |
|
distance_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Container container, |
|
MatchResultListener* listener) const override { |
|
using std::begin; |
|
using std::end; |
|
DistanceType distance = std::distance(begin(container), end(container)); |
|
StringMatchResultListener distance_listener; |
|
const bool result = |
|
distance_matcher_.MatchAndExplain(distance, &distance_listener); |
|
*listener << "whose distance between begin() and end() " << distance |
|
<< (result ? " matches" : " doesn't match"); |
|
PrintIfNotEmpty(distance_listener.str(), listener->stream()); |
|
return result; |
|
} |
|
|
|
private: |
|
const Matcher<DistanceType> distance_matcher_; |
|
}; |
|
|
|
private: |
|
const DistanceMatcher distance_matcher_; |
|
}; |
|
|
|
// Implements an equality matcher for any STL-style container whose elements |
|
// support ==. This matcher is like Eq(), but its failure explanations provide |
|
// more detailed information that is useful when the container is used as a set. |
|
// The failure message reports elements that are in one of the operands but not |
|
// the other. The failure messages do not report duplicate or out-of-order |
|
// elements in the containers (which don't properly matter to sets, but can |
|
// occur if the containers are vectors or lists, for example). |
|
// |
|
// Uses the container's const_iterator, value_type, operator ==, |
|
// begin(), and end(). |
|
template <typename Container> |
|
class ContainerEqMatcher { |
|
public: |
|
typedef internal::StlContainerView<Container> View; |
|
typedef typename View::type StlContainer; |
|
typedef typename View::const_reference StlContainerReference; |
|
|
|
static_assert(!std::is_const<Container>::value, |
|
"Container type must not be const"); |
|
static_assert(!std::is_reference<Container>::value, |
|
"Container type must not be a reference"); |
|
|
|
// We make a copy of expected in case the elements in it are modified |
|
// after this matcher is created. |
|
explicit ContainerEqMatcher(const Container& expected) |
|
: expected_(View::Copy(expected)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const { |
|
*os << "equals "; |
|
UniversalPrint(expected_, os); |
|
} |
|
void DescribeNegationTo(::std::ostream* os) const { |
|
*os << "does not equal "; |
|
UniversalPrint(expected_, os); |
|
} |
|
|
|
template <typename LhsContainer> |
|
bool MatchAndExplain(const LhsContainer& lhs, |
|
MatchResultListener* listener) const { |
|
typedef internal::StlContainerView< |
|
typename std::remove_const<LhsContainer>::type> |
|
LhsView; |
|
typedef typename LhsView::type LhsStlContainer; |
|
StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
|
if (lhs_stl_container == expected_) |
|
return true; |
|
|
|
::std::ostream* const os = listener->stream(); |
|
if (os != nullptr) { |
|
// Something is different. Check for extra values first. |
|
bool printed_header = false; |
|
for (typename LhsStlContainer::const_iterator it = |
|
lhs_stl_container.begin(); |
|
it != lhs_stl_container.end(); ++it) { |
|
if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == |
|
expected_.end()) { |
|
if (printed_header) { |
|
*os << ", "; |
|
} else { |
|
*os << "which has these unexpected elements: "; |
|
printed_header = true; |
|
} |
|
UniversalPrint(*it, os); |
|
} |
|
} |
|
|
|
// Now check for missing values. |
|
bool printed_header2 = false; |
|
for (typename StlContainer::const_iterator it = expected_.begin(); |
|
it != expected_.end(); ++it) { |
|
if (internal::ArrayAwareFind( |
|
lhs_stl_container.begin(), lhs_stl_container.end(), *it) == |
|
lhs_stl_container.end()) { |
|
if (printed_header2) { |
|
*os << ", "; |
|
} else { |
|
*os << (printed_header ? ",\nand" : "which") |
|
<< " doesn't have these expected elements: "; |
|
printed_header2 = true; |
|
} |
|
UniversalPrint(*it, os); |
|
} |
|
} |
|
} |
|
|
|
return false; |
|
} |
|
|
|
private: |
|
const StlContainer expected_; |
|
}; |
|
|
|
// A comparator functor that uses the < operator to compare two values. |
|
struct LessComparator { |
|
template <typename T, typename U> |
|
bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } |
|
}; |
|
|
|
// Implements WhenSortedBy(comparator, container_matcher). |
|
template <typename Comparator, typename ContainerMatcher> |
|
class WhenSortedByMatcher { |
|
public: |
|
WhenSortedByMatcher(const Comparator& comparator, |
|
const ContainerMatcher& matcher) |
|
: comparator_(comparator), matcher_(matcher) {} |
|
|
|
template <typename LhsContainer> |
|
operator Matcher<LhsContainer>() const { |
|
return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); |
|
} |
|
|
|
template <typename LhsContainer> |
|
class Impl : public MatcherInterface<LhsContainer> { |
|
public: |
|
typedef internal::StlContainerView< |
|
GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
|
typedef typename LhsView::type LhsStlContainer; |
|
typedef typename LhsView::const_reference LhsStlContainerReference; |
|
// Transforms std::pair<const Key, Value> into std::pair<Key, Value> |
|
// so that we can match associative containers. |
|
typedef typename RemoveConstFromKey< |
|
typename LhsStlContainer::value_type>::type LhsValue; |
|
|
|
Impl(const Comparator& comparator, const ContainerMatcher& matcher) |
|
: comparator_(comparator), matcher_(matcher) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "(when sorted) "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "(when sorted) "; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(LhsContainer lhs, |
|
MatchResultListener* listener) const override { |
|
LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
|
::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), |
|
lhs_stl_container.end()); |
|
::std::sort( |
|
sorted_container.begin(), sorted_container.end(), comparator_); |
|
|
|
if (!listener->IsInterested()) { |
|
// If the listener is not interested, we do not need to |
|
// construct the inner explanation. |
|
return matcher_.Matches(sorted_container); |
|
} |
|
|
|
*listener << "which is "; |
|
UniversalPrint(sorted_container, listener->stream()); |
|
*listener << " when sorted"; |
|
|
|
StringMatchResultListener inner_listener; |
|
const bool match = matcher_.MatchAndExplain(sorted_container, |
|
&inner_listener); |
|
PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
|
return match; |
|
} |
|
|
|
private: |
|
const Comparator comparator_; |
|
const Matcher<const ::std::vector<LhsValue>&> matcher_; |
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); |
|
}; |
|
|
|
private: |
|
const Comparator comparator_; |
|
const ContainerMatcher matcher_; |
|
}; |
|
|
|
// Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher |
|
// must be able to be safely cast to Matcher<std::tuple<const T1&, const |
|
// T2&> >, where T1 and T2 are the types of elements in the LHS |
|
// container and the RHS container respectively. |
|
template <typename TupleMatcher, typename RhsContainer> |
|
class PointwiseMatcher { |
|
GTEST_COMPILE_ASSERT_( |
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, |
|
use_UnorderedPointwise_with_hash_tables); |
|
|
|
public: |
|
typedef internal::StlContainerView<RhsContainer> RhsView; |
|
typedef typename RhsView::type RhsStlContainer; |
|
typedef typename RhsStlContainer::value_type RhsValue; |
|
|
|
static_assert(!std::is_const<RhsContainer>::value, |
|
"RhsContainer type must not be const"); |
|
static_assert(!std::is_reference<RhsContainer>::value, |
|
"RhsContainer type must not be a reference"); |
|
|
|
// Like ContainerEq, we make a copy of rhs in case the elements in |
|
// it are modified after this matcher is created. |
|
PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) |
|
: tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {} |
|
|
|
template <typename LhsContainer> |
|
operator Matcher<LhsContainer>() const { |
|
GTEST_COMPILE_ASSERT_( |
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, |
|
use_UnorderedPointwise_with_hash_tables); |
|
|
|
return Matcher<LhsContainer>( |
|
new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); |
|
} |
|
|
|
template <typename LhsContainer> |
|
class Impl : public MatcherInterface<LhsContainer> { |
|
public: |
|
typedef internal::StlContainerView< |
|
GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
|
typedef typename LhsView::type LhsStlContainer; |
|
typedef typename LhsView::const_reference LhsStlContainerReference; |
|
typedef typename LhsStlContainer::value_type LhsValue; |
|
// We pass the LHS value and the RHS value to the inner matcher by |
|
// reference, as they may be expensive to copy. We must use tuple |
|
// instead of pair here, as a pair cannot hold references (C++ 98, |
|
// 20.2.2 [lib.pairs]). |
|
typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; |
|
|
|
Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) |
|
// mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. |
|
: mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), |
|
rhs_(rhs) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "contains " << rhs_.size() |
|
<< " values, where each value and its corresponding value in "; |
|
UniversalPrinter<RhsStlContainer>::Print(rhs_, os); |
|
*os << " "; |
|
mono_tuple_matcher_.DescribeTo(os); |
|
} |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "doesn't contain exactly " << rhs_.size() |
|
<< " values, or contains a value x at some index i" |
|
<< " where x and the i-th value of "; |
|
UniversalPrint(rhs_, os); |
|
*os << " "; |
|
mono_tuple_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(LhsContainer lhs, |
|
MatchResultListener* listener) const override { |
|
LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
|
const size_t actual_size = lhs_stl_container.size(); |
|
if (actual_size != rhs_.size()) { |
|
*listener << "which contains " << actual_size << " values"; |
|
return false; |
|
} |
|
|
|
typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); |
|
typename RhsStlContainer::const_iterator right = rhs_.begin(); |
|
for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { |
|
if (listener->IsInterested()) { |
|
StringMatchResultListener inner_listener; |
|
// Create InnerMatcherArg as a temporarily object to avoid it outlives |
|
// *left and *right. Dereference or the conversion to `const T&` may |
|
// return temp objects, e.g for vector<bool>. |
|
if (!mono_tuple_matcher_.MatchAndExplain( |
|
InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
|
ImplicitCast_<const RhsValue&>(*right)), |
|
&inner_listener)) { |
|
*listener << "where the value pair ("; |
|
UniversalPrint(*left, listener->stream()); |
|
*listener << ", "; |
|
UniversalPrint(*right, listener->stream()); |
|
*listener << ") at index #" << i << " don't match"; |
|
PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
|
return false; |
|
} |
|
} else { |
|
if (!mono_tuple_matcher_.Matches( |
|
InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
|
ImplicitCast_<const RhsValue&>(*right)))) |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
private: |
|
const Matcher<InnerMatcherArg> mono_tuple_matcher_; |
|
const RhsStlContainer rhs_; |
|
}; |
|
|
|
private: |
|
const TupleMatcher tuple_matcher_; |
|
const RhsStlContainer rhs_; |
|
}; |
|
|
|
// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. |
|
template <typename Container> |
|
class QuantifierMatcherImpl : public MatcherInterface<Container> { |
|
public: |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
|
typedef StlContainerView<RawContainer> View; |
|
typedef typename View::type StlContainer; |
|
typedef typename View::const_reference StlContainerReference; |
|
typedef typename StlContainer::value_type Element; |
|
|
|
template <typename InnerMatcher> |
|
explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) |
|
: inner_matcher_( |
|
testing::SafeMatcherCast<const Element&>(inner_matcher)) {} |
|
|
|
// Checks whether: |
|
// * All elements in the container match, if all_elements_should_match. |
|
// * Any element in the container matches, if !all_elements_should_match. |
|
bool MatchAndExplainImpl(bool all_elements_should_match, |
|
Container container, |
|
MatchResultListener* listener) const { |
|
StlContainerReference stl_container = View::ConstReference(container); |
|
size_t i = 0; |
|
for (typename StlContainer::const_iterator it = stl_container.begin(); |
|
it != stl_container.end(); ++it, ++i) { |
|
StringMatchResultListener inner_listener; |
|
const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
|
|
|
if (matches != all_elements_should_match) { |
|
*listener << "whose element #" << i |
|
<< (matches ? " matches" : " doesn't match"); |
|
PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
|
return !all_elements_should_match; |
|
} |
|
} |
|
return all_elements_should_match; |
|
} |
|
|
|
protected: |
|
const Matcher<const Element&> inner_matcher_; |
|
}; |
|
|
|
// Implements Contains(element_matcher) for the given argument type Container. |
|
// Symmetric to EachMatcherImpl. |
|
template <typename Container> |
|
class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { |
|
public: |
|
template <typename InnerMatcher> |
|
explicit ContainsMatcherImpl(InnerMatcher inner_matcher) |
|
: QuantifierMatcherImpl<Container>(inner_matcher) {} |
|
|
|
// Describes what this matcher does. |
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "contains at least one element that "; |
|
this->inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "doesn't contain any element that "; |
|
this->inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Container container, |
|
MatchResultListener* listener) const override { |
|
return this->MatchAndExplainImpl(false, container, listener); |
|
} |
|
}; |
|
|
|
// Implements Each(element_matcher) for the given argument type Container. |
|
// Symmetric to ContainsMatcherImpl. |
|
template <typename Container> |
|
class EachMatcherImpl : public QuantifierMatcherImpl<Container> { |
|
public: |
|
template <typename InnerMatcher> |
|
explicit EachMatcherImpl(InnerMatcher inner_matcher) |
|
: QuantifierMatcherImpl<Container>(inner_matcher) {} |
|
|
|
// Describes what this matcher does. |
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "only contains elements that "; |
|
this->inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "contains some element that "; |
|
this->inner_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Container container, |
|
MatchResultListener* listener) const override { |
|
return this->MatchAndExplainImpl(true, container, listener); |
|
} |
|
}; |
|
|
|
// Implements polymorphic Contains(element_matcher). |
|
template <typename M> |
|
class ContainsMatcher { |
|
public: |
|
explicit ContainsMatcher(M m) : inner_matcher_(m) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
return Matcher<Container>( |
|
new ContainsMatcherImpl<const Container&>(inner_matcher_)); |
|
} |
|
|
|
private: |
|
const M inner_matcher_; |
|
}; |
|
|
|
// Implements polymorphic Each(element_matcher). |
|
template <typename M> |
|
class EachMatcher { |
|
public: |
|
explicit EachMatcher(M m) : inner_matcher_(m) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
return Matcher<Container>( |
|
new EachMatcherImpl<const Container&>(inner_matcher_)); |
|
} |
|
|
|
private: |
|
const M inner_matcher_; |
|
}; |
|
|
|
struct Rank1 {}; |
|
struct Rank0 : Rank1 {}; |
|
|
|
namespace pair_getters { |
|
using std::get; |
|
template <typename T> |
|
auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT |
|
return get<0>(x); |
|
} |
|
template <typename T> |
|
auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT |
|
return x.first; |
|
} |
|
|
|
template <typename T> |
|
auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT |
|
return get<1>(x); |
|
} |
|
template <typename T> |
|
auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT |
|
return x.second; |
|
} |
|
} // namespace pair_getters |
|
|
|
// Implements Key(inner_matcher) for the given argument pair type. |
|
// Key(inner_matcher) matches an std::pair whose 'first' field matches |
|
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
|
// std::map that contains at least one element whose key is >= 5. |
|
template <typename PairType> |
|
class KeyMatcherImpl : public MatcherInterface<PairType> { |
|
public: |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
|
typedef typename RawPairType::first_type KeyType; |
|
|
|
template <typename InnerMatcher> |
|
explicit KeyMatcherImpl(InnerMatcher inner_matcher) |
|
: inner_matcher_( |
|
testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { |
|
} |
|
|
|
// Returns true if and only if 'key_value.first' (the key) matches the inner |
|
// matcher. |
|
bool MatchAndExplain(PairType key_value, |
|
MatchResultListener* listener) const override { |
|
StringMatchResultListener inner_listener; |
|
const bool match = inner_matcher_.MatchAndExplain( |
|
pair_getters::First(key_value, Rank0()), &inner_listener); |
|
const std::string explanation = inner_listener.str(); |
|
if (explanation != "") { |
|
*listener << "whose first field is a value " << explanation; |
|
} |
|
return match; |
|
} |
|
|
|
// Describes what this matcher does. |
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "has a key that "; |
|
inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
// Describes what the negation of this matcher does. |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "doesn't have a key that "; |
|
inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
private: |
|
const Matcher<const KeyType&> inner_matcher_; |
|
}; |
|
|
|
// Implements polymorphic Key(matcher_for_key). |
|
template <typename M> |
|
class KeyMatcher { |
|
public: |
|
explicit KeyMatcher(M m) : matcher_for_key_(m) {} |
|
|
|
template <typename PairType> |
|
operator Matcher<PairType>() const { |
|
return Matcher<PairType>( |
|
new KeyMatcherImpl<const PairType&>(matcher_for_key_)); |
|
} |
|
|
|
private: |
|
const M matcher_for_key_; |
|
}; |
|
|
|
// Implements polymorphic Address(matcher_for_address). |
|
template <typename InnerMatcher> |
|
class AddressMatcher { |
|
public: |
|
explicit AddressMatcher(InnerMatcher m) : matcher_(m) {} |
|
|
|
template <typename Type> |
|
operator Matcher<Type>() const { // NOLINT |
|
return Matcher<Type>(new Impl<const Type&>(matcher_)); |
|
} |
|
|
|
private: |
|
// The monomorphic implementation that works for a particular object type. |
|
template <typename Type> |
|
class Impl : public MatcherInterface<Type> { |
|
public: |
|
using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *; |
|
explicit Impl(const InnerMatcher& matcher) |
|
: matcher_(MatcherCast<Address>(matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "has address that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "does not have address that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Type object, |
|
MatchResultListener* listener) const override { |
|
*listener << "which has address "; |
|
Address address = std::addressof(object); |
|
return MatchPrintAndExplain(address, matcher_, listener); |
|
} |
|
|
|
private: |
|
const Matcher<Address> matcher_; |
|
}; |
|
const InnerMatcher matcher_; |
|
}; |
|
|
|
// Implements Pair(first_matcher, second_matcher) for the given argument pair |
|
// type with its two matchers. See Pair() function below. |
|
template <typename PairType> |
|
class PairMatcherImpl : public MatcherInterface<PairType> { |
|
public: |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
|
typedef typename RawPairType::first_type FirstType; |
|
typedef typename RawPairType::second_type SecondType; |
|
|
|
template <typename FirstMatcher, typename SecondMatcher> |
|
PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) |
|
: first_matcher_( |
|
testing::SafeMatcherCast<const FirstType&>(first_matcher)), |
|
second_matcher_( |
|
testing::SafeMatcherCast<const SecondType&>(second_matcher)) { |
|
} |
|
|
|
// Describes what this matcher does. |
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "has a first field that "; |
|
first_matcher_.DescribeTo(os); |
|
*os << ", and has a second field that "; |
|
second_matcher_.DescribeTo(os); |
|
} |
|
|
|
// Describes what the negation of this matcher does. |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "has a first field that "; |
|
first_matcher_.DescribeNegationTo(os); |
|
*os << ", or has a second field that "; |
|
second_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
// Returns true if and only if 'a_pair.first' matches first_matcher and |
|
// 'a_pair.second' matches second_matcher. |
|
bool MatchAndExplain(PairType a_pair, |
|
MatchResultListener* listener) const override { |
|
if (!listener->IsInterested()) { |
|
// If the listener is not interested, we don't need to construct the |
|
// explanation. |
|
return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && |
|
second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); |
|
} |
|
StringMatchResultListener first_inner_listener; |
|
if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), |
|
&first_inner_listener)) { |
|
*listener << "whose first field does not match"; |
|
PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); |
|
return false; |
|
} |
|
StringMatchResultListener second_inner_listener; |
|
if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), |
|
&second_inner_listener)) { |
|
*listener << "whose second field does not match"; |
|
PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); |
|
return false; |
|
} |
|
ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), |
|
listener); |
|
return true; |
|
} |
|
|
|
private: |
|
void ExplainSuccess(const std::string& first_explanation, |
|
const std::string& second_explanation, |
|
MatchResultListener* listener) const { |
|
*listener << "whose both fields match"; |
|
if (first_explanation != "") { |
|
*listener << ", where the first field is a value " << first_explanation; |
|
} |
|
if (second_explanation != "") { |
|
*listener << ", "; |
|
if (first_explanation != "") { |
|
*listener << "and "; |
|
} else { |
|
*listener << "where "; |
|
} |
|
*listener << "the second field is a value " << second_explanation; |
|
} |
|
} |
|
|
|
const Matcher<const FirstType&> first_matcher_; |
|
const Matcher<const SecondType&> second_matcher_; |
|
}; |
|
|
|
// Implements polymorphic Pair(first_matcher, second_matcher). |
|
template <typename FirstMatcher, typename SecondMatcher> |
|
class PairMatcher { |
|
public: |
|
PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) |
|
: first_matcher_(first_matcher), second_matcher_(second_matcher) {} |
|
|
|
template <typename PairType> |
|
operator Matcher<PairType> () const { |
|
return Matcher<PairType>( |
|
new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); |
|
} |
|
|
|
private: |
|
const FirstMatcher first_matcher_; |
|
const SecondMatcher second_matcher_; |
|
}; |
|
|
|
template <typename T, size_t... I> |
|
auto UnpackStructImpl(const T& t, IndexSequence<I...>, int) |
|
-> decltype(std::tie(get<I>(t)...)) { |
|
static_assert(std::tuple_size<T>::value == sizeof...(I), |
|
"Number of arguments doesn't match the number of fields."); |
|
return std::tie(get<I>(t)...); |
|
} |
|
|
|
#if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606 |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) { |
|
const auto& [a] = t; |
|
return std::tie(a); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) { |
|
const auto& [a, b] = t; |
|
return std::tie(a, b); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) { |
|
const auto& [a, b, c] = t; |
|
return std::tie(a, b, c); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) { |
|
const auto& [a, b, c, d] = t; |
|
return std::tie(a, b, c, d); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) { |
|
const auto& [a, b, c, d, e] = t; |
|
return std::tie(a, b, c, d, e); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) { |
|
const auto& [a, b, c, d, e, f] = t; |
|
return std::tie(a, b, c, d, e, f); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) { |
|
const auto& [a, b, c, d, e, f, g] = t; |
|
return std::tie(a, b, c, d, e, f, g); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) { |
|
const auto& [a, b, c, d, e, f, g, h] = t; |
|
return std::tie(a, b, c, d, e, f, g, h); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o); |
|
} |
|
template <typename T> |
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) { |
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t; |
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p); |
|
} |
|
#endif // defined(__cpp_structured_bindings) |
|
|
|
template <size_t I, typename T> |
|
auto UnpackStruct(const T& t) |
|
-> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) { |
|
return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0); |
|
} |
|
|
|
// Helper function to do comma folding in C++11. |
|
// The array ensures left-to-right order of evaluation. |
|
// Usage: VariadicExpand({expr...}); |
|
template <typename T, size_t N> |
|
void VariadicExpand(const T (&)[N]) {} |
|
|
|
template <typename Struct, typename StructSize> |
|
class FieldsAreMatcherImpl; |
|
|
|
template <typename Struct, size_t... I> |
|
class FieldsAreMatcherImpl<Struct, IndexSequence<I...>> |
|
: public MatcherInterface<Struct> { |
|
using UnpackedType = |
|
decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>())); |
|
using MatchersType = std::tuple< |
|
Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>; |
|
|
|
public: |
|
template <typename Inner> |
|
explicit FieldsAreMatcherImpl(const Inner& matchers) |
|
: matchers_(testing::SafeMatcherCast< |
|
const typename std::tuple_element<I, UnpackedType>::type&>( |
|
std::get<I>(matchers))...) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
const char* separator = ""; |
|
VariadicExpand( |
|
{(*os << separator << "has field #" << I << " that ", |
|
std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...}); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
const char* separator = ""; |
|
VariadicExpand({(*os << separator << "has field #" << I << " that ", |
|
std::get<I>(matchers_).DescribeNegationTo(os), |
|
separator = ", or ")...}); |
|
} |
|
|
|
bool MatchAndExplain(Struct t, MatchResultListener* listener) const override { |
|
return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener); |
|
} |
|
|
|
private: |
|
bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const { |
|
if (!listener->IsInterested()) { |
|
// If the listener is not interested, we don't need to construct the |
|
// explanation. |
|
bool good = true; |
|
VariadicExpand({good = good && std::get<I>(matchers_).Matches( |
|
std::get<I>(tuple))...}); |
|
return good; |
|
} |
|
|
|
size_t failed_pos = ~size_t{}; |
|
|
|
std::vector<StringMatchResultListener> inner_listener(sizeof...(I)); |
|
|
|
VariadicExpand( |
|
{failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain( |
|
std::get<I>(tuple), &inner_listener[I]) |
|
? failed_pos = I |
|
: 0 ...}); |
|
if (failed_pos != ~size_t{}) { |
|
*listener << "whose field #" << failed_pos << " does not match"; |
|
PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream()); |
|
return false; |
|
} |
|
|
|
*listener << "whose all elements match"; |
|
const char* separator = ", where"; |
|
for (size_t index = 0; index < sizeof...(I); ++index) { |
|
const std::string str = inner_listener[index].str(); |
|
if (!str.empty()) { |
|
*listener << separator << " field #" << index << " is a value " << str; |
|
separator = ", and"; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
MatchersType matchers_; |
|
}; |
|
|
|
template <typename... Inner> |
|
class FieldsAreMatcher { |
|
public: |
|
explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {} |
|
|
|
template <typename Struct> |
|
operator Matcher<Struct>() const { // NOLINT |
|
return Matcher<Struct>( |
|
new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>( |
|
matchers_)); |
|
} |
|
|
|
private: |
|
std::tuple<Inner...> matchers_; |
|
}; |
|
|
|
// Implements ElementsAre() and ElementsAreArray(). |
|
template <typename Container> |
|
class ElementsAreMatcherImpl : public MatcherInterface<Container> { |
|
public: |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
|
typedef internal::StlContainerView<RawContainer> View; |
|
typedef typename View::type StlContainer; |
|
typedef typename View::const_reference StlContainerReference; |
|
typedef typename StlContainer::value_type Element; |
|
|
|
// Constructs the matcher from a sequence of element values or |
|
// element matchers. |
|
template <typename InputIter> |
|
ElementsAreMatcherImpl(InputIter first, InputIter last) { |
|
while (first != last) { |
|
matchers_.push_back(MatcherCast<const Element&>(*first++)); |
|
} |
|
} |
|
|
|
// Describes what this matcher does. |
|
void DescribeTo(::std::ostream* os) const override { |
|
if (count() == 0) { |
|
*os << "is empty"; |
|
} else if (count() == 1) { |
|
*os << "has 1 element that "; |
|
matchers_[0].DescribeTo(os); |
|
} else { |
|
*os << "has " << Elements(count()) << " where\n"; |
|
for (size_t i = 0; i != count(); ++i) { |
|
*os << "element #" << i << " "; |
|
matchers_[i].DescribeTo(os); |
|
if (i + 1 < count()) { |
|
*os << ",\n"; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Describes what the negation of this matcher does. |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
if (count() == 0) { |
|
*os << "isn't empty"; |
|
return; |
|
} |
|
|
|
*os << "doesn't have " << Elements(count()) << ", or\n"; |
|
for (size_t i = 0; i != count(); ++i) { |
|
*os << "element #" << i << " "; |
|
matchers_[i].DescribeNegationTo(os); |
|
if (i + 1 < count()) { |
|
*os << ", or\n"; |
|
} |
|
} |
|
} |
|
|
|
bool MatchAndExplain(Container container, |
|
MatchResultListener* listener) const override { |
|
// To work with stream-like "containers", we must only walk |
|
// through the elements in one pass. |
|
|
|
const bool listener_interested = listener->IsInterested(); |
|
|
|
// explanations[i] is the explanation of the element at index i. |
|
::std::vector<std::string> explanations(count()); |
|
StlContainerReference stl_container = View::ConstReference(container); |
|
typename StlContainer::const_iterator it = stl_container.begin(); |
|
size_t exam_pos = 0; |
|
bool mismatch_found = false; // Have we found a mismatched element yet? |
|
|
|
// Go through the elements and matchers in pairs, until we reach |
|
// the end of either the elements or the matchers, or until we find a |
|
// mismatch. |
|
for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { |
|
bool match; // Does the current element match the current matcher? |
|
if (listener_interested) { |
|
StringMatchResultListener s; |
|
match = matchers_[exam_pos].MatchAndExplain(*it, &s); |
|
explanations[exam_pos] = s.str(); |
|
} else { |
|
match = matchers_[exam_pos].Matches(*it); |
|
} |
|
|
|
if (!match) { |
|
mismatch_found = true; |
|
break; |
|
} |
|
} |
|
// If mismatch_found is true, 'exam_pos' is the index of the mismatch. |
|
|
|
// Find how many elements the actual container has. We avoid |
|
// calling size() s.t. this code works for stream-like "containers" |
|
// that don't define size(). |
|
size_t actual_count = exam_pos; |
|
for (; it != stl_container.end(); ++it) { |
|
++actual_count; |
|
} |
|
|
|
if (actual_count != count()) { |
|
// The element count doesn't match. If the container is empty, |
|
// there's no need to explain anything as Google Mock already |
|
// prints the empty container. Otherwise we just need to show |
|
// how many elements there actually are. |
|
if (listener_interested && (actual_count != 0)) { |
|
*listener << "which has " << Elements(actual_count); |
|
} |
|
return false; |
|
} |
|
|
|
if (mismatch_found) { |
|
// The element count matches, but the exam_pos-th element doesn't match. |
|
if (listener_interested) { |
|
*listener << "whose element #" << exam_pos << " doesn't match"; |
|
PrintIfNotEmpty(explanations[exam_pos], listener->stream()); |
|
} |
|
return false; |
|
} |
|
|
|
// Every element matches its expectation. We need to explain why |
|
// (the obvious ones can be skipped). |
|
if (listener_interested) { |
|
bool reason_printed = false; |
|
for (size_t i = 0; i != count(); ++i) { |
|
const std::string& s = explanations[i]; |
|
if (!s.empty()) { |
|
if (reason_printed) { |
|
*listener << ",\nand "; |
|
} |
|
*listener << "whose element #" << i << " matches, " << s; |
|
reason_printed = true; |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
private: |
|
static Message Elements(size_t count) { |
|
return Message() << count << (count == 1 ? " element" : " elements"); |
|
} |
|
|
|
size_t count() const { return matchers_.size(); } |
|
|
|
::std::vector<Matcher<const Element&> > matchers_; |
|
}; |
|
|
|
// Connectivity matrix of (elements X matchers), in element-major order. |
|
// Initially, there are no edges. |
|
// Use NextGraph() to iterate over all possible edge configurations. |
|
// Use Randomize() to generate a random edge configuration. |
|
class GTEST_API_ MatchMatrix { |
|
public: |
|
MatchMatrix(size_t num_elements, size_t num_matchers) |
|
: num_elements_(num_elements), |
|
num_matchers_(num_matchers), |
|
matched_(num_elements_* num_matchers_, 0) { |
|
} |
|
|
|
size_t LhsSize() const { return num_elements_; } |
|
size_t RhsSize() const { return num_matchers_; } |
|
bool HasEdge(size_t ilhs, size_t irhs) const { |
|
return matched_[SpaceIndex(ilhs, irhs)] == 1; |
|
} |
|
void SetEdge(size_t ilhs, size_t irhs, bool b) { |
|
matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; |
|
} |
|
|
|
// Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, |
|
// adds 1 to that number; returns false if incrementing the graph left it |
|
// empty. |
|
bool NextGraph(); |
|
|
|
void Randomize(); |
|
|
|
std::string DebugString() const; |
|
|
|
private: |
|
size_t SpaceIndex(size_t ilhs, size_t irhs) const { |
|
return ilhs * num_matchers_ + irhs; |
|
} |
|
|
|
size_t num_elements_; |
|
size_t num_matchers_; |
|
|
|
// Each element is a char interpreted as bool. They are stored as a |
|
// flattened array in lhs-major order, use 'SpaceIndex()' to translate |
|
// a (ilhs, irhs) matrix coordinate into an offset. |
|
::std::vector<char> matched_; |
|
}; |
|
|
|
typedef ::std::pair<size_t, size_t> ElementMatcherPair; |
|
typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; |
|
|
|
// Returns a maximum bipartite matching for the specified graph 'g'. |
|
// The matching is represented as a vector of {element, matcher} pairs. |
|
GTEST_API_ ElementMatcherPairs |
|
FindMaxBipartiteMatching(const MatchMatrix& g); |
|
|
|
struct UnorderedMatcherRequire { |
|
enum Flags { |
|
Superset = 1 << 0, |
|
Subset = 1 << 1, |
|
ExactMatch = Superset | Subset, |
|
}; |
|
}; |
|
|
|
// Untyped base class for implementing UnorderedElementsAre. By |
|
// putting logic that's not specific to the element type here, we |
|
// reduce binary bloat and increase compilation speed. |
|
class GTEST_API_ UnorderedElementsAreMatcherImplBase { |
|
protected: |
|
explicit UnorderedElementsAreMatcherImplBase( |
|
UnorderedMatcherRequire::Flags matcher_flags) |
|
: match_flags_(matcher_flags) {} |
|
|
|
// A vector of matcher describers, one for each element matcher. |
|
// Does not own the describers (and thus can be used only when the |
|
// element matchers are alive). |
|
typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; |
|
|
|
// Describes this UnorderedElementsAre matcher. |
|
void DescribeToImpl(::std::ostream* os) const; |
|
|
|
// Describes the negation of this UnorderedElementsAre matcher. |
|
void DescribeNegationToImpl(::std::ostream* os) const; |
|
|
|
bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, |
|
const MatchMatrix& matrix, |
|
MatchResultListener* listener) const; |
|
|
|
bool FindPairing(const MatchMatrix& matrix, |
|
MatchResultListener* listener) const; |
|
|
|
MatcherDescriberVec& matcher_describers() { |
|
return matcher_describers_; |
|
} |
|
|
|
static Message Elements(size_t n) { |
|
return Message() << n << " element" << (n == 1 ? "" : "s"); |
|
} |
|
|
|
UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } |
|
|
|
private: |
|
UnorderedMatcherRequire::Flags match_flags_; |
|
MatcherDescriberVec matcher_describers_; |
|
}; |
|
|
|
// Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and |
|
// IsSupersetOf. |
|
template <typename Container> |
|
class UnorderedElementsAreMatcherImpl |
|
: public MatcherInterface<Container>, |
|
public UnorderedElementsAreMatcherImplBase { |
|
public: |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
|
typedef internal::StlContainerView<RawContainer> View; |
|
typedef typename View::type StlContainer; |
|
typedef typename View::const_reference StlContainerReference; |
|
typedef typename StlContainer::const_iterator StlContainerConstIterator; |
|
typedef typename StlContainer::value_type Element; |
|
|
|
template <typename InputIter> |
|
UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, |
|
InputIter first, InputIter last) |
|
: UnorderedElementsAreMatcherImplBase(matcher_flags) { |
|
for (; first != last; ++first) { |
|
matchers_.push_back(MatcherCast<const Element&>(*first)); |
|
} |
|
for (const auto& m : matchers_) { |
|
matcher_describers().push_back(m.GetDescriber()); |
|
} |
|
} |
|
|
|
// Describes what this matcher does. |
|
void DescribeTo(::std::ostream* os) const override { |
|
return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); |
|
} |
|
|
|
// Describes what the negation of this matcher does. |
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); |
|
} |
|
|
|
bool MatchAndExplain(Container container, |
|
MatchResultListener* listener) const override { |
|
StlContainerReference stl_container = View::ConstReference(container); |
|
::std::vector<std::string> element_printouts; |
|
MatchMatrix matrix = |
|
AnalyzeElements(stl_container.begin(), stl_container.end(), |
|
&element_printouts, listener); |
|
|
|
if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { |
|
return true; |
|
} |
|
|
|
if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
|
if (matrix.LhsSize() != matrix.RhsSize()) { |
|
// The element count doesn't match. If the container is empty, |
|
// there's no need to explain anything as Google Mock already |
|
// prints the empty container. Otherwise we just need to show |
|
// how many elements there actually are. |
|
if (matrix.LhsSize() != 0 && listener->IsInterested()) { |
|
*listener << "which has " << Elements(matrix.LhsSize()); |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
return VerifyMatchMatrix(element_printouts, matrix, listener) && |
|
FindPairing(matrix, listener); |
|
} |
|
|
|
private: |
|
template <typename ElementIter> |
|
MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, |
|
::std::vector<std::string>* element_printouts, |
|
MatchResultListener* listener) const { |
|
element_printouts->clear(); |
|
::std::vector<char> did_match; |
|
size_t num_elements = 0; |
|
DummyMatchResultListener dummy; |
|
for (; elem_first != elem_last; ++num_elements, ++elem_first) { |
|
if (listener->IsInterested()) { |
|
element_printouts->push_back(PrintToString(*elem_first)); |
|
} |
|
for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
|
did_match.push_back( |
|
matchers_[irhs].MatchAndExplain(*elem_first, &dummy)); |
|
} |
|
} |
|
|
|
MatchMatrix matrix(num_elements, matchers_.size()); |
|
::std::vector<char>::const_iterator did_match_iter = did_match.begin(); |
|
for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { |
|
for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
|
matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); |
|
} |
|
} |
|
return matrix; |
|
} |
|
|
|
::std::vector<Matcher<const Element&> > matchers_; |
|
}; |
|
|
|
// Functor for use in TransformTuple. |
|
// Performs MatcherCast<Target> on an input argument of any type. |
|
template <typename Target> |
|
struct CastAndAppendTransform { |
|
template <typename Arg> |
|
Matcher<Target> operator()(const Arg& a) const { |
|
return MatcherCast<Target>(a); |
|
} |
|
}; |
|
|
|
// Implements UnorderedElementsAre. |
|
template <typename MatcherTuple> |
|
class UnorderedElementsAreMatcher { |
|
public: |
|
explicit UnorderedElementsAreMatcher(const MatcherTuple& args) |
|
: matchers_(args) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
|
typedef typename internal::StlContainerView<RawContainer>::type View; |
|
typedef typename View::value_type Element; |
|
typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
|
MatcherVec matchers; |
|
matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
|
TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
|
::std::back_inserter(matchers)); |
|
return Matcher<Container>( |
|
new UnorderedElementsAreMatcherImpl<const Container&>( |
|
UnorderedMatcherRequire::ExactMatch, matchers.begin(), |
|
matchers.end())); |
|
} |
|
|
|
private: |
|
const MatcherTuple matchers_; |
|
}; |
|
|
|
// Implements ElementsAre. |
|
template <typename MatcherTuple> |
|
class ElementsAreMatcher { |
|
public: |
|
explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
GTEST_COMPILE_ASSERT_( |
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || |
|
::std::tuple_size<MatcherTuple>::value < 2, |
|
use_UnorderedElementsAre_with_hash_tables); |
|
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
|
typedef typename internal::StlContainerView<RawContainer>::type View; |
|
typedef typename View::value_type Element; |
|
typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
|
MatcherVec matchers; |
|
matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
|
TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
|
::std::back_inserter(matchers)); |
|
return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
|
matchers.begin(), matchers.end())); |
|
} |
|
|
|
private: |
|
const MatcherTuple matchers_; |
|
}; |
|
|
|
// Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). |
|
template <typename T> |
|
class UnorderedElementsAreArrayMatcher { |
|
public: |
|
template <typename Iter> |
|
UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, |
|
Iter first, Iter last) |
|
: match_flags_(match_flags), matchers_(first, last) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
return Matcher<Container>( |
|
new UnorderedElementsAreMatcherImpl<const Container&>( |
|
match_flags_, matchers_.begin(), matchers_.end())); |
|
} |
|
|
|
private: |
|
UnorderedMatcherRequire::Flags match_flags_; |
|
::std::vector<T> matchers_; |
|
}; |
|
|
|
// Implements ElementsAreArray(). |
|
template <typename T> |
|
class ElementsAreArrayMatcher { |
|
public: |
|
template <typename Iter> |
|
ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
|
|
|
template <typename Container> |
|
operator Matcher<Container>() const { |
|
GTEST_COMPILE_ASSERT_( |
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, |
|
use_UnorderedElementsAreArray_with_hash_tables); |
|
|
|
return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
|
matchers_.begin(), matchers_.end())); |
|
} |
|
|
|
private: |
|
const ::std::vector<T> matchers_; |
|
}; |
|
|
|
// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second |
|
// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, |
|
// second) is a polymorphic matcher that matches a value x if and only if |
|
// tm matches tuple (x, second). Useful for implementing |
|
// UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
|
// |
|
// BoundSecondMatcher is copyable and assignable, as we need to put |
|
// instances of this class in a vector when implementing |
|
// UnorderedPointwise(). |
|
template <typename Tuple2Matcher, typename Second> |
|
class BoundSecondMatcher { |
|
public: |
|
BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) |
|
: tuple2_matcher_(tm), second_value_(second) {} |
|
|
|
BoundSecondMatcher(const BoundSecondMatcher& other) = default; |
|
|
|
template <typename T> |
|
operator Matcher<T>() const { |
|
return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); |
|
} |
|
|
|
// We have to define this for UnorderedPointwise() to compile in |
|
// C++98 mode, as it puts BoundSecondMatcher instances in a vector, |
|
// which requires the elements to be assignable in C++98. The |
|
// compiler cannot generate the operator= for us, as Tuple2Matcher |
|
// and Second may not be assignable. |
|
// |
|
// However, this should never be called, so the implementation just |
|
// need to assert. |
|
void operator=(const BoundSecondMatcher& /*rhs*/) { |
|
GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned."; |
|
} |
|
|
|
private: |
|
template <typename T> |
|
class Impl : public MatcherInterface<T> { |
|
public: |
|
typedef ::std::tuple<T, Second> ArgTuple; |
|
|
|
Impl(const Tuple2Matcher& tm, const Second& second) |
|
: mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), |
|
second_value_(second) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "and "; |
|
UniversalPrint(second_value_, os); |
|
*os << " "; |
|
mono_tuple2_matcher_.DescribeTo(os); |
|
} |
|
|
|
bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
|
return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), |
|
listener); |
|
} |
|
|
|
private: |
|
const Matcher<const ArgTuple&> mono_tuple2_matcher_; |
|
const Second second_value_; |
|
}; |
|
|
|
const Tuple2Matcher tuple2_matcher_; |
|
const Second second_value_; |
|
}; |
|
|
|
// Given a 2-tuple matcher tm and a value second, |
|
// MatcherBindSecond(tm, second) returns a matcher that matches a |
|
// value x if and only if tm matches tuple (x, second). Useful for |
|
// implementing UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
|
template <typename Tuple2Matcher, typename Second> |
|
BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( |
|
const Tuple2Matcher& tm, const Second& second) { |
|
return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); |
|
} |
|
|
|
// Returns the description for a matcher defined using the MATCHER*() |
|
// macro where the user-supplied description string is "", if |
|
// 'negation' is false; otherwise returns the description of the |
|
// negation of the matcher. 'param_values' contains a list of strings |
|
// that are the print-out of the matcher's parameters. |
|
GTEST_API_ std::string FormatMatcherDescription(bool negation, |
|
const char* matcher_name, |
|
const Strings& param_values); |
|
|
|
// Implements a matcher that checks the value of a optional<> type variable. |
|
template <typename ValueMatcher> |
|
class OptionalMatcher { |
|
public: |
|
explicit OptionalMatcher(const ValueMatcher& value_matcher) |
|
: value_matcher_(value_matcher) {} |
|
|
|
template <typename Optional> |
|
operator Matcher<Optional>() const { |
|
return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); |
|
} |
|
|
|
template <typename Optional> |
|
class Impl : public MatcherInterface<Optional> { |
|
public: |
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; |
|
typedef typename OptionalView::value_type ValueType; |
|
explicit Impl(const ValueMatcher& value_matcher) |
|
: value_matcher_(MatcherCast<ValueType>(value_matcher)) {} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "value "; |
|
value_matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "value "; |
|
value_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
bool MatchAndExplain(Optional optional, |
|
MatchResultListener* listener) const override { |
|
if (!optional) { |
|
*listener << "which is not engaged"; |
|
return false; |
|
} |
|
const ValueType& value = *optional; |
|
StringMatchResultListener value_listener; |
|
const bool match = value_matcher_.MatchAndExplain(value, &value_listener); |
|
*listener << "whose value " << PrintToString(value) |
|
<< (match ? " matches" : " doesn't match"); |
|
PrintIfNotEmpty(value_listener.str(), listener->stream()); |
|
return match; |
|
} |
|
|
|
private: |
|
const Matcher<ValueType> value_matcher_; |
|
}; |
|
|
|
private: |
|
const ValueMatcher value_matcher_; |
|
}; |
|
|
|
namespace variant_matcher { |
|
// Overloads to allow VariantMatcher to do proper ADL lookup. |
|
template <typename T> |
|
void holds_alternative() {} |
|
template <typename T> |
|
void get() {} |
|
|
|
// Implements a matcher that checks the value of a variant<> type variable. |
|
template <typename T> |
|
class VariantMatcher { |
|
public: |
|
explicit VariantMatcher(::testing::Matcher<const T&> matcher) |
|
: matcher_(std::move(matcher)) {} |
|
|
|
template <typename Variant> |
|
bool MatchAndExplain(const Variant& value, |
|
::testing::MatchResultListener* listener) const { |
|
using std::get; |
|
if (!listener->IsInterested()) { |
|
return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); |
|
} |
|
|
|
if (!holds_alternative<T>(value)) { |
|
*listener << "whose value is not of type '" << GetTypeName() << "'"; |
|
return false; |
|
} |
|
|
|
const T& elem = get<T>(value); |
|
StringMatchResultListener elem_listener; |
|
const bool match = matcher_.MatchAndExplain(elem, &elem_listener); |
|
*listener << "whose value " << PrintToString(elem) |
|
<< (match ? " matches" : " doesn't match"); |
|
PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
|
return match; |
|
} |
|
|
|
void DescribeTo(std::ostream* os) const { |
|
*os << "is a variant<> with value of type '" << GetTypeName() |
|
<< "' and the value "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(std::ostream* os) const { |
|
*os << "is a variant<> with value of type other than '" << GetTypeName() |
|
<< "' or the value "; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
private: |
|
static std::string GetTypeName() { |
|
#if GTEST_HAS_RTTI |
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
|
return internal::GetTypeName<T>()); |
|
#endif |
|
return "the element type"; |
|
} |
|
|
|
const ::testing::Matcher<const T&> matcher_; |
|
}; |
|
|
|
} // namespace variant_matcher |
|
|
|
namespace any_cast_matcher { |
|
|
|
// Overloads to allow AnyCastMatcher to do proper ADL lookup. |
|
template <typename T> |
|
void any_cast() {} |
|
|
|
// Implements a matcher that any_casts the value. |
|
template <typename T> |
|
class AnyCastMatcher { |
|
public: |
|
explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) |
|
: matcher_(matcher) {} |
|
|
|
template <typename AnyType> |
|
bool MatchAndExplain(const AnyType& value, |
|
::testing::MatchResultListener* listener) const { |
|
if (!listener->IsInterested()) { |
|
const T* ptr = any_cast<T>(&value); |
|
return ptr != nullptr && matcher_.Matches(*ptr); |
|
} |
|
|
|
const T* elem = any_cast<T>(&value); |
|
if (elem == nullptr) { |
|
*listener << "whose value is not of type '" << GetTypeName() << "'"; |
|
return false; |
|
} |
|
|
|
StringMatchResultListener elem_listener; |
|
const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); |
|
*listener << "whose value " << PrintToString(*elem) |
|
<< (match ? " matches" : " doesn't match"); |
|
PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
|
return match; |
|
} |
|
|
|
void DescribeTo(std::ostream* os) const { |
|
*os << "is an 'any' type with value of type '" << GetTypeName() |
|
<< "' and the value "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(std::ostream* os) const { |
|
*os << "is an 'any' type with value of type other than '" << GetTypeName() |
|
<< "' or the value "; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
private: |
|
static std::string GetTypeName() { |
|
#if GTEST_HAS_RTTI |
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
|
return internal::GetTypeName<T>()); |
|
#endif |
|
return "the element type"; |
|
} |
|
|
|
const ::testing::Matcher<const T&> matcher_; |
|
}; |
|
|
|
} // namespace any_cast_matcher |
|
|
|
// Implements the Args() matcher. |
|
template <class ArgsTuple, size_t... k> |
|
class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { |
|
public: |
|
using RawArgsTuple = typename std::decay<ArgsTuple>::type; |
|
using SelectedArgs = |
|
std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; |
|
using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>; |
|
|
|
template <typename InnerMatcher> |
|
explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) |
|
: inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} |
|
|
|
bool MatchAndExplain(ArgsTuple args, |
|
MatchResultListener* listener) const override { |
|
// Workaround spurious C4100 on MSVC<=15.7 when k is empty. |
|
(void)args; |
|
const SelectedArgs& selected_args = |
|
std::forward_as_tuple(std::get<k>(args)...); |
|
if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); |
|
|
|
PrintIndices(listener->stream()); |
|
*listener << "are " << PrintToString(selected_args); |
|
|
|
StringMatchResultListener inner_listener; |
|
const bool match = |
|
inner_matcher_.MatchAndExplain(selected_args, &inner_listener); |
|
PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
|
return match; |
|
} |
|
|
|
void DescribeTo(::std::ostream* os) const override { |
|
*os << "are a tuple "; |
|
PrintIndices(os); |
|
inner_matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(::std::ostream* os) const override { |
|
*os << "are a tuple "; |
|
PrintIndices(os); |
|
inner_matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
private: |
|
// Prints the indices of the selected fields. |
|
static void PrintIndices(::std::ostream* os) { |
|
*os << "whose fields ("; |
|
const char* sep = ""; |
|
// Workaround spurious C4189 on MSVC<=15.7 when k is empty. |
|
(void)sep; |
|
const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...}; |
|
(void)dummy; |
|
*os << ") "; |
|
} |
|
|
|
MonomorphicInnerMatcher inner_matcher_; |
|
}; |
|
|
|
template <class InnerMatcher, size_t... k> |
|
class ArgsMatcher { |
|
public: |
|
explicit ArgsMatcher(InnerMatcher inner_matcher) |
|
: inner_matcher_(std::move(inner_matcher)) {} |
|
|
|
template <typename ArgsTuple> |
|
operator Matcher<ArgsTuple>() const { // NOLINT |
|
return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); |
|
} |
|
|
|
private: |
|
InnerMatcher inner_matcher_; |
|
}; |
|
|
|
} // namespace internal |
|
|
|
// ElementsAreArray(iterator_first, iterator_last) |
|
// ElementsAreArray(pointer, count) |
|
// ElementsAreArray(array) |
|
// ElementsAreArray(container) |
|
// ElementsAreArray({ e1, e2, ..., en }) |
|
// |
|
// The ElementsAreArray() functions are like ElementsAre(...), except |
|
// that they are given a homogeneous sequence rather than taking each |
|
// element as a function argument. The sequence can be specified as an |
|
// array, a pointer and count, a vector, an initializer list, or an |
|
// STL iterator range. In each of these cases, the underlying sequence |
|
// can be either a sequence of values or a sequence of matchers. |
|
// |
|
// All forms of ElementsAreArray() make a copy of the input matcher sequence. |
|
|
|
template <typename Iter> |
|
inline internal::ElementsAreArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type> |
|
ElementsAreArray(Iter first, Iter last) { |
|
typedef typename ::std::iterator_traits<Iter>::value_type T; |
|
return internal::ElementsAreArrayMatcher<T>(first, last); |
|
} |
|
|
|
template <typename T> |
|
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
|
const T* pointer, size_t count) { |
|
return ElementsAreArray(pointer, pointer + count); |
|
} |
|
|
|
template <typename T, size_t N> |
|
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
|
const T (&array)[N]) { |
|
return ElementsAreArray(array, N); |
|
} |
|
|
|
template <typename Container> |
|
inline internal::ElementsAreArrayMatcher<typename Container::value_type> |
|
ElementsAreArray(const Container& container) { |
|
return ElementsAreArray(container.begin(), container.end()); |
|
} |
|
|
|
template <typename T> |
|
inline internal::ElementsAreArrayMatcher<T> |
|
ElementsAreArray(::std::initializer_list<T> xs) { |
|
return ElementsAreArray(xs.begin(), xs.end()); |
|
} |
|
|
|
// UnorderedElementsAreArray(iterator_first, iterator_last) |
|
// UnorderedElementsAreArray(pointer, count) |
|
// UnorderedElementsAreArray(array) |
|
// UnorderedElementsAreArray(container) |
|
// UnorderedElementsAreArray({ e1, e2, ..., en }) |
|
// |
|
// UnorderedElementsAreArray() verifies that a bijective mapping onto a |
|
// collection of matchers exists. |
|
// |
|
// The matchers can be specified as an array, a pointer and count, a container, |
|
// an initializer list, or an STL iterator range. In each of these cases, the |
|
// underlying matchers can be either values or matchers. |
|
|
|
template <typename Iter> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type> |
|
UnorderedElementsAreArray(Iter first, Iter last) { |
|
typedef typename ::std::iterator_traits<Iter>::value_type T; |
|
return internal::UnorderedElementsAreArrayMatcher<T>( |
|
internal::UnorderedMatcherRequire::ExactMatch, first, last); |
|
} |
|
|
|
template <typename T> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> |
|
UnorderedElementsAreArray(const T* pointer, size_t count) { |
|
return UnorderedElementsAreArray(pointer, pointer + count); |
|
} |
|
|
|
template <typename T, size_t N> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> |
|
UnorderedElementsAreArray(const T (&array)[N]) { |
|
return UnorderedElementsAreArray(array, N); |
|
} |
|
|
|
template <typename Container> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename Container::value_type> |
|
UnorderedElementsAreArray(const Container& container) { |
|
return UnorderedElementsAreArray(container.begin(), container.end()); |
|
} |
|
|
|
template <typename T> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> |
|
UnorderedElementsAreArray(::std::initializer_list<T> xs) { |
|
return UnorderedElementsAreArray(xs.begin(), xs.end()); |
|
} |
|
|
|
// _ is a matcher that matches anything of any type. |
|
// |
|
// This definition is fine as: |
|
// |
|
// 1. The C++ standard permits using the name _ in a namespace that |
|
// is not the global namespace or ::std. |
|
// 2. The AnythingMatcher class has no data member or constructor, |
|
// so it's OK to create global variables of this type. |
|
// 3. c-style has approved of using _ in this case. |
|
const internal::AnythingMatcher _ = {}; |
|
// Creates a matcher that matches any value of the given type T. |
|
template <typename T> |
|
inline Matcher<T> A() { |
|
return _; |
|
} |
|
|
|
// Creates a matcher that matches any value of the given type T. |
|
template <typename T> |
|
inline Matcher<T> An() { |
|
return _; |
|
} |
|
|
|
template <typename T, typename M> |
|
Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( |
|
const M& value, std::false_type /* convertible_to_matcher */, |
|
std::false_type /* convertible_to_T */) { |
|
return Eq(value); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches any NULL pointer. |
|
inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { |
|
return MakePolymorphicMatcher(internal::IsNullMatcher()); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches any non-NULL pointer. |
|
// This is convenient as Not(NULL) doesn't compile (the compiler |
|
// thinks that that expression is comparing a pointer with an integer). |
|
inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { |
|
return MakePolymorphicMatcher(internal::NotNullMatcher()); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches any argument that |
|
// references variable x. |
|
template <typename T> |
|
inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT |
|
return internal::RefMatcher<T&>(x); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches any NaN floating point. |
|
inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() { |
|
return MakePolymorphicMatcher(internal::IsNanMatcher()); |
|
} |
|
|
|
// Creates a matcher that matches any double argument approximately |
|
// equal to rhs, where two NANs are considered unequal. |
|
inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { |
|
return internal::FloatingEqMatcher<double>(rhs, false); |
|
} |
|
|
|
// Creates a matcher that matches any double argument approximately |
|
// equal to rhs, including NaN values when rhs is NaN. |
|
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { |
|
return internal::FloatingEqMatcher<double>(rhs, true); |
|
} |
|
|
|
// Creates a matcher that matches any double argument approximately equal to |
|
// rhs, up to the specified max absolute error bound, where two NANs are |
|
// considered unequal. The max absolute error bound must be non-negative. |
|
inline internal::FloatingEqMatcher<double> DoubleNear( |
|
double rhs, double max_abs_error) { |
|
return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); |
|
} |
|
|
|
// Creates a matcher that matches any double argument approximately equal to |
|
// rhs, up to the specified max absolute error bound, including NaN values when |
|
// rhs is NaN. The max absolute error bound must be non-negative. |
|
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( |
|
double rhs, double max_abs_error) { |
|
return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); |
|
} |
|
|
|
// Creates a matcher that matches any float argument approximately |
|
// equal to rhs, where two NANs are considered unequal. |
|
inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { |
|
return internal::FloatingEqMatcher<float>(rhs, false); |
|
} |
|
|
|
// Creates a matcher that matches any float argument approximately |
|
// equal to rhs, including NaN values when rhs is NaN. |
|
inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { |
|
return internal::FloatingEqMatcher<float>(rhs, true); |
|
} |
|
|
|
// Creates a matcher that matches any float argument approximately equal to |
|
// rhs, up to the specified max absolute error bound, where two NANs are |
|
// considered unequal. The max absolute error bound must be non-negative. |
|
inline internal::FloatingEqMatcher<float> FloatNear( |
|
float rhs, float max_abs_error) { |
|
return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); |
|
} |
|
|
|
// Creates a matcher that matches any float argument approximately equal to |
|
// rhs, up to the specified max absolute error bound, including NaN values when |
|
// rhs is NaN. The max absolute error bound must be non-negative. |
|
inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( |
|
float rhs, float max_abs_error) { |
|
return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); |
|
} |
|
|
|
// Creates a matcher that matches a pointer (raw or smart) that points |
|
// to a value that matches inner_matcher. |
|
template <typename InnerMatcher> |
|
inline internal::PointeeMatcher<InnerMatcher> Pointee( |
|
const InnerMatcher& inner_matcher) { |
|
return internal::PointeeMatcher<InnerMatcher>(inner_matcher); |
|
} |
|
|
|
#if GTEST_HAS_RTTI |
|
// Creates a matcher that matches a pointer or reference that matches |
|
// inner_matcher when dynamic_cast<To> is applied. |
|
// The result of dynamic_cast<To> is forwarded to the inner matcher. |
|
// If To is a pointer and the cast fails, the inner matcher will receive NULL. |
|
// If To is a reference and the cast fails, this matcher returns false |
|
// immediately. |
|
template <typename To> |
|
inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > |
|
WhenDynamicCastTo(const Matcher<To>& inner_matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::WhenDynamicCastToMatcher<To>(inner_matcher)); |
|
} |
|
#endif // GTEST_HAS_RTTI |
|
|
|
// Creates a matcher that matches an object whose given field matches |
|
// 'matcher'. For example, |
|
// Field(&Foo::number, Ge(5)) |
|
// matches a Foo object x if and only if x.number >= 5. |
|
template <typename Class, typename FieldType, typename FieldMatcher> |
|
inline PolymorphicMatcher< |
|
internal::FieldMatcher<Class, FieldType> > Field( |
|
FieldType Class::*field, const FieldMatcher& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::FieldMatcher<Class, FieldType>( |
|
field, MatcherCast<const FieldType&>(matcher))); |
|
// The call to MatcherCast() is required for supporting inner |
|
// matchers of compatible types. For example, it allows |
|
// Field(&Foo::bar, m) |
|
// to compile where bar is an int32 and m is a matcher for int64. |
|
} |
|
|
|
// Same as Field() but also takes the name of the field to provide better error |
|
// messages. |
|
template <typename Class, typename FieldType, typename FieldMatcher> |
|
inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field( |
|
const std::string& field_name, FieldType Class::*field, |
|
const FieldMatcher& matcher) { |
|
return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
|
field_name, field, MatcherCast<const FieldType&>(matcher))); |
|
} |
|
|
|
// Creates a matcher that matches an object whose given property |
|
// matches 'matcher'. For example, |
|
// Property(&Foo::str, StartsWith("hi")) |
|
// matches a Foo object x if and only if x.str() starts with "hi". |
|
template <typename Class, typename PropertyType, typename PropertyMatcher> |
|
inline PolymorphicMatcher<internal::PropertyMatcher< |
|
Class, PropertyType, PropertyType (Class::*)() const> > |
|
Property(PropertyType (Class::*property)() const, |
|
const PropertyMatcher& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::PropertyMatcher<Class, PropertyType, |
|
PropertyType (Class::*)() const>( |
|
property, MatcherCast<const PropertyType&>(matcher))); |
|
// The call to MatcherCast() is required for supporting inner |
|
// matchers of compatible types. For example, it allows |
|
// Property(&Foo::bar, m) |
|
// to compile where bar() returns an int32 and m is a matcher for int64. |
|
} |
|
|
|
// Same as Property() above, but also takes the name of the property to provide |
|
// better error messages. |
|
template <typename Class, typename PropertyType, typename PropertyMatcher> |
|
inline PolymorphicMatcher<internal::PropertyMatcher< |
|
Class, PropertyType, PropertyType (Class::*)() const> > |
|
Property(const std::string& property_name, |
|
PropertyType (Class::*property)() const, |
|
const PropertyMatcher& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::PropertyMatcher<Class, PropertyType, |
|
PropertyType (Class::*)() const>( |
|
property_name, property, MatcherCast<const PropertyType&>(matcher))); |
|
} |
|
|
|
// The same as above but for reference-qualified member functions. |
|
template <typename Class, typename PropertyType, typename PropertyMatcher> |
|
inline PolymorphicMatcher<internal::PropertyMatcher< |
|
Class, PropertyType, PropertyType (Class::*)() const &> > |
|
Property(PropertyType (Class::*property)() const &, |
|
const PropertyMatcher& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::PropertyMatcher<Class, PropertyType, |
|
PropertyType (Class::*)() const&>( |
|
property, MatcherCast<const PropertyType&>(matcher))); |
|
} |
|
|
|
// Three-argument form for reference-qualified member functions. |
|
template <typename Class, typename PropertyType, typename PropertyMatcher> |
|
inline PolymorphicMatcher<internal::PropertyMatcher< |
|
Class, PropertyType, PropertyType (Class::*)() const &> > |
|
Property(const std::string& property_name, |
|
PropertyType (Class::*property)() const &, |
|
const PropertyMatcher& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::PropertyMatcher<Class, PropertyType, |
|
PropertyType (Class::*)() const&>( |
|
property_name, property, MatcherCast<const PropertyType&>(matcher))); |
|
} |
|
|
|
// Creates a matcher that matches an object if and only if the result of |
|
// applying a callable to x matches 'matcher'. For example, |
|
// ResultOf(f, StartsWith("hi")) |
|
// matches a Foo object x if and only if f(x) starts with "hi". |
|
// `callable` parameter can be a function, function pointer, or a functor. It is |
|
// required to keep no state affecting the results of the calls on it and make |
|
// no assumptions about how many calls will be made. Any state it keeps must be |
|
// protected from the concurrent access. |
|
template <typename Callable, typename InnerMatcher> |
|
internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
|
Callable callable, InnerMatcher matcher) { |
|
return internal::ResultOfMatcher<Callable, InnerMatcher>( |
|
std::move(callable), std::move(matcher)); |
|
} |
|
|
|
// String matchers. |
|
|
|
// Matches a string equal to str. |
|
template <typename T = std::string> |
|
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq( |
|
const internal::StringLike<T>& str) { |
|
return MakePolymorphicMatcher( |
|
internal::StrEqualityMatcher<std::string>(std::string(str), true, true)); |
|
} |
|
|
|
// Matches a string not equal to str. |
|
template <typename T = std::string> |
|
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe( |
|
const internal::StringLike<T>& str) { |
|
return MakePolymorphicMatcher( |
|
internal::StrEqualityMatcher<std::string>(std::string(str), false, true)); |
|
} |
|
|
|
// Matches a string equal to str, ignoring case. |
|
template <typename T = std::string> |
|
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq( |
|
const internal::StringLike<T>& str) { |
|
return MakePolymorphicMatcher( |
|
internal::StrEqualityMatcher<std::string>(std::string(str), true, false)); |
|
} |
|
|
|
// Matches a string not equal to str, ignoring case. |
|
template <typename T = std::string> |
|
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe( |
|
const internal::StringLike<T>& str) { |
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>( |
|
std::string(str), false, false)); |
|
} |
|
|
|
// Creates a matcher that matches any string, std::string, or C string |
|
// that contains the given substring. |
|
template <typename T = std::string> |
|
PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr( |
|
const internal::StringLike<T>& substring) { |
|
return MakePolymorphicMatcher( |
|
internal::HasSubstrMatcher<std::string>(std::string(substring))); |
|
} |
|
|
|
// Matches a string that starts with 'prefix' (case-sensitive). |
|
template <typename T = std::string> |
|
PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith( |
|
const internal::StringLike<T>& prefix) { |
|
return MakePolymorphicMatcher( |
|
internal::StartsWithMatcher<std::string>(std::string(prefix))); |
|
} |
|
|
|
// Matches a string that ends with 'suffix' (case-sensitive). |
|
template <typename T = std::string> |
|
PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith( |
|
const internal::StringLike<T>& suffix) { |
|
return MakePolymorphicMatcher( |
|
internal::EndsWithMatcher<std::string>(std::string(suffix))); |
|
} |
|
|
|
#if GTEST_HAS_STD_WSTRING |
|
// Wide string matchers. |
|
|
|
// Matches a string equal to str. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq( |
|
const std::wstring& str) { |
|
return MakePolymorphicMatcher( |
|
internal::StrEqualityMatcher<std::wstring>(str, true, true)); |
|
} |
|
|
|
// Matches a string not equal to str. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe( |
|
const std::wstring& str) { |
|
return MakePolymorphicMatcher( |
|
internal::StrEqualityMatcher<std::wstring>(str, false, true)); |
|
} |
|
|
|
// Matches a string equal to str, ignoring case. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > |
|
StrCaseEq(const std::wstring& str) { |
|
return MakePolymorphicMatcher( |
|
internal::StrEqualityMatcher<std::wstring>(str, true, false)); |
|
} |
|
|
|
// Matches a string not equal to str, ignoring case. |
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > |
|
StrCaseNe(const std::wstring& str) { |
|
return MakePolymorphicMatcher( |
|
internal::StrEqualityMatcher<std::wstring>(str, false, false)); |
|
} |
|
|
|
// Creates a matcher that matches any ::wstring, std::wstring, or C wide string |
|
// that contains the given substring. |
|
inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr( |
|
const std::wstring& substring) { |
|
return MakePolymorphicMatcher( |
|
internal::HasSubstrMatcher<std::wstring>(substring)); |
|
} |
|
|
|
// Matches a string that starts with 'prefix' (case-sensitive). |
|
inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> > |
|
StartsWith(const std::wstring& prefix) { |
|
return MakePolymorphicMatcher( |
|
internal::StartsWithMatcher<std::wstring>(prefix)); |
|
} |
|
|
|
// Matches a string that ends with 'suffix' (case-sensitive). |
|
inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith( |
|
const std::wstring& suffix) { |
|
return MakePolymorphicMatcher( |
|
internal::EndsWithMatcher<std::wstring>(suffix)); |
|
} |
|
|
|
#endif // GTEST_HAS_STD_WSTRING |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field == the second field. |
|
inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field >= the second field. |
|
inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field > the second field. |
|
inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field <= the second field. |
|
inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field < the second field. |
|
inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the |
|
// first field != the second field. |
|
inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// FloatEq(first field) matches the second field. |
|
inline internal::FloatingEq2Matcher<float> FloatEq() { |
|
return internal::FloatingEq2Matcher<float>(); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// DoubleEq(first field) matches the second field. |
|
inline internal::FloatingEq2Matcher<double> DoubleEq() { |
|
return internal::FloatingEq2Matcher<double>(); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// FloatEq(first field) matches the second field with NaN equality. |
|
inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { |
|
return internal::FloatingEq2Matcher<float>(true); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// DoubleEq(first field) matches the second field with NaN equality. |
|
inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { |
|
return internal::FloatingEq2Matcher<double>(true); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// FloatNear(first field, max_abs_error) matches the second field. |
|
inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { |
|
return internal::FloatingEq2Matcher<float>(max_abs_error); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// DoubleNear(first field, max_abs_error) matches the second field. |
|
inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { |
|
return internal::FloatingEq2Matcher<double>(max_abs_error); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// FloatNear(first field, max_abs_error) matches the second field with NaN |
|
// equality. |
|
inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( |
|
float max_abs_error) { |
|
return internal::FloatingEq2Matcher<float>(max_abs_error, true); |
|
} |
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where |
|
// DoubleNear(first field, max_abs_error) matches the second field with NaN |
|
// equality. |
|
inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( |
|
double max_abs_error) { |
|
return internal::FloatingEq2Matcher<double>(max_abs_error, true); |
|
} |
|
|
|
// Creates a matcher that matches any value of type T that m doesn't |
|
// match. |
|
template <typename InnerMatcher> |
|
inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { |
|
return internal::NotMatcher<InnerMatcher>(m); |
|
} |
|
|
|
// Returns a matcher that matches anything that satisfies the given |
|
// predicate. The predicate can be any unary function or functor |
|
// whose return type can be implicitly converted to bool. |
|
template <typename Predicate> |
|
inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > |
|
Truly(Predicate pred) { |
|
return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); |
|
} |
|
|
|
// Returns a matcher that matches the container size. The container must |
|
// support both size() and size_type which all STL-like containers provide. |
|
// Note that the parameter 'size' can be a value of type size_type as well as |
|
// matcher. For instance: |
|
// EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. |
|
// EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. |
|
template <typename SizeMatcher> |
|
inline internal::SizeIsMatcher<SizeMatcher> |
|
SizeIs(const SizeMatcher& size_matcher) { |
|
return internal::SizeIsMatcher<SizeMatcher>(size_matcher); |
|
} |
|
|
|
// Returns a matcher that matches the distance between the container's begin() |
|
// iterator and its end() iterator, i.e. the size of the container. This matcher |
|
// can be used instead of SizeIs with containers such as std::forward_list which |
|
// do not implement size(). The container must provide const_iterator (with |
|
// valid iterator_traits), begin() and end(). |
|
template <typename DistanceMatcher> |
|
inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> |
|
BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { |
|
return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); |
|
} |
|
|
|
// Returns a matcher that matches an equal container. |
|
// This matcher behaves like Eq(), but in the event of mismatch lists the |
|
// values that are included in one container but not the other. (Duplicate |
|
// values and order differences are not explained.) |
|
template <typename Container> |
|
inline PolymorphicMatcher<internal::ContainerEqMatcher< |
|
typename std::remove_const<Container>::type>> |
|
ContainerEq(const Container& rhs) { |
|
return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs)); |
|
} |
|
|
|
// Returns a matcher that matches a container that, when sorted using |
|
// the given comparator, matches container_matcher. |
|
template <typename Comparator, typename ContainerMatcher> |
|
inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> |
|
WhenSortedBy(const Comparator& comparator, |
|
const ContainerMatcher& container_matcher) { |
|
return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( |
|
comparator, container_matcher); |
|
} |
|
|
|
// Returns a matcher that matches a container that, when sorted using |
|
// the < operator, matches container_matcher. |
|
template <typename ContainerMatcher> |
|
inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> |
|
WhenSorted(const ContainerMatcher& container_matcher) { |
|
return |
|
internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( |
|
internal::LessComparator(), container_matcher); |
|
} |
|
|
|
// Matches an STL-style container or a native array that contains the |
|
// same number of elements as in rhs, where its i-th element and rhs's |
|
// i-th element (as a pair) satisfy the given pair matcher, for all i. |
|
// TupleMatcher must be able to be safely cast to Matcher<std::tuple<const |
|
// T1&, const T2&> >, where T1 and T2 are the types of elements in the |
|
// LHS container and the RHS container respectively. |
|
template <typename TupleMatcher, typename Container> |
|
inline internal::PointwiseMatcher<TupleMatcher, |
|
typename std::remove_const<Container>::type> |
|
Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { |
|
return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher, |
|
rhs); |
|
} |
|
|
|
|
|
// Supports the Pointwise(m, {a, b, c}) syntax. |
|
template <typename TupleMatcher, typename T> |
|
inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( |
|
const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { |
|
return Pointwise(tuple_matcher, std::vector<T>(rhs)); |
|
} |
|
|
|
|
|
// UnorderedPointwise(pair_matcher, rhs) matches an STL-style |
|
// container or a native array that contains the same number of |
|
// elements as in rhs, where in some permutation of the container, its |
|
// i-th element and rhs's i-th element (as a pair) satisfy the given |
|
// pair matcher, for all i. Tuple2Matcher must be able to be safely |
|
// cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are |
|
// the types of elements in the LHS container and the RHS container |
|
// respectively. |
|
// |
|
// This is like Pointwise(pair_matcher, rhs), except that the element |
|
// order doesn't matter. |
|
template <typename Tuple2Matcher, typename RhsContainer> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename internal::BoundSecondMatcher< |
|
Tuple2Matcher, |
|
typename internal::StlContainerView< |
|
typename std::remove_const<RhsContainer>::type>::type::value_type>> |
|
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
|
const RhsContainer& rhs_container) { |
|
// RhsView allows the same code to handle RhsContainer being a |
|
// STL-style container and it being a native C-style array. |
|
typedef typename internal::StlContainerView<RhsContainer> RhsView; |
|
typedef typename RhsView::type RhsStlContainer; |
|
typedef typename RhsStlContainer::value_type Second; |
|
const RhsStlContainer& rhs_stl_container = |
|
RhsView::ConstReference(rhs_container); |
|
|
|
// Create a matcher for each element in rhs_container. |
|
::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; |
|
for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); |
|
it != rhs_stl_container.end(); ++it) { |
|
matchers.push_back( |
|
internal::MatcherBindSecond(tuple2_matcher, *it)); |
|
} |
|
|
|
// Delegate the work to UnorderedElementsAreArray(). |
|
return UnorderedElementsAreArray(matchers); |
|
} |
|
|
|
|
|
// Supports the UnorderedPointwise(m, {a, b, c}) syntax. |
|
template <typename Tuple2Matcher, typename T> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename internal::BoundSecondMatcher<Tuple2Matcher, T> > |
|
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
|
std::initializer_list<T> rhs) { |
|
return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); |
|
} |
|
|
|
|
|
// Matches an STL-style container or a native array that contains at |
|
// least one element matching the given value or matcher. |
|
// |
|
// Examples: |
|
// ::std::set<int> page_ids; |
|
// page_ids.insert(3); |
|
// page_ids.insert(1); |
|
// EXPECT_THAT(page_ids, Contains(1)); |
|
// EXPECT_THAT(page_ids, Contains(Gt(2))); |
|
// EXPECT_THAT(page_ids, Not(Contains(4))); |
|
// |
|
// ::std::map<int, size_t> page_lengths; |
|
// page_lengths[1] = 100; |
|
// EXPECT_THAT(page_lengths, |
|
// Contains(::std::pair<const int, size_t>(1, 100))); |
|
// |
|
// const char* user_ids[] = { "joe", "mike", "tom" }; |
|
// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); |
|
template <typename M> |
|
inline internal::ContainsMatcher<M> Contains(M matcher) { |
|
return internal::ContainsMatcher<M>(matcher); |
|
} |
|
|
|
// IsSupersetOf(iterator_first, iterator_last) |
|
// IsSupersetOf(pointer, count) |
|
// IsSupersetOf(array) |
|
// IsSupersetOf(container) |
|
// IsSupersetOf({e1, e2, ..., en}) |
|
// |
|
// IsSupersetOf() verifies that a surjective partial mapping onto a collection |
|
// of matchers exists. In other words, a container matches |
|
// IsSupersetOf({e1, ..., en}) if and only if there is a permutation |
|
// {y1, ..., yn} of some of the container's elements where y1 matches e1, |
|
// ..., and yn matches en. Obviously, the size of the container must be >= n |
|
// in order to have a match. Examples: |
|
// |
|
// - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and |
|
// 1 matches Ne(0). |
|
// - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches |
|
// both Eq(1) and Lt(2). The reason is that different matchers must be used |
|
// for elements in different slots of the container. |
|
// - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches |
|
// Eq(1) and (the second) 1 matches Lt(2). |
|
// - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) |
|
// Gt(1) and 3 matches (the second) Gt(1). |
|
// |
|
// The matchers can be specified as an array, a pointer and count, a container, |
|
// an initializer list, or an STL iterator range. In each of these cases, the |
|
// underlying matchers can be either values or matchers. |
|
|
|
template <typename Iter> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type> |
|
IsSupersetOf(Iter first, Iter last) { |
|
typedef typename ::std::iterator_traits<Iter>::value_type T; |
|
return internal::UnorderedElementsAreArrayMatcher<T>( |
|
internal::UnorderedMatcherRequire::Superset, first, last); |
|
} |
|
|
|
template <typename T> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
|
const T* pointer, size_t count) { |
|
return IsSupersetOf(pointer, pointer + count); |
|
} |
|
|
|
template <typename T, size_t N> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
|
const T (&array)[N]) { |
|
return IsSupersetOf(array, N); |
|
} |
|
|
|
template <typename Container> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename Container::value_type> |
|
IsSupersetOf(const Container& container) { |
|
return IsSupersetOf(container.begin(), container.end()); |
|
} |
|
|
|
template <typename T> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
|
::std::initializer_list<T> xs) { |
|
return IsSupersetOf(xs.begin(), xs.end()); |
|
} |
|
|
|
// IsSubsetOf(iterator_first, iterator_last) |
|
// IsSubsetOf(pointer, count) |
|
// IsSubsetOf(array) |
|
// IsSubsetOf(container) |
|
// IsSubsetOf({e1, e2, ..., en}) |
|
// |
|
// IsSubsetOf() verifies that an injective mapping onto a collection of matchers |
|
// exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and |
|
// only if there is a subset of matchers {m1, ..., mk} which would match the |
|
// container using UnorderedElementsAre. Obviously, the size of the container |
|
// must be <= n in order to have a match. Examples: |
|
// |
|
// - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). |
|
// - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 |
|
// matches Lt(0). |
|
// - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both |
|
// match Gt(0). The reason is that different matchers must be used for |
|
// elements in different slots of the container. |
|
// |
|
// The matchers can be specified as an array, a pointer and count, a container, |
|
// an initializer list, or an STL iterator range. In each of these cases, the |
|
// underlying matchers can be either values or matchers. |
|
|
|
template <typename Iter> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type> |
|
IsSubsetOf(Iter first, Iter last) { |
|
typedef typename ::std::iterator_traits<Iter>::value_type T; |
|
return internal::UnorderedElementsAreArrayMatcher<T>( |
|
internal::UnorderedMatcherRequire::Subset, first, last); |
|
} |
|
|
|
template <typename T> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
|
const T* pointer, size_t count) { |
|
return IsSubsetOf(pointer, pointer + count); |
|
} |
|
|
|
template <typename T, size_t N> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
|
const T (&array)[N]) { |
|
return IsSubsetOf(array, N); |
|
} |
|
|
|
template <typename Container> |
|
inline internal::UnorderedElementsAreArrayMatcher< |
|
typename Container::value_type> |
|
IsSubsetOf(const Container& container) { |
|
return IsSubsetOf(container.begin(), container.end()); |
|
} |
|
|
|
template <typename T> |
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
|
::std::initializer_list<T> xs) { |
|
return IsSubsetOf(xs.begin(), xs.end()); |
|
} |
|
|
|
// Matches an STL-style container or a native array that contains only |
|
// elements matching the given value or matcher. |
|
// |
|
// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only |
|
// the messages are different. |
|
// |
|
// Examples: |
|
// ::std::set<int> page_ids; |
|
// // Each(m) matches an empty container, regardless of what m is. |
|
// EXPECT_THAT(page_ids, Each(Eq(1))); |
|
// EXPECT_THAT(page_ids, Each(Eq(77))); |
|
// |
|
// page_ids.insert(3); |
|
// EXPECT_THAT(page_ids, Each(Gt(0))); |
|
// EXPECT_THAT(page_ids, Not(Each(Gt(4)))); |
|
// page_ids.insert(1); |
|
// EXPECT_THAT(page_ids, Not(Each(Lt(2)))); |
|
// |
|
// ::std::map<int, size_t> page_lengths; |
|
// page_lengths[1] = 100; |
|
// page_lengths[2] = 200; |
|
// page_lengths[3] = 300; |
|
// EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); |
|
// EXPECT_THAT(page_lengths, Each(Key(Le(3)))); |
|
// |
|
// const char* user_ids[] = { "joe", "mike", "tom" }; |
|
// EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); |
|
template <typename M> |
|
inline internal::EachMatcher<M> Each(M matcher) { |
|
return internal::EachMatcher<M>(matcher); |
|
} |
|
|
|
// Key(inner_matcher) matches an std::pair whose 'first' field matches |
|
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
|
// std::map that contains at least one element whose key is >= 5. |
|
template <typename M> |
|
inline internal::KeyMatcher<M> Key(M inner_matcher) { |
|
return internal::KeyMatcher<M>(inner_matcher); |
|
} |
|
|
|
// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field |
|
// matches first_matcher and whose 'second' field matches second_matcher. For |
|
// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used |
|
// to match a std::map<int, string> that contains exactly one element whose key |
|
// is >= 5 and whose value equals "foo". |
|
template <typename FirstMatcher, typename SecondMatcher> |
|
inline internal::PairMatcher<FirstMatcher, SecondMatcher> |
|
Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { |
|
return internal::PairMatcher<FirstMatcher, SecondMatcher>( |
|
first_matcher, second_matcher); |
|
} |
|
|
|
namespace no_adl { |
|
// FieldsAre(matchers...) matches piecewise the fields of compatible structs. |
|
// These include those that support `get<I>(obj)`, and when structured bindings |
|
// are enabled any class that supports them. |
|
// In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types. |
|
template <typename... M> |
|
internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre( |
|
M&&... matchers) { |
|
return internal::FieldsAreMatcher<typename std::decay<M>::type...>( |
|
std::forward<M>(matchers)...); |
|
} |
|
|
|
// Creates a matcher that matches a pointer (raw or smart) that matches |
|
// inner_matcher. |
|
template <typename InnerMatcher> |
|
inline internal::PointerMatcher<InnerMatcher> Pointer( |
|
const InnerMatcher& inner_matcher) { |
|
return internal::PointerMatcher<InnerMatcher>(inner_matcher); |
|
} |
|
|
|
// Creates a matcher that matches an object that has an address that matches |
|
// inner_matcher. |
|
template <typename InnerMatcher> |
|
inline internal::AddressMatcher<InnerMatcher> Address( |
|
const InnerMatcher& inner_matcher) { |
|
return internal::AddressMatcher<InnerMatcher>(inner_matcher); |
|
} |
|
} // namespace no_adl |
|
|
|
// Returns a predicate that is satisfied by anything that matches the |
|
// given matcher. |
|
template <typename M> |
|
inline internal::MatcherAsPredicate<M> Matches(M matcher) { |
|
return internal::MatcherAsPredicate<M>(matcher); |
|
} |
|
|
|
// Returns true if and only if the value matches the matcher. |
|
template <typename T, typename M> |
|
inline bool Value(const T& value, M matcher) { |
|
return testing::Matches(matcher)(value); |
|
} |
|
|
|
// Matches the value against the given matcher and explains the match |
|
// result to listener. |
|
template <typename T, typename M> |
|
inline bool ExplainMatchResult( |
|
M matcher, const T& value, MatchResultListener* listener) { |
|
return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); |
|
} |
|
|
|
// Returns a string representation of the given matcher. Useful for description |
|
// strings of matchers defined using MATCHER_P* macros that accept matchers as |
|
// their arguments. For example: |
|
// |
|
// MATCHER_P(XAndYThat, matcher, |
|
// "X that " + DescribeMatcher<int>(matcher, negation) + |
|
// " and Y that " + DescribeMatcher<double>(matcher, negation)) { |
|
// return ExplainMatchResult(matcher, arg.x(), result_listener) && |
|
// ExplainMatchResult(matcher, arg.y(), result_listener); |
|
// } |
|
template <typename T, typename M> |
|
std::string DescribeMatcher(const M& matcher, bool negation = false) { |
|
::std::stringstream ss; |
|
Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); |
|
if (negation) { |
|
monomorphic_matcher.DescribeNegationTo(&ss); |
|
} else { |
|
monomorphic_matcher.DescribeTo(&ss); |
|
} |
|
return ss.str(); |
|
} |
|
|
|
template <typename... Args> |
|
internal::ElementsAreMatcher< |
|
std::tuple<typename std::decay<const Args&>::type...>> |
|
ElementsAre(const Args&... matchers) { |
|
return internal::ElementsAreMatcher< |
|
std::tuple<typename std::decay<const Args&>::type...>>( |
|
std::make_tuple(matchers...)); |
|
} |
|
|
|
template <typename... Args> |
|
internal::UnorderedElementsAreMatcher< |
|
std::tuple<typename std::decay<const Args&>::type...>> |
|
UnorderedElementsAre(const Args&... matchers) { |
|
return internal::UnorderedElementsAreMatcher< |
|
std::tuple<typename std::decay<const Args&>::type...>>( |
|
std::make_tuple(matchers...)); |
|
} |
|
|
|
// Define variadic matcher versions. |
|
template <typename... Args> |
|
internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( |
|
const Args&... matchers) { |
|
return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( |
|
matchers...); |
|
} |
|
|
|
template <typename... Args> |
|
internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( |
|
const Args&... matchers) { |
|
return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( |
|
matchers...); |
|
} |
|
|
|
// AnyOfArray(array) |
|
// AnyOfArray(pointer, count) |
|
// AnyOfArray(container) |
|
// AnyOfArray({ e1, e2, ..., en }) |
|
// AnyOfArray(iterator_first, iterator_last) |
|
// |
|
// AnyOfArray() verifies whether a given value matches any member of a |
|
// collection of matchers. |
|
// |
|
// AllOfArray(array) |
|
// AllOfArray(pointer, count) |
|
// AllOfArray(container) |
|
// AllOfArray({ e1, e2, ..., en }) |
|
// AllOfArray(iterator_first, iterator_last) |
|
// |
|
// AllOfArray() verifies whether a given value matches all members of a |
|
// collection of matchers. |
|
// |
|
// The matchers can be specified as an array, a pointer and count, a container, |
|
// an initializer list, or an STL iterator range. In each of these cases, the |
|
// underlying matchers can be either values or matchers. |
|
|
|
template <typename Iter> |
|
inline internal::AnyOfArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type> |
|
AnyOfArray(Iter first, Iter last) { |
|
return internal::AnyOfArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type>(first, last); |
|
} |
|
|
|
template <typename Iter> |
|
inline internal::AllOfArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type> |
|
AllOfArray(Iter first, Iter last) { |
|
return internal::AllOfArrayMatcher< |
|
typename ::std::iterator_traits<Iter>::value_type>(first, last); |
|
} |
|
|
|
template <typename T> |
|
inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { |
|
return AnyOfArray(ptr, ptr + count); |
|
} |
|
|
|
template <typename T> |
|
inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { |
|
return AllOfArray(ptr, ptr + count); |
|
} |
|
|
|
template <typename T, size_t N> |
|
inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { |
|
return AnyOfArray(array, N); |
|
} |
|
|
|
template <typename T, size_t N> |
|
inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { |
|
return AllOfArray(array, N); |
|
} |
|
|
|
template <typename Container> |
|
inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( |
|
const Container& container) { |
|
return AnyOfArray(container.begin(), container.end()); |
|
} |
|
|
|
template <typename Container> |
|
inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( |
|
const Container& container) { |
|
return AllOfArray(container.begin(), container.end()); |
|
} |
|
|
|
template <typename T> |
|
inline internal::AnyOfArrayMatcher<T> AnyOfArray( |
|
::std::initializer_list<T> xs) { |
|
return AnyOfArray(xs.begin(), xs.end()); |
|
} |
|
|
|
template <typename T> |
|
inline internal::AllOfArrayMatcher<T> AllOfArray( |
|
::std::initializer_list<T> xs) { |
|
return AllOfArray(xs.begin(), xs.end()); |
|
} |
|
|
|
// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected |
|
// fields of it matches a_matcher. C++ doesn't support default |
|
// arguments for function templates, so we have to overload it. |
|
template <size_t... k, typename InnerMatcher> |
|
internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( |
|
InnerMatcher&& matcher) { |
|
return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( |
|
std::forward<InnerMatcher>(matcher)); |
|
} |
|
|
|
// AllArgs(m) is a synonym of m. This is useful in |
|
// |
|
// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); |
|
// |
|
// which is easier to read than |
|
// |
|
// EXPECT_CALL(foo, Bar(_, _)).With(Eq()); |
|
template <typename InnerMatcher> |
|
inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } |
|
|
|
// Returns a matcher that matches the value of an optional<> type variable. |
|
// The matcher implementation only uses '!arg' and requires that the optional<> |
|
// type has a 'value_type' member type and that '*arg' is of type 'value_type' |
|
// and is printable using 'PrintToString'. It is compatible with |
|
// std::optional/std::experimental::optional. |
|
// Note that to compare an optional type variable against nullopt you should |
|
// use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the |
|
// optional value contains an optional itself. |
|
template <typename ValueMatcher> |
|
inline internal::OptionalMatcher<ValueMatcher> Optional( |
|
const ValueMatcher& value_matcher) { |
|
return internal::OptionalMatcher<ValueMatcher>(value_matcher); |
|
} |
|
|
|
// Returns a matcher that matches the value of a absl::any type variable. |
|
template <typename T> |
|
PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith( |
|
const Matcher<const T&>& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); |
|
} |
|
|
|
// Returns a matcher that matches the value of a variant<> type variable. |
|
// The matcher implementation uses ADL to find the holds_alternative and get |
|
// functions. |
|
// It is compatible with std::variant. |
|
template <typename T> |
|
PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith( |
|
const Matcher<const T&>& matcher) { |
|
return MakePolymorphicMatcher( |
|
internal::variant_matcher::VariantMatcher<T>(matcher)); |
|
} |
|
|
|
#if GTEST_HAS_EXCEPTIONS |
|
|
|
// Anything inside the `internal` namespace is internal to the implementation |
|
// and must not be used in user code! |
|
namespace internal { |
|
|
|
class WithWhatMatcherImpl { |
|
public: |
|
WithWhatMatcherImpl(Matcher<std::string> matcher) |
|
: matcher_(std::move(matcher)) {} |
|
|
|
void DescribeTo(std::ostream* os) const { |
|
*os << "contains .what() that "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(std::ostream* os) const { |
|
*os << "contains .what() that does not "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
template <typename Err> |
|
bool MatchAndExplain(const Err& err, MatchResultListener* listener) const { |
|
*listener << "which contains .what() that "; |
|
return matcher_.MatchAndExplain(err.what(), listener); |
|
} |
|
|
|
private: |
|
const Matcher<std::string> matcher_; |
|
}; |
|
|
|
inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat( |
|
Matcher<std::string> m) { |
|
return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m))); |
|
} |
|
|
|
template <typename Err> |
|
class ExceptionMatcherImpl { |
|
class NeverThrown { |
|
public: |
|
const char* what() const noexcept { |
|
return "this exception should never be thrown"; |
|
} |
|
}; |
|
|
|
// If the matchee raises an exception of a wrong type, we'd like to |
|
// catch it and print its message and type. To do that, we add an additional |
|
// catch clause: |
|
// |
|
// try { ... } |
|
// catch (const Err&) { /* an expected exception */ } |
|
// catch (const std::exception&) { /* exception of a wrong type */ } |
|
// |
|
// However, if the `Err` itself is `std::exception`, we'd end up with two |
|
// identical `catch` clauses: |
|
// |
|
// try { ... } |
|
// catch (const std::exception&) { /* an expected exception */ } |
|
// catch (const std::exception&) { /* exception of a wrong type */ } |
|
// |
|
// This can cause a warning or an error in some compilers. To resolve |
|
// the issue, we use a fake error type whenever `Err` is `std::exception`: |
|
// |
|
// try { ... } |
|
// catch (const std::exception&) { /* an expected exception */ } |
|
// catch (const NeverThrown&) { /* exception of a wrong type */ } |
|
using DefaultExceptionType = typename std::conditional< |
|
std::is_same<typename std::remove_cv< |
|
typename std::remove_reference<Err>::type>::type, |
|
std::exception>::value, |
|
const NeverThrown&, const std::exception&>::type; |
|
|
|
public: |
|
ExceptionMatcherImpl(Matcher<const Err&> matcher) |
|
: matcher_(std::move(matcher)) {} |
|
|
|
void DescribeTo(std::ostream* os) const { |
|
*os << "throws an exception which is a " << GetTypeName<Err>(); |
|
*os << " which "; |
|
matcher_.DescribeTo(os); |
|
} |
|
|
|
void DescribeNegationTo(std::ostream* os) const { |
|
*os << "throws an exception which is not a " << GetTypeName<Err>(); |
|
*os << " which "; |
|
matcher_.DescribeNegationTo(os); |
|
} |
|
|
|
template <typename T> |
|
bool MatchAndExplain(T&& x, MatchResultListener* listener) const { |
|
try { |
|
(void)(std::forward<T>(x)()); |
|
} catch (const Err& err) { |
|
*listener << "throws an exception which is a " << GetTypeName<Err>(); |
|
*listener << " "; |
|
return matcher_.MatchAndExplain(err, listener); |
|
} catch (DefaultExceptionType err) { |
|
#if GTEST_HAS_RTTI |
|
*listener << "throws an exception of type " << GetTypeName(typeid(err)); |
|
*listener << " "; |
|
#else |
|
*listener << "throws an std::exception-derived type "; |
|
#endif |
|
*listener << "with description \"" << err.what() << "\""; |
|
return false; |
|
} catch (...) { |
|
*listener << "throws an exception of an unknown type"; |
|
return false; |
|
} |
|
|
|
*listener << "does not throw any exception"; |
|
return false; |
|
} |
|
|
|
private: |
|
const Matcher<const Err&> matcher_; |
|
}; |
|
|
|
} // namespace internal |
|
|
|
// Throws() |
|
// Throws(exceptionMatcher) |
|
// ThrowsMessage(messageMatcher) |
|
// |
|
// This matcher accepts a callable and verifies that when invoked, it throws |
|
// an exception with the given type and properties. |
|
// |
|
// Examples: |
|
// |
|
// EXPECT_THAT( |
|
// []() { throw std::runtime_error("message"); }, |
|
// Throws<std::runtime_error>()); |
|
// |
|
// EXPECT_THAT( |
|
// []() { throw std::runtime_error("message"); }, |
|
// ThrowsMessage<std::runtime_error>(HasSubstr("message"))); |
|
// |
|
// EXPECT_THAT( |
|
// []() { throw std::runtime_error("message"); }, |
|
// Throws<std::runtime_error>( |
|
// Property(&std::runtime_error::what, HasSubstr("message")))); |
|
|
|
template <typename Err> |
|
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() { |
|
return MakePolymorphicMatcher( |
|
internal::ExceptionMatcherImpl<Err>(A<const Err&>())); |
|
} |
|
|
|
template <typename Err, typename ExceptionMatcher> |
|
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws( |
|
const ExceptionMatcher& exception_matcher) { |
|
// Using matcher cast allows users to pass a matcher of a more broad type. |
|
// For example user may want to pass Matcher<std::exception> |
|
// to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>. |
|
return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>( |
|
SafeMatcherCast<const Err&>(exception_matcher))); |
|
} |
|
|
|
template <typename Err, typename MessageMatcher> |
|
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage( |
|
MessageMatcher&& message_matcher) { |
|
static_assert(std::is_base_of<std::exception, Err>::value, |
|
"expected an std::exception-derived type"); |
|
return Throws<Err>(internal::WithWhat( |
|
MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher)))); |
|
} |
|
|
|
#endif // GTEST_HAS_EXCEPTIONS |
|
|
|
// These macros allow using matchers to check values in Google Test |
|
// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) |
|
// succeed if and only if the value matches the matcher. If the assertion |
|
// fails, the value and the description of the matcher will be printed. |
|
#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ |
|
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
|
#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ |
|
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
|
|
|
// MATCHER* macroses itself are listed below. |
|
#define MATCHER(name, description) \ |
|
class name##Matcher \ |
|
: public ::testing::internal::MatcherBaseImpl<name##Matcher> { \ |
|
public: \ |
|
template <typename arg_type> \ |
|
class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ |
|
public: \ |
|
gmock_Impl() {} \ |
|
bool MatchAndExplain( \ |
|
const arg_type& arg, \ |
|
::testing::MatchResultListener* result_listener) const override; \ |
|
void DescribeTo(::std::ostream* gmock_os) const override { \ |
|
*gmock_os << FormatDescription(false); \ |
|
} \ |
|
void DescribeNegationTo(::std::ostream* gmock_os) const override { \ |
|
*gmock_os << FormatDescription(true); \ |
|
} \ |
|
\ |
|
private: \ |
|
::std::string FormatDescription(bool negation) const { \ |
|
::std::string gmock_description = (description); \ |
|
if (!gmock_description.empty()) { \ |
|
return gmock_description; \ |
|
} \ |
|
return ::testing::internal::FormatMatcherDescription(negation, #name, \ |
|
{}); \ |
|
} \ |
|
}; \ |
|
}; \ |
|
GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; } \ |
|
template <typename arg_type> \ |
|
bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \ |
|
const arg_type& arg, \ |
|
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \ |
|
const |
|
|
|
#define MATCHER_P(name, p0, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0)) |
|
#define MATCHER_P2(name, p0, p1, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1)) |
|
#define MATCHER_P3(name, p0, p1, p2, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2)) |
|
#define MATCHER_P4(name, p0, p1, p2, p3, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3)) |
|
#define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \ |
|
(p0, p1, p2, p3, p4)) |
|
#define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \ |
|
(p0, p1, p2, p3, p4, p5)) |
|
#define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \ |
|
(p0, p1, p2, p3, p4, p5, p6)) |
|
#define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \ |
|
(p0, p1, p2, p3, p4, p5, p6, p7)) |
|
#define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \ |
|
(p0, p1, p2, p3, p4, p5, p6, p7, p8)) |
|
#define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \ |
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \ |
|
(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) |
|
|
|
#define GMOCK_INTERNAL_MATCHER(name, full_name, description, args) \ |
|
template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
|
class full_name : public ::testing::internal::MatcherBaseImpl< \ |
|
full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \ |
|
public: \ |
|
using full_name::MatcherBaseImpl::MatcherBaseImpl; \ |
|
template <typename arg_type> \ |
|
class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ |
|
public: \ |
|
explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \ |
|
: GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \ |
|
bool MatchAndExplain( \ |
|
const arg_type& arg, \ |
|
::testing::MatchResultListener* result_listener) const override; \ |
|
void DescribeTo(::std::ostream* gmock_os) const override { \ |
|
*gmock_os << FormatDescription(false); \ |
|
} \ |
|
void DescribeNegationTo(::std::ostream* gmock_os) const override { \ |
|
*gmock_os << FormatDescription(true); \ |
|
} \ |
|
GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ |
|
\ |
|
private: \ |
|
::std::string FormatDescription(bool negation) const { \ |
|
::std::string gmock_description = (description); \ |
|
if (!gmock_description.empty()) { \ |
|
return gmock_description; \ |
|
} \ |
|
return ::testing::internal::FormatMatcherDescription( \ |
|
negation, #name, \ |
|
::testing::internal::UniversalTersePrintTupleFieldsToStrings( \ |
|
::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ |
|
GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \ |
|
} \ |
|
}; \ |
|
}; \ |
|
template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
|
inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \ |
|
GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \ |
|
return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ |
|
GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \ |
|
} \ |
|
template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
|
template <typename arg_type> \ |
|
bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \ |
|
arg_type>::MatchAndExplain(const arg_type& arg, \ |
|
::testing::MatchResultListener* \ |
|
result_listener GTEST_ATTRIBUTE_UNUSED_) \ |
|
const |
|
|
|
#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \ |
|
GMOCK_PP_TAIL( \ |
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args)) |
|
#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \ |
|
, typename arg##_type |
|
|
|
#define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \ |
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args)) |
|
#define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \ |
|
, arg##_type |
|
|
|
#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \ |
|
GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \ |
|
GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args)) |
|
#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \ |
|
, arg##_type gmock_p##i |
|
|
|
#define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \ |
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args)) |
|
#define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \ |
|
, arg(::std::forward<arg##_type>(gmock_p##i)) |
|
|
|
#define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ |
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args) |
|
#define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \ |
|
const arg##_type arg; |
|
|
|
#define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \ |
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args)) |
|
#define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg |
|
|
|
#define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \ |
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args)) |
|
#define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \ |
|
, gmock_p##i |
|
|
|
// To prevent ADL on certain functions we put them on a separate namespace. |
|
using namespace no_adl; // NOLINT |
|
|
|
} // namespace testing |
|
|
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 |
|
|
|
// Include any custom callback matchers added by the local installation. |
|
// We must include this header at the end to make sure it can use the |
|
// declarations from this file. |
|
// Copyright 2015, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
// Injection point for custom user configurations. See README for details |
|
// |
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ |
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
|
|
|
#if GTEST_HAS_EXCEPTIONS |
|
# include <stdexcept> // NOLINT |
|
#endif |
|
|
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ |
|
/* class A needs to have dll-interface to be used by clients of class B */) |
|
|
|
namespace testing { |
|
|
|
// An abstract handle of an expectation. |
|
class Expectation; |
|
|
|
// A set of expectation handles. |
|
class ExpectationSet; |
|
|
|
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
|
// and MUST NOT BE USED IN USER CODE!!! |
|
namespace internal { |
|
|
|
// Implements a mock function. |
|
template <typename F> class FunctionMocker; |
|
|
|
// Base class for expectations. |
|
class ExpectationBase; |
|
|
|
// Implements an expectation. |
|
template <typename F> class TypedExpectation; |
|
|
|
// Helper class for testing the Expectation class template. |
|
class ExpectationTester; |
|
|
|
// Helper classes for implementing NiceMock, StrictMock, and NaggyMock. |
|
template <typename MockClass> |
|
class NiceMockImpl; |
|
template <typename MockClass> |
|
class StrictMockImpl; |
|
template <typename MockClass> |
|
class NaggyMockImpl; |
|
|
|
// Protects the mock object registry (in class Mock), all function |
|
// mockers, and all expectations. |
|
// |
|
// The reason we don't use more fine-grained protection is: when a |
|
// mock function Foo() is called, it needs to consult its expectations |
|
// to see which one should be picked. If another thread is allowed to |
|
// call a mock function (either Foo() or a different one) at the same |
|
// time, it could affect the "retired" attributes of Foo()'s |
|
// expectations when InSequence() is used, and thus affect which |
|
// expectation gets picked. Therefore, we sequence all mock function |
|
// calls to ensure the integrity of the mock objects' states. |
|
GTEST_API_ GTEST_DECLARE_STATIC_MUTEX_(g_gmock_mutex); |
|
|
|
// Untyped base class for ActionResultHolder<R>. |
|
class UntypedActionResultHolderBase; |
|
|
|
// Abstract base class of FunctionMocker. This is the |
|
// type-agnostic part of the function mocker interface. Its pure |
|
// virtual methods are implemented by FunctionMocker. |
|
class GTEST_API_ UntypedFunctionMockerBase { |
|
public: |
|
UntypedFunctionMockerBase(); |
|
virtual ~UntypedFunctionMockerBase(); |
|
|
|
// Verifies that all expectations on this mock function have been |
|
// satisfied. Reports one or more Google Test non-fatal failures |
|
// and returns false if not. |
|
bool VerifyAndClearExpectationsLocked() |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
|
|
|
// Clears the ON_CALL()s set on this mock function. |
|
virtual void ClearDefaultActionsLocked() |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) = 0; |
|
|
|
// In all of the following Untyped* functions, it's the caller's |
|
// responsibility to guarantee the correctness of the arguments' |
|
// types. |
|
|
|
// Performs the default action with the given arguments and returns |
|
// the action's result. The call description string will be used in |
|
// the error message to describe the call in the case the default |
|
// action fails. |
|
// L = * |
|
virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction( |
|
void* untyped_args, const std::string& call_description) const = 0; |
|
|
|
// Performs the given action with the given arguments and returns |
|
// the action's result. |
|
// L = * |
|
virtual UntypedActionResultHolderBase* UntypedPerformAction( |
|
const void* untyped_action, void* untyped_args) const = 0; |
|
|
|
// Writes a message that the call is uninteresting (i.e. neither |
|
// explicitly expected nor explicitly unexpected) to the given |
|
// ostream. |
|
virtual void UntypedDescribeUninterestingCall( |
|
const void* untyped_args, |
|
::std::ostream* os) const |
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0; |
|
|
|
// Returns the expectation that matches the given function arguments |
|
// (or NULL is there's no match); when a match is found, |
|
// untyped_action is set to point to the action that should be |
|
// performed (or NULL if the action is "do default"), and |
|
// is_excessive is modified to indicate whether the call exceeds the |
|
// expected number. |
|
virtual const ExpectationBase* UntypedFindMatchingExpectation( |
|
const void* untyped_args, |
|
const void** untyped_action, bool* is_excessive, |
|
::std::ostream* what, ::std::ostream* why) |
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0; |
|
|
|
// Prints the given function arguments to the ostream. |
|
virtual void UntypedPrintArgs(const void* untyped_args, |
|
::std::ostream* os) const = 0; |
|
|
|
// Sets the mock object this mock method belongs to, and registers |
|
// this information in the global mock registry. Will be called |
|
// whenever an EXPECT_CALL() or ON_CALL() is executed on this mock |
|
// method. |
|
void RegisterOwner(const void* mock_obj) |
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
|
|
|
// Sets the mock object this mock method belongs to, and sets the |
|
// name of the mock function. Will be called upon each invocation |
|
// of this mock function. |
|
void SetOwnerAndName(const void* mock_obj, const char* name) |
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
|
|
|
// Returns the mock object this mock method belongs to. Must be |
|
// called after RegisterOwner() or SetOwnerAndName() has been |
|
// called. |
|
const void* MockObject() const |
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
|
|
|
// Returns the name of this mock method. Must be called after |
|
// SetOwnerAndName() has been called. |
|
const char* Name() const |
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
|
|
|
// Returns the result of invoking this mock function with the given |
|
// arguments. This function can be safely called from multiple |
|
// threads concurrently. The caller is responsible for deleting the |
|
// result. |
|
UntypedActionResultHolderBase* UntypedInvokeWith(void* untyped_args) |
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
|
|
|
protected: |
|
typedef std::vector<const void*> UntypedOnCallSpecs; |
|
|
|
using UntypedExpectations = std::vector<std::shared_ptr<ExpectationBase>>; |
|
|
|
// Returns an Expectation object that references and co-owns exp, |
|
// which must be an expectation on this mock function. |
|
Expectation GetHandleOf(ExpectationBase* exp); |
|
|
|
// Address of the mock object this mock method belongs to. Only |
|
// valid after this mock method has been called or |
|
// ON_CALL/EXPECT_CALL has been invoked on it. |
|
const void* mock_obj_; // Protected by g_gmock_mutex. |
|
|
|
// Name of the function being mocked. Only valid after this mock |
|
// method has been called. |
|
const char* name_; // Protected by g_gmock_mutex. |
|
|
|
// All default action specs for this function mocker. |
|
UntypedOnCallSpecs untyped_on_call_specs_; |
|
|
|
// All expectations for this function mocker. |
|
// |
|
// It's undefined behavior to interleave expectations (EXPECT_CALLs |
|
// or ON_CALLs) and mock function calls. Also, the order of |
|
// expectations is important. Therefore it's a logic race condition |
|
// to read/write untyped_expectations_ concurrently. In order for |
|
// tools like tsan to catch concurrent read/write accesses to |
|
// untyped_expectations, we deliberately leave accesses to it |
|
// unprotected. |
|
UntypedExpectations untyped_expectations_; |
|
}; // class UntypedFunctionMockerBase |
|
|
|
// Untyped base class for OnCallSpec<F>. |
|
class UntypedOnCallSpecBase { |
|
public: |
|
// The arguments are the location of the ON_CALL() statement. |
|
UntypedOnCallSpecBase(const char* a_file, int a_line) |
|
: file_(a_file), line_(a_line), last_clause_(kNone) {} |
|
|
|
// Where in the source file was the default action spec defined? |
|
const char* file() const { return file_; } |
|
int line() const { return line_; } |
|
|
|
protected: |
|
// Gives each clause in the ON_CALL() statement a name. |
|
enum Clause { |
|
// Do not change the order of the enum members! The run-time |
|
// syntax checking relies on it. |
|
kNone, |
|
kWith, |
|
kWillByDefault |
|
}; |
|
|
|
// Asserts that the ON_CALL() statement has a certain property. |
|
void AssertSpecProperty(bool property, |
|
const std::string& failure_message) const { |
|
Assert(property, file_, line_, failure_message); |
|
} |
|
|
|
// Expects that the ON_CALL() statement has a certain property. |
|
void ExpectSpecProperty(bool property, |
|
const std::string& failure_message) const { |
|
Expect(property, file_, line_, failure_message); |
|
} |
|
|
|
const char* file_; |
|
int line_; |
|
|
|
// The last clause in the ON_CALL() statement as seen so far. |
|
// Initially kNone and changes as the statement is parsed. |
|
Clause last_clause_; |
|
}; // class UntypedOnCallSpecBase |
|
|
|
// This template class implements an ON_CALL spec. |
|
template <typename F> |
|
class OnCallSpec : public UntypedOnCallSpecBase { |
|
public: |
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
|
typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; |
|
|
|
// Constructs an OnCallSpec object from the information inside |
|
// the parenthesis of an ON_CALL() statement. |
|
OnCallSpec(const char* a_file, int a_line, |
|
const ArgumentMatcherTuple& matchers) |
|
: UntypedOnCallSpecBase(a_file, a_line), |
|
matchers_(matchers), |
|
// By default, extra_matcher_ should match anything. However, |
|
// we cannot initialize it with _ as that causes ambiguity between |
|
// Matcher's copy and move constructor for some argument types. |
|
extra_matcher_(A<const ArgumentTuple&>()) {} |
|
|
|
// Implements the .With() clause. |
|
OnCallSpec& With(const Matcher<const ArgumentTuple&>& m) { |
|
// Makes sure this is called at most once. |
|
ExpectSpecProperty(last_clause_ < kWith, |
|
".With() cannot appear " |
|
"more than once in an ON_CALL()."); |
|
last_clause_ = kWith; |
|
|
|
extra_matcher_ = m; |
|
return *this; |
|
} |
|
|
|
// Implements the .WillByDefault() clause. |
|
OnCallSpec& WillByDefault(const Action<F>& action) { |
|
ExpectSpecProperty(last_clause_ < kWillByDefault, |
|
".WillByDefault() must appear " |
|
"exactly once in an ON_CALL()."); |
|
last_clause_ = kWillByDefault; |
|
|
|
ExpectSpecProperty(!action.IsDoDefault(), |
|
"DoDefault() cannot be used in ON_CALL()."); |
|
action_ = action; |
|
return *this; |
|
} |
|
|
|
// Returns true if and only if the given arguments match the matchers. |
|
bool Matches(const ArgumentTuple& args) const { |
|
return TupleMatches(matchers_, args) && extra_matcher_.Matches(args); |
|
} |
|
|
|
// Returns the action specified by the user. |
|
const Action<F>& GetAction() const { |
|
AssertSpecProperty(last_clause_ == kWillByDefault, |
|
".WillByDefault() must appear exactly " |
|
"once in an ON_CALL()."); |
|
return action_; |
|
} |
|
|
|
private: |
|
// The information in statement |
|
// |
|
// ON_CALL(mock_object, Method(matchers)) |
|
// .With(multi-argument-matcher) |
|
// .WillByDefault(action); |
|
// |
|
// is recorded in the data members like this: |
|
// |
|
// source file that contains the statement => file_ |
|
// line number of the statement => line_ |
|
// matchers => matchers_ |
|
// multi-argument-matcher => extra_matcher_ |
|
// action => action_ |
|
ArgumentMatcherTuple matchers_; |
|
Matcher<const ArgumentTuple&> extra_matcher_; |
|
Action<F> action_; |
|
}; // class OnCallSpec |
|
|
|
// Possible reactions on uninteresting calls. |
|
enum CallReaction { |
|
kAllow, |
|
kWarn, |
|
kFail, |
|
}; |
|
|
|
} // namespace internal |
|
|
|
// Utilities for manipulating mock objects. |
|
class GTEST_API_ Mock { |
|
public: |
|
// The following public methods can be called concurrently. |
|
|
|
// Tells Google Mock to ignore mock_obj when checking for leaked |
|
// mock objects. |
|
static void AllowLeak(const void* mock_obj) |
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
|
|
|
// Verifies and clears all expectations on the given mock object. |
|
// If the expectations aren't satisfied, generates one or more |
|
// Google Test non-fatal failures and returns false. |
|
static bool VerifyAndClearExpectations(void* mock_obj) |
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
|
|
|
// Verifies all expectations on the given mock object and clears its |
|
// default actions and expectations. Returns true if and only if the |
|
// verification was successful. |
|
static bool VerifyAndClear(void* mock_obj) |
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
|
|
|
// Returns whether the mock was created as a naggy mock (default) |
|
static bool IsNaggy(void* mock_obj) |
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
|
// Returns whether the mock was created as a nice mock |
|
static bool IsNice(void* mock_obj) |
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
|
// Returns whether the mock was created as a strict mock |
|
static bool IsStrict(void* mock_obj) |
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
|
|
|
private: |
|
friend class internal::UntypedFunctionMockerBase; |
|
|
|
// Needed for a function mocker to register itself (so that we know |
|
// how to clear a mock object). |
|
template <typename F> |
|
friend class internal::FunctionMocker; |
|
|
|
template <typename MockClass> |
|
friend class internal::NiceMockImpl; |
|
template <typename MockClass> |
|
friend class internal::NaggyMockImpl; |
|
template <typename MockClass> |
|
friend class internal::StrictMockImpl; |
|
|
|
// Tells Google Mock to allow uninteresting calls on the given mock |
|
// object. |
|
static void AllowUninterestingCalls(const void* mock_obj) |
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
|
|
|
// Tells Google Mock to warn the user about uninteresting calls on |
|
// the given mock object. |
|
static void WarnUninterestingCalls(const void* mock_obj) |
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
|
|
|
// Tells Google Mock to fail uninteresting calls on the given mock |
|
// object. |
|
static void FailUninterestingCalls(const void* mock_obj) |
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
|
|
|
// Tells Google Mock the given mock object is being destroyed and |
|
// its entry in the call-reaction table should be removed. |
|
static void UnregisterCallReaction(const void* mock_obj) |
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
|
|
|
// Returns the reaction Google Mock will have on uninteresting calls |
|
// made on the given mock object. |
|
static internal::CallReaction GetReactionOnUninterestingCalls( |
|
const void* mock_obj) |
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
|
|
|
// Verifies that all expectations on the given mock object have been |
|
// satisfied. Reports one or more Google Test non-fatal failures |
|
// and returns false if not. |
|
static bool VerifyAndClearExpectationsLocked(void* mock_obj) |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); |
|
|
|
// Clears all ON_CALL()s set on the given mock object. |
|
static void ClearDefaultActionsLocked(void* mock_obj) |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); |
|
|
|
// Registers a mock object and a mock method it owns. |
|
static void Register( |
|
const void* mock_obj, |
|
internal::UntypedFunctionMockerBase* mocker) |
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
|
|
|
// Tells Google Mock where in the source code mock_obj is used in an |
|
// ON_CALL or EXPECT_CALL. In case mock_obj is leaked, this |
|
// information helps the user identify which object it is. |
|
static void RegisterUseByOnCallOrExpectCall( |
|
const void* mock_obj, const char* file, int line) |
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
|
|
|
// Unregisters a mock method; removes the owning mock object from |
|
// the registry when the last mock method associated with it has |
|
// been unregistered. This is called only in the destructor of |
|
// FunctionMocker. |
|
static void UnregisterLocked(internal::UntypedFunctionMockerBase* mocker) |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); |
|
}; // class Mock |
|
|
|
// An abstract handle of an expectation. Useful in the .After() |
|
// clause of EXPECT_CALL() for setting the (partial) order of |
|
// expectations. The syntax: |
|
// |
|
// Expectation e1 = EXPECT_CALL(...)...; |
|
// EXPECT_CALL(...).After(e1)...; |
|
// |
|
// sets two expectations where the latter can only be matched after |
|
// the former has been satisfied. |
|
// |
|
// Notes: |
|
// - This class is copyable and has value semantics. |
|
// - Constness is shallow: a const Expectation object itself cannot |
|
// be modified, but the mutable methods of the ExpectationBase |
|
// object it references can be called via expectation_base(). |
|
|
|
class GTEST_API_ Expectation { |
|
public: |
|
// Constructs a null object that doesn't reference any expectation. |
|
Expectation(); |
|
Expectation(Expectation&&) = default; |
|
Expectation(const Expectation&) = default; |
|
Expectation& operator=(Expectation&&) = default; |
|
Expectation& operator=(const Expectation&) = default; |
|
~Expectation(); |
|
|
|
// This single-argument ctor must not be explicit, in order to support the |
|
// Expectation e = EXPECT_CALL(...); |
|
// syntax. |
|
// |
|
// A TypedExpectation object stores its pre-requisites as |
|
// Expectation objects, and needs to call the non-const Retire() |
|
// method on the ExpectationBase objects they reference. Therefore |
|
// Expectation must receive a *non-const* reference to the |
|
// ExpectationBase object. |
|
Expectation(internal::ExpectationBase& exp); // NOLINT |
|
|
|
// The compiler-generated copy ctor and operator= work exactly as |
|
// intended, so we don't need to define our own. |
|
|
|
// Returns true if and only if rhs references the same expectation as this |
|
// object does. |
|
bool operator==(const Expectation& rhs) const { |
|
return expectation_base_ == rhs.expectation_base_; |
|
} |
|
|
|
bool operator!=(const Expectation& rhs) const { return !(*this == rhs); } |
|
|
|
private: |
|
friend class ExpectationSet; |
|
friend class Sequence; |
|
friend class ::testing::internal::ExpectationBase; |
|
friend class ::testing::internal::UntypedFunctionMockerBase; |
|
|
|
template <typename F> |
|
friend class ::testing::internal::FunctionMocker; |
|
|
|
template <typename F> |
|
friend class ::testing::internal::TypedExpectation; |
|
|
|
// This comparator is needed for putting Expectation objects into a set. |
|
class Less { |
|
public: |
|
bool operator()(const Expectation& lhs, const Expectation& rhs) const { |
|
return lhs.expectation_base_.get() < rhs.expectation_base_.get(); |
|
} |
|
}; |
|
|
|
typedef ::std::set<Expectation, Less> Set; |
|
|
|
Expectation( |
|
const std::shared_ptr<internal::ExpectationBase>& expectation_base); |
|
|
|
// Returns the expectation this object references. |
|
const std::shared_ptr<internal::ExpectationBase>& expectation_base() const { |
|
return expectation_base_; |
|
} |
|
|
|
// A shared_ptr that co-owns the expectation this handle references. |
|
std::shared_ptr<internal::ExpectationBase> expectation_base_; |
|
}; |
|
|
|
// A set of expectation handles. Useful in the .After() clause of |
|
// EXPECT_CALL() for setting the (partial) order of expectations. The |
|
// syntax: |
|
// |
|
// ExpectationSet es; |
|
// es += EXPECT_CALL(...)...; |
|
// es += EXPECT_CALL(...)...; |
|
// EXPECT_CALL(...).After(es)...; |
|
// |
|
// sets three expectations where the last one can only be matched |
|
// after the first two have both been satisfied. |
|
// |
|
// This class is copyable and has value semantics. |
|
class ExpectationSet { |
|
public: |
|
// A bidirectional iterator that can read a const element in the set. |
|
typedef Expectation::Set::const_iterator const_iterator; |
|
|
|
// An object stored in the set. This is an alias of Expectation. |
|
typedef Expectation::Set::value_type value_type; |
|
|
|
// Constructs an empty set. |
|
ExpectationSet() {} |
|
|
|
// This single-argument ctor must not be explicit, in order to support the |
|
// ExpectationSet es = EXPECT_CALL(...); |
|
// syntax. |
|
ExpectationSet(internal::ExpectationBase& exp) { // NOLINT |
|
*this += Expectation(exp); |
|
} |
|
|
|
// This single-argument ctor implements implicit conversion from |
|
// Expectation and thus must not be explicit. This allows either an |
|
// Expectation or an ExpectationSet to be used in .After(). |
|
ExpectationSet(const Expectation& e) { // NOLINT |
|
*this += e; |
|
} |
|
|
|
// The compiler-generator ctor and operator= works exactly as |
|
// intended, so we don't need to define our own. |
|
|
|
// Returns true if and only if rhs contains the same set of Expectation |
|
// objects as this does. |
|
bool operator==(const ExpectationSet& rhs) const { |
|
return expectations_ == rhs.expectations_; |
|
} |
|
|
|
bool operator!=(const ExpectationSet& rhs) const { return !(*this == rhs); } |
|
|
|
// Implements the syntax |
|
// expectation_set += EXPECT_CALL(...); |
|
ExpectationSet& operator+=(const Expectation& e) { |
|
expectations_.insert(e); |
|
return *this; |
|
} |
|
|
|
int size() const { return static_cast<int>(expectations_.size()); } |
|
|
|
const_iterator begin() const { return expectations_.begin(); } |
|
const_iterator end() const { return expectations_.end(); } |
|
|
|
private: |
|
Expectation::Set expectations_; |
|
}; |
|
|
|
|
|
// Sequence objects are used by a user to specify the relative order |
|
// in which the expectations should match. They are copyable (we rely |
|
// on the compiler-defined copy constructor and assignment operator). |
|
class GTEST_API_ Sequence { |
|
public: |
|
// Constructs an empty sequence. |
|
Sequence() : last_expectation_(new Expectation) {} |
|
|
|
// Adds an expectation to this sequence. The caller must ensure |
|
// that no other thread is accessing this Sequence object. |
|
void AddExpectation(const Expectation& expectation) const; |
|
|
|
private: |
|
// The last expectation in this sequence. |
|
std::shared_ptr<Expectation> last_expectation_; |
|
}; // class Sequence |
|
|
|
// An object of this type causes all EXPECT_CALL() statements |
|
// encountered in its scope to be put in an anonymous sequence. The |
|
// work is done in the constructor and destructor. You should only |
|
// create an InSequence object on the stack. |
|
// |
|
// The sole purpose for this class is to support easy definition of |
|
// sequential expectations, e.g. |
|
// |
|
// { |
|
// InSequence dummy; // The name of the object doesn't matter. |
|
// |
|
// // The following expectations must match in the order they appear. |
|
// EXPECT_CALL(a, Bar())...; |
|
// EXPECT_CALL(a, Baz())...; |
|
// ... |
|
// EXPECT_CALL(b, Xyz())...; |
|
// } |
|
// |
|
// You can create InSequence objects in multiple threads, as long as |
|
// they are used to affect different mock objects. The idea is that |
|
// each thread can create and set up its own mocks as if it's the only |
|
// thread. However, for clarity of your tests we recommend you to set |
|
// up mocks in the main thread unless you have a good reason not to do |
|
// so. |
|
class GTEST_API_ InSequence { |
|
public: |
|
InSequence(); |
|
~InSequence(); |
|
private: |
|
bool sequence_created_; |
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(InSequence); // NOLINT |
|
} GTEST_ATTRIBUTE_UNUSED_; |
|
|
|
namespace internal { |
|
|
|
// Points to the implicit sequence introduced by a living InSequence |
|
// object (if any) in the current thread or NULL. |
|
GTEST_API_ extern ThreadLocal<Sequence*> g_gmock_implicit_sequence; |
|
|
|
// Base class for implementing expectations. |
|
// |
|
// There are two reasons for having a type-agnostic base class for |
|
// Expectation: |
|
// |
|
// 1. We need to store collections of expectations of different |
|
// types (e.g. all pre-requisites of a particular expectation, all |
|
// expectations in a sequence). Therefore these expectation objects |
|
// must share a common base class. |
|
// |
|
// 2. We can avoid binary code bloat by moving methods not depending |
|
// on the template argument of Expectation to the base class. |
|
// |
|
// This class is internal and mustn't be used by user code directly. |
|
class GTEST_API_ ExpectationBase { |
|
public: |
|
// source_text is the EXPECT_CALL(...) source that created this Expectation. |
|
ExpectationBase(const char* file, int line, const std::string& source_text); |
|
|
|
virtual ~ExpectationBase(); |
|
|
|
// Where in the source file was the expectation spec defined? |
|
const char* file() const { return file_; } |
|
int line() const { return line_; } |
|
const char* source_text() const { return source_text_.c_str(); } |
|
// Returns the cardinality specified in the expectation spec. |
|
const Cardinality& cardinality() const { return cardinality_; } |
|
|
|
// Describes the source file location of this expectation. |
|
void DescribeLocationTo(::std::ostream* os) const { |
|
*os << FormatFileLocation(file(), line()) << " "; |
|
} |
|
|
|
// Describes how many times a function call matching this |
|
// expectation has occurred. |
|
void DescribeCallCountTo(::std::ostream* os) const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
|
|
|
// If this mock method has an extra matcher (i.e. .With(matcher)), |
|
// describes it to the ostream. |
|
virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) = 0; |
|
|
|
protected: |
|
friend class ::testing::Expectation; |
|
friend class UntypedFunctionMockerBase; |
|
|
|
enum Clause { |
|
// Don't change the order of the enum members! |
|
kNone, |
|
kWith, |
|
kTimes, |
|
kInSequence, |
|
kAfter, |
|
kWillOnce, |
|
kWillRepeatedly, |
|
kRetiresOnSaturation |
|
}; |
|
|
|
typedef std::vector<const void*> UntypedActions; |
|
|
|
// Returns an Expectation object that references and co-owns this |
|
// expectation. |
|
virtual Expectation GetHandle() = 0; |
|
|
|
// Asserts that the EXPECT_CALL() statement has the given property. |
|
void AssertSpecProperty(bool property, |
|
const std::string& failure_message) const { |
|
Assert(property, file_, line_, failure_message); |
|
} |
|
|
|
// Expects that the EXPECT_CALL() statement has the given property. |
|
void ExpectSpecProperty(bool property, |
|
const std::string& failure_message) const { |
|
Expect(property, file_, line_, failure_message); |
|
} |
|
|
|
// Explicitly specifies the cardinality of this expectation. Used |
|
// by the subclasses to implement the .Times() clause. |
|
void SpecifyCardinality(const Cardinality& cardinality); |
|
|
|
// Returns true if and only if the user specified the cardinality |
|
// explicitly using a .Times(). |
|
bool cardinality_specified() const { return cardinality_specified_; } |
|
|
|
// Sets the cardinality of this expectation spec. |
|
void set_cardinality(const Cardinality& a_cardinality) { |
|
cardinality_ = a_cardinality; |
|
} |
|
|
|
// The following group of methods should only be called after the |
|
// EXPECT_CALL() statement, and only when g_gmock_mutex is held by |
|
// the current thread. |
|
|
|
// Retires all pre-requisites of this expectation. |
|
void RetireAllPreRequisites() |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
|
|
|
// Returns true if and only if this expectation is retired. |
|
bool is_retired() const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
return retired_; |
|
} |
|
|
|
// Retires this expectation. |
|
void Retire() |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
retired_ = true; |
|
} |
|
|
|
// Returns true if and only if this expectation is satisfied. |
|
bool IsSatisfied() const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
return cardinality().IsSatisfiedByCallCount(call_count_); |
|
} |
|
|
|
// Returns true if and only if this expectation is saturated. |
|
bool IsSaturated() const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
return cardinality().IsSaturatedByCallCount(call_count_); |
|
} |
|
|
|
// Returns true if and only if this expectation is over-saturated. |
|
bool IsOverSaturated() const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
return cardinality().IsOverSaturatedByCallCount(call_count_); |
|
} |
|
|
|
// Returns true if and only if all pre-requisites of this expectation are |
|
// satisfied. |
|
bool AllPrerequisitesAreSatisfied() const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
|
|
|
// Adds unsatisfied pre-requisites of this expectation to 'result'. |
|
void FindUnsatisfiedPrerequisites(ExpectationSet* result) const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
|
|
|
// Returns the number this expectation has been invoked. |
|
int call_count() const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
return call_count_; |
|
} |
|
|
|
// Increments the number this expectation has been invoked. |
|
void IncrementCallCount() |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
call_count_++; |
|
} |
|
|
|
// Checks the action count (i.e. the number of WillOnce() and |
|
// WillRepeatedly() clauses) against the cardinality if this hasn't |
|
// been done before. Prints a warning if there are too many or too |
|
// few actions. |
|
void CheckActionCountIfNotDone() const |
|
GTEST_LOCK_EXCLUDED_(mutex_); |
|
|
|
friend class ::testing::Sequence; |
|
friend class ::testing::internal::ExpectationTester; |
|
|
|
template <typename Function> |
|
friend class TypedExpectation; |
|
|
|
// Implements the .Times() clause. |
|
void UntypedTimes(const Cardinality& a_cardinality); |
|
|
|
// This group of fields are part of the spec and won't change after |
|
// an EXPECT_CALL() statement finishes. |
|
const char* file_; // The file that contains the expectation. |
|
int line_; // The line number of the expectation. |
|
const std::string source_text_; // The EXPECT_CALL(...) source text. |
|
// True if and only if the cardinality is specified explicitly. |
|
bool cardinality_specified_; |
|
Cardinality cardinality_; // The cardinality of the expectation. |
|
// The immediate pre-requisites (i.e. expectations that must be |
|
// satisfied before this expectation can be matched) of this |
|
// expectation. We use std::shared_ptr in the set because we want an |
|
// Expectation object to be co-owned by its FunctionMocker and its |
|
// successors. This allows multiple mock objects to be deleted at |
|
// different times. |
|
ExpectationSet immediate_prerequisites_; |
|
|
|
// This group of fields are the current state of the expectation, |
|
// and can change as the mock function is called. |
|
int call_count_; // How many times this expectation has been invoked. |
|
bool retired_; // True if and only if this expectation has retired. |
|
UntypedActions untyped_actions_; |
|
bool extra_matcher_specified_; |
|
bool repeated_action_specified_; // True if a WillRepeatedly() was specified. |
|
bool retires_on_saturation_; |
|
Clause last_clause_; |
|
mutable bool action_count_checked_; // Under mutex_. |
|
mutable Mutex mutex_; // Protects action_count_checked_. |
|
}; // class ExpectationBase |
|
|
|
// Impements an expectation for the given function type. |
|
template <typename F> |
|
class TypedExpectation : public ExpectationBase { |
|
public: |
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
|
typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; |
|
typedef typename Function<F>::Result Result; |
|
|
|
TypedExpectation(FunctionMocker<F>* owner, const char* a_file, int a_line, |
|
const std::string& a_source_text, |
|
const ArgumentMatcherTuple& m) |
|
: ExpectationBase(a_file, a_line, a_source_text), |
|
owner_(owner), |
|
matchers_(m), |
|
// By default, extra_matcher_ should match anything. However, |
|
// we cannot initialize it with _ as that causes ambiguity between |
|
// Matcher's copy and move constructor for some argument types. |
|
extra_matcher_(A<const ArgumentTuple&>()), |
|
repeated_action_(DoDefault()) {} |
|
|
|
~TypedExpectation() override { |
|
// Check the validity of the action count if it hasn't been done |
|
// yet (for example, if the expectation was never used). |
|
CheckActionCountIfNotDone(); |
|
for (UntypedActions::const_iterator it = untyped_actions_.begin(); |
|
it != untyped_actions_.end(); ++it) { |
|
delete static_cast<const Action<F>*>(*it); |
|
} |
|
} |
|
|
|
// Implements the .With() clause. |
|
TypedExpectation& With(const Matcher<const ArgumentTuple&>& m) { |
|
if (last_clause_ == kWith) { |
|
ExpectSpecProperty(false, |
|
".With() cannot appear " |
|
"more than once in an EXPECT_CALL()."); |
|
} else { |
|
ExpectSpecProperty(last_clause_ < kWith, |
|
".With() must be the first " |
|
"clause in an EXPECT_CALL()."); |
|
} |
|
last_clause_ = kWith; |
|
|
|
extra_matcher_ = m; |
|
extra_matcher_specified_ = true; |
|
return *this; |
|
} |
|
|
|
// Implements the .Times() clause. |
|
TypedExpectation& Times(const Cardinality& a_cardinality) { |
|
ExpectationBase::UntypedTimes(a_cardinality); |
|
return *this; |
|
} |
|
|
|
// Implements the .Times() clause. |
|
TypedExpectation& Times(int n) { |
|
return Times(Exactly(n)); |
|
} |
|
|
|
// Implements the .InSequence() clause. |
|
TypedExpectation& InSequence(const Sequence& s) { |
|
ExpectSpecProperty(last_clause_ <= kInSequence, |
|
".InSequence() cannot appear after .After()," |
|
" .WillOnce(), .WillRepeatedly(), or " |
|
".RetiresOnSaturation()."); |
|
last_clause_ = kInSequence; |
|
|
|
s.AddExpectation(GetHandle()); |
|
return *this; |
|
} |
|
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2) { |
|
return InSequence(s1).InSequence(s2); |
|
} |
|
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, |
|
const Sequence& s3) { |
|
return InSequence(s1, s2).InSequence(s3); |
|
} |
|
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, |
|
const Sequence& s3, const Sequence& s4) { |
|
return InSequence(s1, s2, s3).InSequence(s4); |
|
} |
|
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, |
|
const Sequence& s3, const Sequence& s4, |
|
const Sequence& s5) { |
|
return InSequence(s1, s2, s3, s4).InSequence(s5); |
|
} |
|
|
|
// Implements that .After() clause. |
|
TypedExpectation& After(const ExpectationSet& s) { |
|
ExpectSpecProperty(last_clause_ <= kAfter, |
|
".After() cannot appear after .WillOnce()," |
|
" .WillRepeatedly(), or " |
|
".RetiresOnSaturation()."); |
|
last_clause_ = kAfter; |
|
|
|
for (ExpectationSet::const_iterator it = s.begin(); it != s.end(); ++it) { |
|
immediate_prerequisites_ += *it; |
|
} |
|
return *this; |
|
} |
|
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2) { |
|
return After(s1).After(s2); |
|
} |
|
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, |
|
const ExpectationSet& s3) { |
|
return After(s1, s2).After(s3); |
|
} |
|
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, |
|
const ExpectationSet& s3, const ExpectationSet& s4) { |
|
return After(s1, s2, s3).After(s4); |
|
} |
|
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, |
|
const ExpectationSet& s3, const ExpectationSet& s4, |
|
const ExpectationSet& s5) { |
|
return After(s1, s2, s3, s4).After(s5); |
|
} |
|
|
|
// Implements the .WillOnce() clause. |
|
TypedExpectation& WillOnce(const Action<F>& action) { |
|
ExpectSpecProperty(last_clause_ <= kWillOnce, |
|
".WillOnce() cannot appear after " |
|
".WillRepeatedly() or .RetiresOnSaturation()."); |
|
last_clause_ = kWillOnce; |
|
|
|
untyped_actions_.push_back(new Action<F>(action)); |
|
if (!cardinality_specified()) { |
|
set_cardinality(Exactly(static_cast<int>(untyped_actions_.size()))); |
|
} |
|
return *this; |
|
} |
|
|
|
// Implements the .WillRepeatedly() clause. |
|
TypedExpectation& WillRepeatedly(const Action<F>& action) { |
|
if (last_clause_ == kWillRepeatedly) { |
|
ExpectSpecProperty(false, |
|
".WillRepeatedly() cannot appear " |
|
"more than once in an EXPECT_CALL()."); |
|
} else { |
|
ExpectSpecProperty(last_clause_ < kWillRepeatedly, |
|
".WillRepeatedly() cannot appear " |
|
"after .RetiresOnSaturation()."); |
|
} |
|
last_clause_ = kWillRepeatedly; |
|
repeated_action_specified_ = true; |
|
|
|
repeated_action_ = action; |
|
if (!cardinality_specified()) { |
|
set_cardinality(AtLeast(static_cast<int>(untyped_actions_.size()))); |
|
} |
|
|
|
// Now that no more action clauses can be specified, we check |
|
// whether their count makes sense. |
|
CheckActionCountIfNotDone(); |
|
return *this; |
|
} |
|
|
|
// Implements the .RetiresOnSaturation() clause. |
|
TypedExpectation& RetiresOnSaturation() { |
|
ExpectSpecProperty(last_clause_ < kRetiresOnSaturation, |
|
".RetiresOnSaturation() cannot appear " |
|
"more than once."); |
|
last_clause_ = kRetiresOnSaturation; |
|
retires_on_saturation_ = true; |
|
|
|
// Now that no more action clauses can be specified, we check |
|
// whether their count makes sense. |
|
CheckActionCountIfNotDone(); |
|
return *this; |
|
} |
|
|
|
// Returns the matchers for the arguments as specified inside the |
|
// EXPECT_CALL() macro. |
|
const ArgumentMatcherTuple& matchers() const { |
|
return matchers_; |
|
} |
|
|
|
// Returns the matcher specified by the .With() clause. |
|
const Matcher<const ArgumentTuple&>& extra_matcher() const { |
|
return extra_matcher_; |
|
} |
|
|
|
// Returns the action specified by the .WillRepeatedly() clause. |
|
const Action<F>& repeated_action() const { return repeated_action_; } |
|
|
|
// If this mock method has an extra matcher (i.e. .With(matcher)), |
|
// describes it to the ostream. |
|
void MaybeDescribeExtraMatcherTo(::std::ostream* os) override { |
|
if (extra_matcher_specified_) { |
|
*os << " Expected args: "; |
|
extra_matcher_.DescribeTo(os); |
|
*os << "\n"; |
|
} |
|
} |
|
|
|
private: |
|
template <typename Function> |
|
friend class FunctionMocker; |
|
|
|
// Returns an Expectation object that references and co-owns this |
|
// expectation. |
|
Expectation GetHandle() override { return owner_->GetHandleOf(this); } |
|
|
|
// The following methods will be called only after the EXPECT_CALL() |
|
// statement finishes and when the current thread holds |
|
// g_gmock_mutex. |
|
|
|
// Returns true if and only if this expectation matches the given arguments. |
|
bool Matches(const ArgumentTuple& args) const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
return TupleMatches(matchers_, args) && extra_matcher_.Matches(args); |
|
} |
|
|
|
// Returns true if and only if this expectation should handle the given |
|
// arguments. |
|
bool ShouldHandleArguments(const ArgumentTuple& args) const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
|
|
// In case the action count wasn't checked when the expectation |
|
// was defined (e.g. if this expectation has no WillRepeatedly() |
|
// or RetiresOnSaturation() clause), we check it when the |
|
// expectation is used for the first time. |
|
CheckActionCountIfNotDone(); |
|
return !is_retired() && AllPrerequisitesAreSatisfied() && Matches(args); |
|
} |
|
|
|
// Describes the result of matching the arguments against this |
|
// expectation to the given ostream. |
|
void ExplainMatchResultTo( |
|
const ArgumentTuple& args, |
|
::std::ostream* os) const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
|
|
if (is_retired()) { |
|
*os << " Expected: the expectation is active\n" |
|
<< " Actual: it is retired\n"; |
|
} else if (!Matches(args)) { |
|
if (!TupleMatches(matchers_, args)) { |
|
ExplainMatchFailureTupleTo(matchers_, args, os); |
|
} |
|
StringMatchResultListener listener; |
|
if (!extra_matcher_.MatchAndExplain(args, &listener)) { |
|
*os << " Expected args: "; |
|
extra_matcher_.DescribeTo(os); |
|
*os << "\n Actual: don't match"; |
|
|
|
internal::PrintIfNotEmpty(listener.str(), os); |
|
*os << "\n"; |
|
} |
|
} else if (!AllPrerequisitesAreSatisfied()) { |
|
*os << " Expected: all pre-requisites are satisfied\n" |
|
<< " Actual: the following immediate pre-requisites " |
|
<< "are not satisfied:\n"; |
|
ExpectationSet unsatisfied_prereqs; |
|
FindUnsatisfiedPrerequisites(&unsatisfied_prereqs); |
|
int i = 0; |
|
for (ExpectationSet::const_iterator it = unsatisfied_prereqs.begin(); |
|
it != unsatisfied_prereqs.end(); ++it) { |
|
it->expectation_base()->DescribeLocationTo(os); |
|
*os << "pre-requisite #" << i++ << "\n"; |
|
} |
|
*os << " (end of pre-requisites)\n"; |
|
} else { |
|
// This line is here just for completeness' sake. It will never |
|
// be executed as currently the ExplainMatchResultTo() function |
|
// is called only when the mock function call does NOT match the |
|
// expectation. |
|
*os << "The call matches the expectation.\n"; |
|
} |
|
} |
|
|
|
// Returns the action that should be taken for the current invocation. |
|
const Action<F>& GetCurrentAction(const FunctionMocker<F>* mocker, |
|
const ArgumentTuple& args) const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
const int count = call_count(); |
|
Assert(count >= 1, __FILE__, __LINE__, |
|
"call_count() is <= 0 when GetCurrentAction() is " |
|
"called - this should never happen."); |
|
|
|
const int action_count = static_cast<int>(untyped_actions_.size()); |
|
if (action_count > 0 && !repeated_action_specified_ && |
|
count > action_count) { |
|
// If there is at least one WillOnce() and no WillRepeatedly(), |
|
// we warn the user when the WillOnce() clauses ran out. |
|
::std::stringstream ss; |
|
DescribeLocationTo(&ss); |
|
ss << "Actions ran out in " << source_text() << "...\n" |
|
<< "Called " << count << " times, but only " |
|
<< action_count << " WillOnce()" |
|
<< (action_count == 1 ? " is" : "s are") << " specified - "; |
|
mocker->DescribeDefaultActionTo(args, &ss); |
|
Log(kWarning, ss.str(), 1); |
|
} |
|
|
|
return count <= action_count |
|
? *static_cast<const Action<F>*>( |
|
untyped_actions_[static_cast<size_t>(count - 1)]) |
|
: repeated_action(); |
|
} |
|
|
|
// Given the arguments of a mock function call, if the call will |
|
// over-saturate this expectation, returns the default action; |
|
// otherwise, returns the next action in this expectation. Also |
|
// describes *what* happened to 'what', and explains *why* Google |
|
// Mock does it to 'why'. This method is not const as it calls |
|
// IncrementCallCount(). A return value of NULL means the default |
|
// action. |
|
const Action<F>* GetActionForArguments(const FunctionMocker<F>* mocker, |
|
const ArgumentTuple& args, |
|
::std::ostream* what, |
|
::std::ostream* why) |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
if (IsSaturated()) { |
|
// We have an excessive call. |
|
IncrementCallCount(); |
|
*what << "Mock function called more times than expected - "; |
|
mocker->DescribeDefaultActionTo(args, what); |
|
DescribeCallCountTo(why); |
|
|
|
return nullptr; |
|
} |
|
|
|
IncrementCallCount(); |
|
RetireAllPreRequisites(); |
|
|
|
if (retires_on_saturation_ && IsSaturated()) { |
|
Retire(); |
|
} |
|
|
|
// Must be done after IncrementCount()! |
|
*what << "Mock function call matches " << source_text() <<"...\n"; |
|
return &(GetCurrentAction(mocker, args)); |
|
} |
|
|
|
// All the fields below won't change once the EXPECT_CALL() |
|
// statement finishes. |
|
FunctionMocker<F>* const owner_; |
|
ArgumentMatcherTuple matchers_; |
|
Matcher<const ArgumentTuple&> extra_matcher_; |
|
Action<F> repeated_action_; |
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(TypedExpectation); |
|
}; // class TypedExpectation |
|
|
|
// A MockSpec object is used by ON_CALL() or EXPECT_CALL() for |
|
// specifying the default behavior of, or expectation on, a mock |
|
// function. |
|
|
|
// Note: class MockSpec really belongs to the ::testing namespace. |
|
// However if we define it in ::testing, MSVC will complain when |
|
// classes in ::testing::internal declare it as a friend class |
|
// template. To workaround this compiler bug, we define MockSpec in |
|
// ::testing::internal and import it into ::testing. |
|
|
|
// Logs a message including file and line number information. |
|
GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity, |
|
const char* file, int line, |
|
const std::string& message); |
|
|
|
template <typename F> |
|
class MockSpec { |
|
public: |
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
|
typedef typename internal::Function<F>::ArgumentMatcherTuple |
|
ArgumentMatcherTuple; |
|
|
|
// Constructs a MockSpec object, given the function mocker object |
|
// that the spec is associated with. |
|
MockSpec(internal::FunctionMocker<F>* function_mocker, |
|
const ArgumentMatcherTuple& matchers) |
|
: function_mocker_(function_mocker), matchers_(matchers) {} |
|
|
|
// Adds a new default action spec to the function mocker and returns |
|
// the newly created spec. |
|
internal::OnCallSpec<F>& InternalDefaultActionSetAt( |
|
const char* file, int line, const char* obj, const char* call) { |
|
LogWithLocation(internal::kInfo, file, line, |
|
std::string("ON_CALL(") + obj + ", " + call + ") invoked"); |
|
return function_mocker_->AddNewOnCallSpec(file, line, matchers_); |
|
} |
|
|
|
// Adds a new expectation spec to the function mocker and returns |
|
// the newly created spec. |
|
internal::TypedExpectation<F>& InternalExpectedAt( |
|
const char* file, int line, const char* obj, const char* call) { |
|
const std::string source_text(std::string("EXPECT_CALL(") + obj + ", " + |
|
call + ")"); |
|
LogWithLocation(internal::kInfo, file, line, source_text + " invoked"); |
|
return function_mocker_->AddNewExpectation( |
|
file, line, source_text, matchers_); |
|
} |
|
|
|
// This operator overload is used to swallow the superfluous parameter list |
|
// introduced by the ON/EXPECT_CALL macros. See the macro comments for more |
|
// explanation. |
|
MockSpec<F>& operator()(const internal::WithoutMatchers&, void* const) { |
|
return *this; |
|
} |
|
|
|
private: |
|
template <typename Function> |
|
friend class internal::FunctionMocker; |
|
|
|
// The function mocker that owns this spec. |
|
internal::FunctionMocker<F>* const function_mocker_; |
|
// The argument matchers specified in the spec. |
|
ArgumentMatcherTuple matchers_; |
|
}; // class MockSpec |
|
|
|
// Wrapper type for generically holding an ordinary value or lvalue reference. |
|
// If T is not a reference type, it must be copyable or movable. |
|
// ReferenceOrValueWrapper<T> is movable, and will also be copyable unless |
|
// T is a move-only value type (which means that it will always be copyable |
|
// if the current platform does not support move semantics). |
|
// |
|
// The primary template defines handling for values, but function header |
|
// comments describe the contract for the whole template (including |
|
// specializations). |
|
template <typename T> |
|
class ReferenceOrValueWrapper { |
|
public: |
|
// Constructs a wrapper from the given value/reference. |
|
explicit ReferenceOrValueWrapper(T value) |
|
: value_(std::move(value)) { |
|
} |
|
|
|
// Unwraps and returns the underlying value/reference, exactly as |
|
// originally passed. The behavior of calling this more than once on |
|
// the same object is unspecified. |
|
T Unwrap() { return std::move(value_); } |
|
|
|
// Provides nondestructive access to the underlying value/reference. |
|
// Always returns a const reference (more precisely, |
|
// const std::add_lvalue_reference<T>::type). The behavior of calling this |
|
// after calling Unwrap on the same object is unspecified. |
|
const T& Peek() const { |
|
return value_; |
|
} |
|
|
|
private: |
|
T value_; |
|
}; |
|
|
|
// Specialization for lvalue reference types. See primary template |
|
// for documentation. |
|
template <typename T> |
|
class ReferenceOrValueWrapper<T&> { |
|
public: |
|
// Workaround for debatable pass-by-reference lint warning (c-library-team |
|
// policy precludes NOLINT in this context) |
|
typedef T& reference; |
|
explicit ReferenceOrValueWrapper(reference ref) |
|
: value_ptr_(&ref) {} |
|
T& Unwrap() { return *value_ptr_; } |
|
const T& Peek() const { return *value_ptr_; } |
|
|
|
private: |
|
T* value_ptr_; |
|
}; |
|
|
|
// C++ treats the void type specially. For example, you cannot define |
|
// a void-typed variable or pass a void value to a function. |
|
// ActionResultHolder<T> holds a value of type T, where T must be a |
|
// copyable type or void (T doesn't need to be default-constructable). |
|
// It hides the syntactic difference between void and other types, and |
|
// is used to unify the code for invoking both void-returning and |
|
// non-void-returning mock functions. |
|
|
|
// Untyped base class for ActionResultHolder<T>. |
|
class UntypedActionResultHolderBase { |
|
public: |
|
virtual ~UntypedActionResultHolderBase() {} |
|
|
|
// Prints the held value as an action's result to os. |
|
virtual void PrintAsActionResult(::std::ostream* os) const = 0; |
|
}; |
|
|
|
// This generic definition is used when T is not void. |
|
template <typename T> |
|
class ActionResultHolder : public UntypedActionResultHolderBase { |
|
public: |
|
// Returns the held value. Must not be called more than once. |
|
T Unwrap() { |
|
return result_.Unwrap(); |
|
} |
|
|
|
// Prints the held value as an action's result to os. |
|
void PrintAsActionResult(::std::ostream* os) const override { |
|
*os << "\n Returns: "; |
|
// T may be a reference type, so we don't use UniversalPrint(). |
|
UniversalPrinter<T>::Print(result_.Peek(), os); |
|
} |
|
|
|
// Performs the given mock function's default action and returns the |
|
// result in a new-ed ActionResultHolder. |
|
template <typename F> |
|
static ActionResultHolder* PerformDefaultAction( |
|
const FunctionMocker<F>* func_mocker, |
|
typename Function<F>::ArgumentTuple&& args, |
|
const std::string& call_description) { |
|
return new ActionResultHolder(Wrapper(func_mocker->PerformDefaultAction( |
|
std::move(args), call_description))); |
|
} |
|
|
|
// Performs the given action and returns the result in a new-ed |
|
// ActionResultHolder. |
|
template <typename F> |
|
static ActionResultHolder* PerformAction( |
|
const Action<F>& action, typename Function<F>::ArgumentTuple&& args) { |
|
return new ActionResultHolder( |
|
Wrapper(action.Perform(std::move(args)))); |
|
} |
|
|
|
private: |
|
typedef ReferenceOrValueWrapper<T> Wrapper; |
|
|
|
explicit ActionResultHolder(Wrapper result) |
|
: result_(std::move(result)) { |
|
} |
|
|
|
Wrapper result_; |
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder); |
|
}; |
|
|
|
// Specialization for T = void. |
|
template <> |
|
class ActionResultHolder<void> : public UntypedActionResultHolderBase { |
|
public: |
|
void Unwrap() { } |
|
|
|
void PrintAsActionResult(::std::ostream* /* os */) const override {} |
|
|
|
// Performs the given mock function's default action and returns ownership |
|
// of an empty ActionResultHolder*. |
|
template <typename F> |
|
static ActionResultHolder* PerformDefaultAction( |
|
const FunctionMocker<F>* func_mocker, |
|
typename Function<F>::ArgumentTuple&& args, |
|
const std::string& call_description) { |
|
func_mocker->PerformDefaultAction(std::move(args), call_description); |
|
return new ActionResultHolder; |
|
} |
|
|
|
// Performs the given action and returns ownership of an empty |
|
// ActionResultHolder*. |
|
template <typename F> |
|
static ActionResultHolder* PerformAction( |
|
const Action<F>& action, typename Function<F>::ArgumentTuple&& args) { |
|
action.Perform(std::move(args)); |
|
return new ActionResultHolder; |
|
} |
|
|
|
private: |
|
ActionResultHolder() {} |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder); |
|
}; |
|
|
|
template <typename F> |
|
class FunctionMocker; |
|
|
|
template <typename R, typename... Args> |
|
class FunctionMocker<R(Args...)> final : public UntypedFunctionMockerBase { |
|
using F = R(Args...); |
|
|
|
public: |
|
using Result = R; |
|
using ArgumentTuple = std::tuple<Args...>; |
|
using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>; |
|
|
|
FunctionMocker() {} |
|
|
|
// There is no generally useful and implementable semantics of |
|
// copying a mock object, so copying a mock is usually a user error. |
|
// Thus we disallow copying function mockers. If the user really |
|
// wants to copy a mock object, they should implement their own copy |
|
// operation, for example: |
|
// |
|
// class MockFoo : public Foo { |
|
// public: |
|
// // Defines a copy constructor explicitly. |
|
// MockFoo(const MockFoo& src) {} |
|
// ... |
|
// }; |
|
FunctionMocker(const FunctionMocker&) = delete; |
|
FunctionMocker& operator=(const FunctionMocker&) = delete; |
|
|
|
// The destructor verifies that all expectations on this mock |
|
// function have been satisfied. If not, it will report Google Test |
|
// non-fatal failures for the violations. |
|
~FunctionMocker() override GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
|
MutexLock l(&g_gmock_mutex); |
|
VerifyAndClearExpectationsLocked(); |
|
Mock::UnregisterLocked(this); |
|
ClearDefaultActionsLocked(); |
|
} |
|
|
|
// Returns the ON_CALL spec that matches this mock function with the |
|
// given arguments; returns NULL if no matching ON_CALL is found. |
|
// L = * |
|
const OnCallSpec<F>* FindOnCallSpec( |
|
const ArgumentTuple& args) const { |
|
for (UntypedOnCallSpecs::const_reverse_iterator it |
|
= untyped_on_call_specs_.rbegin(); |
|
it != untyped_on_call_specs_.rend(); ++it) { |
|
const OnCallSpec<F>* spec = static_cast<const OnCallSpec<F>*>(*it); |
|
if (spec->Matches(args)) |
|
return spec; |
|
} |
|
|
|
return nullptr; |
|
} |
|
|
|
// Performs the default action of this mock function on the given |
|
// arguments and returns the result. Asserts (or throws if |
|
// exceptions are enabled) with a helpful call descrption if there |
|
// is no valid return value. This method doesn't depend on the |
|
// mutable state of this object, and thus can be called concurrently |
|
// without locking. |
|
// L = * |
|
Result PerformDefaultAction(ArgumentTuple&& args, |
|
const std::string& call_description) const { |
|
const OnCallSpec<F>* const spec = |
|
this->FindOnCallSpec(args); |
|
if (spec != nullptr) { |
|
return spec->GetAction().Perform(std::move(args)); |
|
} |
|
const std::string message = |
|
call_description + |
|
"\n The mock function has no default action " |
|
"set, and its return type has no default value set."; |
|
#if GTEST_HAS_EXCEPTIONS |
|
if (!DefaultValue<Result>::Exists()) { |
|
throw std::runtime_error(message); |
|
} |
|
#else |
|
Assert(DefaultValue<Result>::Exists(), "", -1, message); |
|
#endif |
|
return DefaultValue<Result>::Get(); |
|
} |
|
|
|
// Performs the default action with the given arguments and returns |
|
// the action's result. The call description string will be used in |
|
// the error message to describe the call in the case the default |
|
// action fails. The caller is responsible for deleting the result. |
|
// L = * |
|
UntypedActionResultHolderBase* UntypedPerformDefaultAction( |
|
void* untyped_args, // must point to an ArgumentTuple |
|
const std::string& call_description) const override { |
|
ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args); |
|
return ResultHolder::PerformDefaultAction(this, std::move(*args), |
|
call_description); |
|
} |
|
|
|
// Performs the given action with the given arguments and returns |
|
// the action's result. The caller is responsible for deleting the |
|
// result. |
|
// L = * |
|
UntypedActionResultHolderBase* UntypedPerformAction( |
|
const void* untyped_action, void* untyped_args) const override { |
|
// Make a copy of the action before performing it, in case the |
|
// action deletes the mock object (and thus deletes itself). |
|
const Action<F> action = *static_cast<const Action<F>*>(untyped_action); |
|
ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args); |
|
return ResultHolder::PerformAction(action, std::move(*args)); |
|
} |
|
|
|
// Implements UntypedFunctionMockerBase::ClearDefaultActionsLocked(): |
|
// clears the ON_CALL()s set on this mock function. |
|
void ClearDefaultActionsLocked() override |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
|
|
// Deleting our default actions may trigger other mock objects to be |
|
// deleted, for example if an action contains a reference counted smart |
|
// pointer to that mock object, and that is the last reference. So if we |
|
// delete our actions within the context of the global mutex we may deadlock |
|
// when this method is called again. Instead, make a copy of the set of |
|
// actions to delete, clear our set within the mutex, and then delete the |
|
// actions outside of the mutex. |
|
UntypedOnCallSpecs specs_to_delete; |
|
untyped_on_call_specs_.swap(specs_to_delete); |
|
|
|
g_gmock_mutex.Unlock(); |
|
for (UntypedOnCallSpecs::const_iterator it = |
|
specs_to_delete.begin(); |
|
it != specs_to_delete.end(); ++it) { |
|
delete static_cast<const OnCallSpec<F>*>(*it); |
|
} |
|
|
|
// Lock the mutex again, since the caller expects it to be locked when we |
|
// return. |
|
g_gmock_mutex.Lock(); |
|
} |
|
|
|
// Returns the result of invoking this mock function with the given |
|
// arguments. This function can be safely called from multiple |
|
// threads concurrently. |
|
Result Invoke(Args... args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
|
ArgumentTuple tuple(std::forward<Args>(args)...); |
|
std::unique_ptr<ResultHolder> holder(DownCast_<ResultHolder*>( |
|
this->UntypedInvokeWith(static_cast<void*>(&tuple)))); |
|
return holder->Unwrap(); |
|
} |
|
|
|
MockSpec<F> With(Matcher<Args>... m) { |
|
return MockSpec<F>(this, ::std::make_tuple(std::move(m)...)); |
|
} |
|
|
|
protected: |
|
template <typename Function> |
|
friend class MockSpec; |
|
|
|
typedef ActionResultHolder<Result> ResultHolder; |
|
|
|
// Adds and returns a default action spec for this mock function. |
|
OnCallSpec<F>& AddNewOnCallSpec( |
|
const char* file, int line, |
|
const ArgumentMatcherTuple& m) |
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
|
Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line); |
|
OnCallSpec<F>* const on_call_spec = new OnCallSpec<F>(file, line, m); |
|
untyped_on_call_specs_.push_back(on_call_spec); |
|
return *on_call_spec; |
|
} |
|
|
|
// Adds and returns an expectation spec for this mock function. |
|
TypedExpectation<F>& AddNewExpectation(const char* file, int line, |
|
const std::string& source_text, |
|
const ArgumentMatcherTuple& m) |
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
|
Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line); |
|
TypedExpectation<F>* const expectation = |
|
new TypedExpectation<F>(this, file, line, source_text, m); |
|
const std::shared_ptr<ExpectationBase> untyped_expectation(expectation); |
|
// See the definition of untyped_expectations_ for why access to |
|
// it is unprotected here. |
|
untyped_expectations_.push_back(untyped_expectation); |
|
|
|
// Adds this expectation into the implicit sequence if there is one. |
|
Sequence* const implicit_sequence = g_gmock_implicit_sequence.get(); |
|
if (implicit_sequence != nullptr) { |
|
implicit_sequence->AddExpectation(Expectation(untyped_expectation)); |
|
} |
|
|
|
return *expectation; |
|
} |
|
|
|
private: |
|
template <typename Func> friend class TypedExpectation; |
|
|
|
// Some utilities needed for implementing UntypedInvokeWith(). |
|
|
|
// Describes what default action will be performed for the given |
|
// arguments. |
|
// L = * |
|
void DescribeDefaultActionTo(const ArgumentTuple& args, |
|
::std::ostream* os) const { |
|
const OnCallSpec<F>* const spec = FindOnCallSpec(args); |
|
|
|
if (spec == nullptr) { |
|
*os << (std::is_void<Result>::value ? "returning directly.\n" |
|
: "returning default value.\n"); |
|
} else { |
|
*os << "taking default action specified at:\n" |
|
<< FormatFileLocation(spec->file(), spec->line()) << "\n"; |
|
} |
|
} |
|
|
|
// Writes a message that the call is uninteresting (i.e. neither |
|
// explicitly expected nor explicitly unexpected) to the given |
|
// ostream. |
|
void UntypedDescribeUninterestingCall(const void* untyped_args, |
|
::std::ostream* os) const override |
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
|
const ArgumentTuple& args = |
|
*static_cast<const ArgumentTuple*>(untyped_args); |
|
*os << "Uninteresting mock function call - "; |
|
DescribeDefaultActionTo(args, os); |
|
*os << " Function call: " << Name(); |
|
UniversalPrint(args, os); |
|
} |
|
|
|
// Returns the expectation that matches the given function arguments |
|
// (or NULL is there's no match); when a match is found, |
|
// untyped_action is set to point to the action that should be |
|
// performed (or NULL if the action is "do default"), and |
|
// is_excessive is modified to indicate whether the call exceeds the |
|
// expected number. |
|
// |
|
// Critical section: We must find the matching expectation and the |
|
// corresponding action that needs to be taken in an ATOMIC |
|
// transaction. Otherwise another thread may call this mock |
|
// method in the middle and mess up the state. |
|
// |
|
// However, performing the action has to be left out of the critical |
|
// section. The reason is that we have no control on what the |
|
// action does (it can invoke an arbitrary user function or even a |
|
// mock function) and excessive locking could cause a dead lock. |
|
const ExpectationBase* UntypedFindMatchingExpectation( |
|
const void* untyped_args, const void** untyped_action, bool* is_excessive, |
|
::std::ostream* what, ::std::ostream* why) override |
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
|
const ArgumentTuple& args = |
|
*static_cast<const ArgumentTuple*>(untyped_args); |
|
MutexLock l(&g_gmock_mutex); |
|
TypedExpectation<F>* exp = this->FindMatchingExpectationLocked(args); |
|
if (exp == nullptr) { // A match wasn't found. |
|
this->FormatUnexpectedCallMessageLocked(args, what, why); |
|
return nullptr; |
|
} |
|
|
|
// This line must be done before calling GetActionForArguments(), |
|
// which will increment the call count for *exp and thus affect |
|
// its saturation status. |
|
*is_excessive = exp->IsSaturated(); |
|
const Action<F>* action = exp->GetActionForArguments(this, args, what, why); |
|
if (action != nullptr && action->IsDoDefault()) |
|
action = nullptr; // Normalize "do default" to NULL. |
|
*untyped_action = action; |
|
return exp; |
|
} |
|
|
|
// Prints the given function arguments to the ostream. |
|
void UntypedPrintArgs(const void* untyped_args, |
|
::std::ostream* os) const override { |
|
const ArgumentTuple& args = |
|
*static_cast<const ArgumentTuple*>(untyped_args); |
|
UniversalPrint(args, os); |
|
} |
|
|
|
// Returns the expectation that matches the arguments, or NULL if no |
|
// expectation matches them. |
|
TypedExpectation<F>* FindMatchingExpectationLocked( |
|
const ArgumentTuple& args) const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
// See the definition of untyped_expectations_ for why access to |
|
// it is unprotected here. |
|
for (typename UntypedExpectations::const_reverse_iterator it = |
|
untyped_expectations_.rbegin(); |
|
it != untyped_expectations_.rend(); ++it) { |
|
TypedExpectation<F>* const exp = |
|
static_cast<TypedExpectation<F>*>(it->get()); |
|
if (exp->ShouldHandleArguments(args)) { |
|
return exp; |
|
} |
|
} |
|
return nullptr; |
|
} |
|
|
|
// Returns a message that the arguments don't match any expectation. |
|
void FormatUnexpectedCallMessageLocked( |
|
const ArgumentTuple& args, |
|
::std::ostream* os, |
|
::std::ostream* why) const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
*os << "\nUnexpected mock function call - "; |
|
DescribeDefaultActionTo(args, os); |
|
PrintTriedExpectationsLocked(args, why); |
|
} |
|
|
|
// Prints a list of expectations that have been tried against the |
|
// current mock function call. |
|
void PrintTriedExpectationsLocked( |
|
const ArgumentTuple& args, |
|
::std::ostream* why) const |
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
|
g_gmock_mutex.AssertHeld(); |
|
const size_t count = untyped_expectations_.size(); |
|
*why << "Google Mock tried the following " << count << " " |
|
<< (count == 1 ? "expectation, but it didn't match" : |
|
"expectations, but none matched") |
|
<< ":\n"; |
|
for (size_t i = 0; i < count; i++) { |
|
TypedExpectation<F>* const expectation = |
|
static_cast<TypedExpectation<F>*>(untyped_expectations_[i].get()); |
|
*why << "\n"; |
|
expectation->DescribeLocationTo(why); |
|
if (count > 1) { |
|
*why << "tried expectation #" << i << ": "; |
|
} |
|
*why << expectation->source_text() << "...\n"; |
|
expectation->ExplainMatchResultTo(args, why); |
|
expectation->DescribeCallCountTo(why); |
|
} |
|
} |
|
}; // class FunctionMocker |
|
|
|
// Reports an uninteresting call (whose description is in msg) in the |
|
// manner specified by 'reaction'. |
|
void ReportUninterestingCall(CallReaction reaction, const std::string& msg); |
|
|
|
} // namespace internal |
|
|
|
namespace internal { |
|
|
|
template <typename F> |
|
class MockFunction; |
|
|
|
template <typename R, typename... Args> |
|
class MockFunction<R(Args...)> { |
|
public: |
|
MockFunction(const MockFunction&) = delete; |
|
MockFunction& operator=(const MockFunction&) = delete; |
|
|
|
std::function<R(Args...)> AsStdFunction() { |
|
return [this](Args... args) -> R { |
|
return this->Call(std::forward<Args>(args)...); |
|
}; |
|
} |
|
|
|
// Implementation detail: the expansion of the MOCK_METHOD macro. |
|
R Call(Args... args) { |
|
mock_.SetOwnerAndName(this, "Call"); |
|
return mock_.Invoke(std::forward<Args>(args)...); |
|
} |
|
|
|
MockSpec<R(Args...)> gmock_Call(Matcher<Args>... m) { |
|
mock_.RegisterOwner(this); |
|
return mock_.With(std::move(m)...); |
|
} |
|
|
|
MockSpec<R(Args...)> gmock_Call(const WithoutMatchers&, R (*)(Args...)) { |
|
return this->gmock_Call(::testing::A<Args>()...); |
|
} |
|
|
|
protected: |
|
MockFunction() = default; |
|
~MockFunction() = default; |
|
|
|
private: |
|
FunctionMocker<R(Args...)> mock_; |
|
}; |
|
|
|
/* |
|
The SignatureOf<F> struct is a meta-function returning function signature |
|
corresponding to the provided F argument. |
|
|
|
It makes use of MockFunction easier by allowing it to accept more F arguments |
|
than just function signatures. |
|
|
|
Specializations provided here cover a signature type itself and any template |
|
that can be parameterized with a signature, including std::function and |
|
boost::function. |
|
*/ |
|
|
|
template <typename F, typename = void> |
|
struct SignatureOf; |
|
|
|
template <typename R, typename... Args> |
|
struct SignatureOf<R(Args...)> { |
|
using type = R(Args...); |
|
}; |
|
|
|
template <template <typename> class C, typename F> |
|
struct SignatureOf<C<F>, |
|
typename std::enable_if<std::is_function<F>::value>::type> |
|
: SignatureOf<F> {}; |
|
|
|
template <typename F> |
|
using SignatureOfT = typename SignatureOf<F>::type; |
|
|
|
} // namespace internal |
|
|
|
// A MockFunction<F> type has one mock method whose type is |
|
// internal::SignatureOfT<F>. It is useful when you just want your |
|
// test code to emit some messages and have Google Mock verify the |
|
// right messages are sent (and perhaps at the right times). For |
|
// example, if you are exercising code: |
|
// |
|
// Foo(1); |
|
// Foo(2); |
|
// Foo(3); |
|
// |
|
// and want to verify that Foo(1) and Foo(3) both invoke |
|
// mock.Bar("a"), but Foo(2) doesn't invoke anything, you can write: |
|
// |
|
// TEST(FooTest, InvokesBarCorrectly) { |
|
// MyMock mock; |
|
// MockFunction<void(string check_point_name)> check; |
|
// { |
|
// InSequence s; |
|
// |
|
// EXPECT_CALL(mock, Bar("a")); |
|
// EXPECT_CALL(check, Call("1")); |
|
// EXPECT_CALL(check, Call("2")); |
|
// EXPECT_CALL(mock, Bar("a")); |
|
// } |
|
// Foo(1); |
|
// check.Call("1"); |
|
// Foo(2); |
|
// check.Call("2"); |
|
// Foo(3); |
|
// } |
|
// |
|
// The expectation spec says that the first Bar("a") must happen |
|
// before check point "1", the second Bar("a") must happen after check |
|
// point "2", and nothing should happen between the two check |
|
// points. The explicit check points make it easy to tell which |
|
// Bar("a") is called by which call to Foo(). |
|
// |
|
// MockFunction<F> can also be used to exercise code that accepts |
|
// std::function<internal::SignatureOfT<F>> callbacks. To do so, use |
|
// AsStdFunction() method to create std::function proxy forwarding to |
|
// original object's Call. Example: |
|
// |
|
// TEST(FooTest, RunsCallbackWithBarArgument) { |
|
// MockFunction<int(string)> callback; |
|
// EXPECT_CALL(callback, Call("bar")).WillOnce(Return(1)); |
|
// Foo(callback.AsStdFunction()); |
|
// } |
|
// |
|
// The internal::SignatureOfT<F> indirection allows to use other types |
|
// than just function signature type. This is typically useful when |
|
// providing a mock for a predefined std::function type. Example: |
|
// |
|
// using FilterPredicate = std::function<bool(string)>; |
|
// void MyFilterAlgorithm(FilterPredicate predicate); |
|
// |
|
// TEST(FooTest, FilterPredicateAlwaysAccepts) { |
|
// MockFunction<FilterPredicate> predicateMock; |
|
// EXPECT_CALL(predicateMock, Call(_)).WillRepeatedly(Return(true)); |
|
// MyFilterAlgorithm(predicateMock.AsStdFunction()); |
|
// } |
|
template <typename F> |
|
class MockFunction : public internal::MockFunction<internal::SignatureOfT<F>> { |
|
using Base = internal::MockFunction<internal::SignatureOfT<F>>; |
|
|
|
public: |
|
using Base::Base; |
|
}; |
|
|
|
// The style guide prohibits "using" statements in a namespace scope |
|
// inside a header file. However, the MockSpec class template is |
|
// meant to be defined in the ::testing namespace. The following line |
|
// is just a trick for working around a bug in MSVC 8.0, which cannot |
|
// handle it if we define MockSpec in ::testing. |
|
using internal::MockSpec; |
|
|
|
// Const(x) is a convenient function for obtaining a const reference |
|
// to x. This is useful for setting expectations on an overloaded |
|
// const mock method, e.g. |
|
// |
|
// class MockFoo : public FooInterface { |
|
// public: |
|
// MOCK_METHOD0(Bar, int()); |
|
// MOCK_CONST_METHOD0(Bar, int&()); |
|
// }; |
|
// |
|
// MockFoo foo; |
|
// // Expects a call to non-const MockFoo::Bar(). |
|
// EXPECT_CALL(foo, Bar()); |
|
// // Expects a call to const MockFoo::Bar(). |
|
// EXPECT_CALL(Const(foo), Bar()); |
|
template <typename T> |
|
inline const T& Const(const T& x) { return x; } |
|
|
|
// Constructs an Expectation object that references and co-owns exp. |
|
inline Expectation::Expectation(internal::ExpectationBase& exp) // NOLINT |
|
: expectation_base_(exp.GetHandle().expectation_base()) {} |
|
|
|
} // namespace testing |
|
|
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 |
|
|
|
// Implementation for ON_CALL and EXPECT_CALL macros. A separate macro is |
|
// required to avoid compile errors when the name of the method used in call is |
|
// a result of macro expansion. See CompilesWithMethodNameExpandedFromMacro |
|
// tests in internal/gmock-spec-builders_test.cc for more details. |
|
// |
|
// This macro supports statements both with and without parameter matchers. If |
|
// the parameter list is omitted, gMock will accept any parameters, which allows |
|
// tests to be written that don't need to encode the number of method |
|
// parameter. This technique may only be used for non-overloaded methods. |
|
// |
|
// // These are the same: |
|
// ON_CALL(mock, NoArgsMethod()).WillByDefault(...); |
|
// ON_CALL(mock, NoArgsMethod).WillByDefault(...); |
|
// |
|
// // As are these: |
|
// ON_CALL(mock, TwoArgsMethod(_, _)).WillByDefault(...); |
|
// ON_CALL(mock, TwoArgsMethod).WillByDefault(...); |
|
// |
|
// // Can also specify args if you want, of course: |
|
// ON_CALL(mock, TwoArgsMethod(_, 45)).WillByDefault(...); |
|
// |
|
// // Overloads work as long as you specify parameters: |
|
// ON_CALL(mock, OverloadedMethod(_)).WillByDefault(...); |
|
// ON_CALL(mock, OverloadedMethod(_, _)).WillByDefault(...); |
|
// |
|
// // Oops! Which overload did you want? |
|
// ON_CALL(mock, OverloadedMethod).WillByDefault(...); |
|
// => ERROR: call to member function 'gmock_OverloadedMethod' is ambiguous |
|
// |
|
// How this works: The mock class uses two overloads of the gmock_Method |
|
// expectation setter method plus an operator() overload on the MockSpec object. |
|
// In the matcher list form, the macro expands to: |
|
// |
|
// // This statement: |
|
// ON_CALL(mock, TwoArgsMethod(_, 45))... |
|
// |
|
// // ...expands to: |
|
// mock.gmock_TwoArgsMethod(_, 45)(WithoutMatchers(), nullptr)... |
|
// |-------------v---------------||------------v-------------| |
|
// invokes first overload swallowed by operator() |
|
// |
|
// // ...which is essentially: |
|
// mock.gmock_TwoArgsMethod(_, 45)... |
|
// |
|
// Whereas the form without a matcher list: |
|
// |
|
// // This statement: |
|
// ON_CALL(mock, TwoArgsMethod)... |
|
// |
|
// // ...expands to: |
|
// mock.gmock_TwoArgsMethod(WithoutMatchers(), nullptr)... |
|
// |-----------------------v--------------------------| |
|
// invokes second overload |
|
// |
|
// // ...which is essentially: |
|
// mock.gmock_TwoArgsMethod(_, _)... |
|
// |
|
// The WithoutMatchers() argument is used to disambiguate overloads and to |
|
// block the caller from accidentally invoking the second overload directly. The |
|
// second argument is an internal type derived from the method signature. The |
|
// failure to disambiguate two overloads of this method in the ON_CALL statement |
|
// is how we block callers from setting expectations on overloaded methods. |
|
#define GMOCK_ON_CALL_IMPL_(mock_expr, Setter, call) \ |
|
((mock_expr).gmock_##call)(::testing::internal::GetWithoutMatchers(), \ |
|
nullptr) \ |
|
.Setter(__FILE__, __LINE__, #mock_expr, #call) |
|
|
|
#define ON_CALL(obj, call) \ |
|
GMOCK_ON_CALL_IMPL_(obj, InternalDefaultActionSetAt, call) |
|
|
|
#define EXPECT_CALL(obj, call) \ |
|
GMOCK_ON_CALL_IMPL_(obj, InternalExpectedAt, call) |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ |
|
|
|
namespace testing { |
|
namespace internal { |
|
template <typename T> |
|
using identity_t = T; |
|
|
|
template <typename Pattern> |
|
struct ThisRefAdjuster { |
|
template <typename T> |
|
using AdjustT = typename std::conditional< |
|
std::is_const<typename std::remove_reference<Pattern>::type>::value, |
|
typename std::conditional<std::is_lvalue_reference<Pattern>::value, |
|
const T&, const T&&>::type, |
|
typename std::conditional<std::is_lvalue_reference<Pattern>::value, T&, |
|
T&&>::type>::type; |
|
|
|
template <typename MockType> |
|
static AdjustT<MockType> Adjust(const MockType& mock) { |
|
return static_cast<AdjustT<MockType>>(const_cast<MockType&>(mock)); |
|
} |
|
}; |
|
|
|
} // namespace internal |
|
|
|
// The style guide prohibits "using" statements in a namespace scope |
|
// inside a header file. However, the FunctionMocker class template |
|
// is meant to be defined in the ::testing namespace. The following |
|
// line is just a trick for working around a bug in MSVC 8.0, which |
|
// cannot handle it if we define FunctionMocker in ::testing. |
|
using internal::FunctionMocker; |
|
} // namespace testing |
|
|
|
#define MOCK_METHOD(...) \ |
|
GMOCK_PP_VARIADIC_CALL(GMOCK_INTERNAL_MOCK_METHOD_ARG_, __VA_ARGS__) |
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_1(...) \ |
|
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) |
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_2(...) \ |
|
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) |
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_3(_Ret, _MethodName, _Args) \ |
|
GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, ()) |
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, _Spec) \ |
|
GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Args); \ |
|
GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Spec); \ |
|
GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \ |
|
GMOCK_PP_NARG0 _Args, GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)); \ |
|
GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \ |
|
GMOCK_INTERNAL_MOCK_METHOD_IMPL( \ |
|
GMOCK_PP_NARG0 _Args, _MethodName, GMOCK_INTERNAL_HAS_CONST(_Spec), \ |
|
GMOCK_INTERNAL_HAS_OVERRIDE(_Spec), GMOCK_INTERNAL_HAS_FINAL(_Spec), \ |
|
GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Spec), \ |
|
GMOCK_INTERNAL_GET_CALLTYPE(_Spec), GMOCK_INTERNAL_GET_REF_SPEC(_Spec), \ |
|
(GMOCK_INTERNAL_SIGNATURE(_Ret, _Args))) |
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_5(...) \ |
|
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) |
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_6(...) \ |
|
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) |
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_7(...) \ |
|
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) |
|
|
|
#define GMOCK_INTERNAL_WRONG_ARITY(...) \ |
|
static_assert( \ |
|
false, \ |
|
"MOCK_METHOD must be called with 3 or 4 arguments. _Ret, " \ |
|
"_MethodName, _Args and optionally _Spec. _Args and _Spec must be " \ |
|
"enclosed in parentheses. If _Ret is a type with unprotected commas, " \ |
|
"it must also be enclosed in parentheses.") |
|
|
|
#define GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Tuple) \ |
|
static_assert( \ |
|
GMOCK_PP_IS_ENCLOSED_PARENS(_Tuple), \ |
|
GMOCK_PP_STRINGIZE(_Tuple) " should be enclosed in parentheses.") |
|
|
|
#define GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(_N, ...) \ |
|
static_assert( \ |
|
std::is_function<__VA_ARGS__>::value, \ |
|
"Signature must be a function type, maybe return type contains " \ |
|
"unprotected comma."); \ |
|
static_assert( \ |
|
::testing::tuple_size<typename ::testing::internal::Function< \ |
|
__VA_ARGS__>::ArgumentTuple>::value == _N, \ |
|
"This method does not take " GMOCK_PP_STRINGIZE( \ |
|
_N) " arguments. Parenthesize all types with unprotected commas.") |
|
|
|
#define GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \ |
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT, ~, _Spec) |
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_IMPL(_N, _MethodName, _Constness, \ |
|
_Override, _Final, _NoexceptSpec, \ |
|
_CallType, _RefSpec, _Signature) \ |
|
typename ::testing::internal::Function<GMOCK_PP_REMOVE_PARENS( \ |
|
_Signature)>::Result \ |
|
GMOCK_INTERNAL_EXPAND(_CallType) \ |
|
_MethodName(GMOCK_PP_REPEAT(GMOCK_INTERNAL_PARAMETER, _Signature, _N)) \ |
|
GMOCK_PP_IF(_Constness, const, ) _RefSpec _NoexceptSpec \ |
|
GMOCK_PP_IF(_Override, override, ) GMOCK_PP_IF(_Final, final, ) { \ |
|
GMOCK_MOCKER_(_N, _Constness, _MethodName) \ |
|
.SetOwnerAndName(this, #_MethodName); \ |
|
return GMOCK_MOCKER_(_N, _Constness, _MethodName) \ |
|
.Invoke(GMOCK_PP_REPEAT(GMOCK_INTERNAL_FORWARD_ARG, _Signature, _N)); \ |
|
} \ |
|
::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \ |
|
GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_PARAMETER, _Signature, _N)) \ |
|
GMOCK_PP_IF(_Constness, const, ) _RefSpec { \ |
|
GMOCK_MOCKER_(_N, _Constness, _MethodName).RegisterOwner(this); \ |
|
return GMOCK_MOCKER_(_N, _Constness, _MethodName) \ |
|
.With(GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_ARGUMENT, , _N)); \ |
|
} \ |
|
::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \ |
|
const ::testing::internal::WithoutMatchers&, \ |
|
GMOCK_PP_IF(_Constness, const, )::testing::internal::Function< \ |
|
GMOCK_PP_REMOVE_PARENS(_Signature)>*) const _RefSpec _NoexceptSpec { \ |
|
return ::testing::internal::ThisRefAdjuster<GMOCK_PP_IF( \ |
|
_Constness, const, ) int _RefSpec>::Adjust(*this) \ |
|
.gmock_##_MethodName(GMOCK_PP_REPEAT( \ |
|
GMOCK_INTERNAL_A_MATCHER_ARGUMENT, _Signature, _N)); \ |
|
} \ |
|
mutable ::testing::FunctionMocker<GMOCK_PP_REMOVE_PARENS(_Signature)> \ |
|
GMOCK_MOCKER_(_N, _Constness, _MethodName) |
|
|
|
#define GMOCK_INTERNAL_EXPAND(...) __VA_ARGS__ |
|
|
|
// Five Valid modifiers. |
|
#define GMOCK_INTERNAL_HAS_CONST(_Tuple) \ |
|
GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_CONST, ~, _Tuple)) |
|
|
|
#define GMOCK_INTERNAL_HAS_OVERRIDE(_Tuple) \ |
|
GMOCK_PP_HAS_COMMA( \ |
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_OVERRIDE, ~, _Tuple)) |
|
|
|
#define GMOCK_INTERNAL_HAS_FINAL(_Tuple) \ |
|
GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_FINAL, ~, _Tuple)) |
|
|
|
#define GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Tuple) \ |
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT, ~, _Tuple) |
|
|
|
#define GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT(_i, _, _elem) \ |
|
GMOCK_PP_IF( \ |
|
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)), \ |
|
_elem, ) |
|
|
|
#define GMOCK_INTERNAL_GET_REF_SPEC(_Tuple) \ |
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_REF_SPEC_IF_REF, ~, _Tuple) |
|
|
|
#define GMOCK_INTERNAL_REF_SPEC_IF_REF(_i, _, _elem) \ |
|
GMOCK_PP_IF(GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)), \ |
|
GMOCK_PP_CAT(GMOCK_INTERNAL_UNPACK_, _elem), ) |
|
|
|
#define GMOCK_INTERNAL_GET_CALLTYPE(_Tuple) \ |
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_CALLTYPE_IMPL, ~, _Tuple) |
|
|
|
#define GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT(_i, _, _elem) \ |
|
static_assert( \ |
|
(GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem)) + \ |
|
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem)) + \ |
|
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem)) + \ |
|
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)) + \ |
|
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)) + \ |
|
GMOCK_INTERNAL_IS_CALLTYPE(_elem)) == 1, \ |
|
GMOCK_PP_STRINGIZE( \ |
|
_elem) " cannot be recognized as a valid specification modifier."); |
|
|
|
// Modifiers implementation. |
|
#define GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem) \ |
|
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_CONST_I_, _elem) |
|
|
|
#define GMOCK_INTERNAL_DETECT_CONST_I_const , |
|
|
|
#define GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem) \ |
|
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_OVERRIDE_I_, _elem) |
|
|
|
#define GMOCK_INTERNAL_DETECT_OVERRIDE_I_override , |
|
|
|
#define GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem) \ |
|
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_FINAL_I_, _elem) |
|
|
|
#define GMOCK_INTERNAL_DETECT_FINAL_I_final , |
|
|
|
#define GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem) \ |
|
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_NOEXCEPT_I_, _elem) |
|
|
|
#define GMOCK_INTERNAL_DETECT_NOEXCEPT_I_noexcept , |
|
|
|
#define GMOCK_INTERNAL_DETECT_REF(_i, _, _elem) \ |
|
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_REF_I_, _elem) |
|
|
|
#define GMOCK_INTERNAL_DETECT_REF_I_ref , |
|
|
|
#define GMOCK_INTERNAL_UNPACK_ref(x) x |
|
|
|
#define GMOCK_INTERNAL_GET_CALLTYPE_IMPL(_i, _, _elem) \ |
|
GMOCK_PP_IF(GMOCK_INTERNAL_IS_CALLTYPE(_elem), \ |
|
GMOCK_INTERNAL_GET_VALUE_CALLTYPE, GMOCK_PP_EMPTY) \ |
|
(_elem) |
|
|
|
// TODO(iserna): GMOCK_INTERNAL_IS_CALLTYPE and |
|
// GMOCK_INTERNAL_GET_VALUE_CALLTYPE needed more expansions to work on windows |
|
// maybe they can be simplified somehow. |
|
#define GMOCK_INTERNAL_IS_CALLTYPE(_arg) \ |
|
GMOCK_INTERNAL_IS_CALLTYPE_I( \ |
|
GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg)) |
|
#define GMOCK_INTERNAL_IS_CALLTYPE_I(_arg) GMOCK_PP_IS_ENCLOSED_PARENS(_arg) |
|
|
|
#define GMOCK_INTERNAL_GET_VALUE_CALLTYPE(_arg) \ |
|
GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I( \ |
|
GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg)) |
|
#define GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I(_arg) \ |
|
GMOCK_PP_IDENTITY _arg |
|
|
|
#define GMOCK_INTERNAL_IS_CALLTYPE_HELPER_Calltype |
|
|
|
// Note: The use of `identity_t` here allows _Ret to represent return types that |
|
// would normally need to be specified in a different way. For example, a method |
|
// returning a function pointer must be written as |
|
// |
|
// fn_ptr_return_t (*method(method_args_t...))(fn_ptr_args_t...) |
|
// |
|
// But we only support placing the return type at the beginning. To handle this, |
|
// we wrap all calls in identity_t, so that a declaration will be expanded to |
|
// |
|
// identity_t<fn_ptr_return_t (*)(fn_ptr_args_t...)> method(method_args_t...) |
|
// |
|
// This allows us to work around the syntactic oddities of function/method |
|
// types. |
|
#define GMOCK_INTERNAL_SIGNATURE(_Ret, _Args) \ |
|
::testing::internal::identity_t<GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_Ret), \ |
|
GMOCK_PP_REMOVE_PARENS, \ |
|
GMOCK_PP_IDENTITY)(_Ret)>( \ |
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_TYPE, _, _Args)) |
|
|
|
#define GMOCK_INTERNAL_GET_TYPE(_i, _, _elem) \ |
|
GMOCK_PP_COMMA_IF(_i) \ |
|
GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_elem), GMOCK_PP_REMOVE_PARENS, \ |
|
GMOCK_PP_IDENTITY) \ |
|
(_elem) |
|
|
|
#define GMOCK_INTERNAL_PARAMETER(_i, _Signature, _) \ |
|
GMOCK_PP_COMMA_IF(_i) \ |
|
GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \ |
|
gmock_a##_i |
|
|
|
#define GMOCK_INTERNAL_FORWARD_ARG(_i, _Signature, _) \ |
|
GMOCK_PP_COMMA_IF(_i) \ |
|
::std::forward<GMOCK_INTERNAL_ARG_O( \ |
|
_i, GMOCK_PP_REMOVE_PARENS(_Signature))>(gmock_a##_i) |
|
|
|
#define GMOCK_INTERNAL_MATCHER_PARAMETER(_i, _Signature, _) \ |
|
GMOCK_PP_COMMA_IF(_i) \ |
|
GMOCK_INTERNAL_MATCHER_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \ |
|
gmock_a##_i |
|
|
|
#define GMOCK_INTERNAL_MATCHER_ARGUMENT(_i, _1, _2) \ |
|
GMOCK_PP_COMMA_IF(_i) \ |
|
gmock_a##_i |
|
|
|
#define GMOCK_INTERNAL_A_MATCHER_ARGUMENT(_i, _Signature, _) \ |
|
GMOCK_PP_COMMA_IF(_i) \ |
|
::testing::A<GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature))>() |
|
|
|
#define GMOCK_INTERNAL_ARG_O(_i, ...) \ |
|
typename ::testing::internal::Function<__VA_ARGS__>::template Arg<_i>::type |
|
|
|
#define GMOCK_INTERNAL_MATCHER_O(_i, ...) \ |
|
const ::testing::Matcher<typename ::testing::internal::Function< \ |
|
__VA_ARGS__>::template Arg<_i>::type>& |
|
|
|
#define MOCK_METHOD0(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 0, __VA_ARGS__) |
|
#define MOCK_METHOD1(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 1, __VA_ARGS__) |
|
#define MOCK_METHOD2(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 2, __VA_ARGS__) |
|
#define MOCK_METHOD3(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 3, __VA_ARGS__) |
|
#define MOCK_METHOD4(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 4, __VA_ARGS__) |
|
#define MOCK_METHOD5(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 5, __VA_ARGS__) |
|
#define MOCK_METHOD6(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 6, __VA_ARGS__) |
|
#define MOCK_METHOD7(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 7, __VA_ARGS__) |
|
#define MOCK_METHOD8(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 8, __VA_ARGS__) |
|
#define MOCK_METHOD9(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 9, __VA_ARGS__) |
|
#define MOCK_METHOD10(m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(, , m, 10, __VA_ARGS__) |
|
|
|
#define MOCK_CONST_METHOD0(m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 0, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD1(m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 1, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD2(m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 2, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD3(m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 3, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD4(m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 4, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD5(m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 5, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD6(m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 6, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD7(m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 7, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD8(m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 8, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD9(m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 9, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD10(m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 10, __VA_ARGS__) |
|
|
|
#define MOCK_METHOD0_T(m, ...) MOCK_METHOD0(m, __VA_ARGS__) |
|
#define MOCK_METHOD1_T(m, ...) MOCK_METHOD1(m, __VA_ARGS__) |
|
#define MOCK_METHOD2_T(m, ...) MOCK_METHOD2(m, __VA_ARGS__) |
|
#define MOCK_METHOD3_T(m, ...) MOCK_METHOD3(m, __VA_ARGS__) |
|
#define MOCK_METHOD4_T(m, ...) MOCK_METHOD4(m, __VA_ARGS__) |
|
#define MOCK_METHOD5_T(m, ...) MOCK_METHOD5(m, __VA_ARGS__) |
|
#define MOCK_METHOD6_T(m, ...) MOCK_METHOD6(m, __VA_ARGS__) |
|
#define MOCK_METHOD7_T(m, ...) MOCK_METHOD7(m, __VA_ARGS__) |
|
#define MOCK_METHOD8_T(m, ...) MOCK_METHOD8(m, __VA_ARGS__) |
|
#define MOCK_METHOD9_T(m, ...) MOCK_METHOD9(m, __VA_ARGS__) |
|
#define MOCK_METHOD10_T(m, ...) MOCK_METHOD10(m, __VA_ARGS__) |
|
|
|
#define MOCK_CONST_METHOD0_T(m, ...) MOCK_CONST_METHOD0(m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD1_T(m, ...) MOCK_CONST_METHOD1(m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD2_T(m, ...) MOCK_CONST_METHOD2(m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD3_T(m, ...) MOCK_CONST_METHOD3(m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD4_T(m, ...) MOCK_CONST_METHOD4(m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD5_T(m, ...) MOCK_CONST_METHOD5(m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD6_T(m, ...) MOCK_CONST_METHOD6(m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD7_T(m, ...) MOCK_CONST_METHOD7(m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD8_T(m, ...) MOCK_CONST_METHOD8(m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD9_T(m, ...) MOCK_CONST_METHOD9(m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD10_T(m, ...) MOCK_CONST_METHOD10(m, __VA_ARGS__) |
|
|
|
#define MOCK_METHOD0_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 0, __VA_ARGS__) |
|
#define MOCK_METHOD1_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 1, __VA_ARGS__) |
|
#define MOCK_METHOD2_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 2, __VA_ARGS__) |
|
#define MOCK_METHOD3_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 3, __VA_ARGS__) |
|
#define MOCK_METHOD4_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 4, __VA_ARGS__) |
|
#define MOCK_METHOD5_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 5, __VA_ARGS__) |
|
#define MOCK_METHOD6_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 6, __VA_ARGS__) |
|
#define MOCK_METHOD7_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 7, __VA_ARGS__) |
|
#define MOCK_METHOD8_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 8, __VA_ARGS__) |
|
#define MOCK_METHOD9_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 9, __VA_ARGS__) |
|
#define MOCK_METHOD10_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 10, __VA_ARGS__) |
|
|
|
#define MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 0, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 1, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 2, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 3, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 4, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 5, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 6, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 7, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 8, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 9, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, ...) \ |
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 10, __VA_ARGS__) |
|
|
|
#define MOCK_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
|
|
#define MOCK_CONST_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
#define MOCK_CONST_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \ |
|
MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
|
|
|
#define GMOCK_INTERNAL_MOCK_METHODN(constness, ct, Method, args_num, ...) \ |
|
GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \ |
|
args_num, ::testing::internal::identity_t<__VA_ARGS__>); \ |
|
GMOCK_INTERNAL_MOCK_METHOD_IMPL( \ |
|
args_num, Method, GMOCK_PP_NARG0(constness), 0, 0, , ct, , \ |
|
(::testing::internal::identity_t<__VA_ARGS__>)) |
|
|
|
#define GMOCK_MOCKER_(arity, constness, Method) \ |
|
GTEST_CONCAT_TOKEN_(gmock##constness##arity##_##Method##_, __LINE__) |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ |
|
// Copyright 2007, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file implements some commonly used variadic actions. |
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ |
|
|
|
#include <memory> |
|
#include <utility> |
|
|
|
|
|
// Include any custom callback actions added by the local installation. |
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ |
|
|
|
// Sometimes you want to give an action explicit template parameters |
|
// that cannot be inferred from its value parameters. ACTION() and |
|
// ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that |
|
// and can be viewed as an extension to ACTION() and ACTION_P*(). |
|
// |
|
// The syntax: |
|
// |
|
// ACTION_TEMPLATE(ActionName, |
|
// HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m), |
|
// AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; } |
|
// |
|
// defines an action template that takes m explicit template |
|
// parameters and n value parameters. name_i is the name of the i-th |
|
// template parameter, and kind_i specifies whether it's a typename, |
|
// an integral constant, or a template. p_i is the name of the i-th |
|
// value parameter. |
|
// |
|
// Example: |
|
// |
|
// // DuplicateArg<k, T>(output) converts the k-th argument of the mock |
|
// // function to type T and copies it to *output. |
|
// ACTION_TEMPLATE(DuplicateArg, |
|
// HAS_2_TEMPLATE_PARAMS(int, k, typename, T), |
|
// AND_1_VALUE_PARAMS(output)) { |
|
// *output = T(::std::get<k>(args)); |
|
// } |
|
// ... |
|
// int n; |
|
// EXPECT_CALL(mock, Foo(_, _)) |
|
// .WillOnce(DuplicateArg<1, unsigned char>(&n)); |
|
// |
|
// To create an instance of an action template, write: |
|
// |
|
// ActionName<t1, ..., t_m>(v1, ..., v_n) |
|
// |
|
// where the ts are the template arguments and the vs are the value |
|
// arguments. The value argument types are inferred by the compiler. |
|
// If you want to explicitly specify the value argument types, you can |
|
// provide additional template arguments: |
|
// |
|
// ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n) |
|
// |
|
// where u_i is the desired type of v_i. |
|
// |
|
// ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the |
|
// number of value parameters, but not on the number of template |
|
// parameters. Without the restriction, the meaning of the following |
|
// is unclear: |
|
// |
|
// OverloadedAction<int, bool>(x); |
|
// |
|
// Are we using a single-template-parameter action where 'bool' refers |
|
// to the type of x, or are we using a two-template-parameter action |
|
// where the compiler is asked to infer the type of x? |
|
// |
|
// Implementation notes: |
|
// |
|
// GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and |
|
// GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for |
|
// implementing ACTION_TEMPLATE. The main trick we use is to create |
|
// new macro invocations when expanding a macro. For example, we have |
|
// |
|
// #define ACTION_TEMPLATE(name, template_params, value_params) |
|
// ... GMOCK_INTERNAL_DECL_##template_params ... |
|
// |
|
// which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...) |
|
// to expand to |
|
// |
|
// ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ... |
|
// |
|
// Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the |
|
// preprocessor will continue to expand it to |
|
// |
|
// ... typename T ... |
|
// |
|
// This technique conforms to the C++ standard and is portable. It |
|
// allows us to implement action templates using O(N) code, where N is |
|
// the maximum number of template/value parameters supported. Without |
|
// using it, we'd have to devote O(N^2) amount of code to implement all |
|
// combinations of m and n. |
|
|
|
// Declares the template parameters. |
|
#define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0 |
|
#define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ |
|
name1) kind0 name0, kind1 name1 |
|
#define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
|
kind2, name2) kind0 name0, kind1 name1, kind2 name2 |
|
#define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
|
kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \ |
|
kind3 name3 |
|
#define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
|
kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \ |
|
kind2 name2, kind3 name3, kind4 name4 |
|
#define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \ |
|
kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5 |
|
#define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ |
|
name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \ |
|
kind5 name5, kind6 name6 |
|
#define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ |
|
kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \ |
|
kind4 name4, kind5 name5, kind6 name6, kind7 name7 |
|
#define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ |
|
kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \ |
|
kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \ |
|
kind8 name8 |
|
#define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ |
|
name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ |
|
name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \ |
|
kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \ |
|
kind6 name6, kind7 name7, kind8 name8, kind9 name9 |
|
|
|
// Lists the template parameters. |
|
#define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0 |
|
#define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ |
|
name1) name0, name1 |
|
#define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
|
kind2, name2) name0, name1, name2 |
|
#define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
|
kind2, name2, kind3, name3) name0, name1, name2, name3 |
|
#define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
|
kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \ |
|
name4 |
|
#define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \ |
|
name2, name3, name4, name5 |
|
#define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ |
|
name6) name0, name1, name2, name3, name4, name5, name6 |
|
#define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ |
|
kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7 |
|
#define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ |
|
kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \ |
|
name6, name7, name8 |
|
#define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ |
|
name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ |
|
name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \ |
|
name3, name4, name5, name6, name7, name8, name9 |
|
|
|
// Declares the types of value parameters. |
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS() |
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type |
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \ |
|
typename p0##_type, typename p1##_type |
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \ |
|
typename p0##_type, typename p1##_type, typename p2##_type |
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ |
|
typename p0##_type, typename p1##_type, typename p2##_type, \ |
|
typename p3##_type |
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ |
|
typename p0##_type, typename p1##_type, typename p2##_type, \ |
|
typename p3##_type, typename p4##_type |
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ |
|
typename p0##_type, typename p1##_type, typename p2##_type, \ |
|
typename p3##_type, typename p4##_type, typename p5##_type |
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
|
p6) , typename p0##_type, typename p1##_type, typename p2##_type, \ |
|
typename p3##_type, typename p4##_type, typename p5##_type, \ |
|
typename p6##_type |
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
|
p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \ |
|
typename p3##_type, typename p4##_type, typename p5##_type, \ |
|
typename p6##_type, typename p7##_type |
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
|
p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \ |
|
typename p3##_type, typename p4##_type, typename p5##_type, \ |
|
typename p6##_type, typename p7##_type, typename p8##_type |
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
|
p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \ |
|
typename p2##_type, typename p3##_type, typename p4##_type, \ |
|
typename p5##_type, typename p6##_type, typename p7##_type, \ |
|
typename p8##_type, typename p9##_type |
|
|
|
// Initializes the value parameters. |
|
#define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\ |
|
() |
|
#define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\ |
|
(p0##_type gmock_p0) : p0(::std::move(gmock_p0)) |
|
#define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\ |
|
(p0##_type gmock_p0, p1##_type gmock_p1) : p0(::std::move(gmock_p0)), \ |
|
p1(::std::move(gmock_p1)) |
|
#define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\ |
|
(p0##_type gmock_p0, p1##_type gmock_p1, \ |
|
p2##_type gmock_p2) : p0(::std::move(gmock_p0)), \ |
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)) |
|
#define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\ |
|
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
|
p3##_type gmock_p3) : p0(::std::move(gmock_p0)), \ |
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ |
|
p3(::std::move(gmock_p3)) |
|
#define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\ |
|
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
|
p3##_type gmock_p3, p4##_type gmock_p4) : p0(::std::move(gmock_p0)), \ |
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ |
|
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)) |
|
#define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\ |
|
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
|
p3##_type gmock_p3, p4##_type gmock_p4, \ |
|
p5##_type gmock_p5) : p0(::std::move(gmock_p0)), \ |
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ |
|
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ |
|
p5(::std::move(gmock_p5)) |
|
#define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\ |
|
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
|
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
|
p6##_type gmock_p6) : p0(::std::move(gmock_p0)), \ |
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ |
|
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ |
|
p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)) |
|
#define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\ |
|
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
|
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
|
p6##_type gmock_p6, p7##_type gmock_p7) : p0(::std::move(gmock_p0)), \ |
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ |
|
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ |
|
p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ |
|
p7(::std::move(gmock_p7)) |
|
#define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
|
p7, p8)\ |
|
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
|
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
|
p6##_type gmock_p6, p7##_type gmock_p7, \ |
|
p8##_type gmock_p8) : p0(::std::move(gmock_p0)), \ |
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ |
|
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ |
|
p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ |
|
p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)) |
|
#define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
|
p7, p8, p9)\ |
|
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
|
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
|
p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ |
|
p9##_type gmock_p9) : p0(::std::move(gmock_p0)), \ |
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ |
|
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ |
|
p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ |
|
p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)), \ |
|
p9(::std::move(gmock_p9)) |
|
|
|
// Defines the copy constructor |
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_0_VALUE_PARAMS() \ |
|
{} // Avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82134 |
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_1_VALUE_PARAMS(...) = default; |
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_2_VALUE_PARAMS(...) = default; |
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_3_VALUE_PARAMS(...) = default; |
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_4_VALUE_PARAMS(...) = default; |
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_5_VALUE_PARAMS(...) = default; |
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_6_VALUE_PARAMS(...) = default; |
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_7_VALUE_PARAMS(...) = default; |
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_8_VALUE_PARAMS(...) = default; |
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_9_VALUE_PARAMS(...) = default; |
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_10_VALUE_PARAMS(...) = default; |
|
|
|
// Declares the fields for storing the value parameters. |
|
#define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS() |
|
#define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0; |
|
#define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \ |
|
p1##_type p1; |
|
#define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \ |
|
p1##_type p1; p2##_type p2; |
|
#define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \ |
|
p1##_type p1; p2##_type p2; p3##_type p3; |
|
#define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ |
|
p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; |
|
#define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ |
|
p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ |
|
p5##_type p5; |
|
#define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
|
p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ |
|
p5##_type p5; p6##_type p6; |
|
#define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
|
p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ |
|
p5##_type p5; p6##_type p6; p7##_type p7; |
|
#define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
|
p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ |
|
p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; |
|
#define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
|
p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ |
|
p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \ |
|
p9##_type p9; |
|
|
|
// Lists the value parameters. |
|
#define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS() |
|
#define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0 |
|
#define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1 |
|
#define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2 |
|
#define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3 |
|
#define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \ |
|
p2, p3, p4 |
|
#define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \ |
|
p1, p2, p3, p4, p5 |
|
#define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
|
p6) p0, p1, p2, p3, p4, p5, p6 |
|
#define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
|
p7) p0, p1, p2, p3, p4, p5, p6, p7 |
|
#define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
|
p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8 |
|
#define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
|
p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9 |
|
|
|
// Lists the value parameter types. |
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS() |
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type |
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \ |
|
p1##_type |
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \ |
|
p1##_type, p2##_type |
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ |
|
p0##_type, p1##_type, p2##_type, p3##_type |
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ |
|
p0##_type, p1##_type, p2##_type, p3##_type, p4##_type |
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ |
|
p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type |
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
|
p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \ |
|
p6##_type |
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
|
p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
|
p5##_type, p6##_type, p7##_type |
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
|
p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
|
p5##_type, p6##_type, p7##_type, p8##_type |
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
|
p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
|
p5##_type, p6##_type, p7##_type, p8##_type, p9##_type |
|
|
|
// Declares the value parameters. |
|
#define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS() |
|
#define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0 |
|
#define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \ |
|
p1##_type p1 |
|
#define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \ |
|
p1##_type p1, p2##_type p2 |
|
#define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \ |
|
p1##_type p1, p2##_type p2, p3##_type p3 |
|
#define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ |
|
p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4 |
|
#define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ |
|
p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ |
|
p5##_type p5 |
|
#define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
|
p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ |
|
p5##_type p5, p6##_type p6 |
|
#define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
|
p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ |
|
p5##_type p5, p6##_type p6, p7##_type p7 |
|
#define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
|
p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ |
|
p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8 |
|
#define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
|
p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ |
|
p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ |
|
p9##_type p9 |
|
|
|
// The suffix of the class template implementing the action template. |
|
#define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS() |
|
#define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P |
|
#define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2 |
|
#define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3 |
|
#define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4 |
|
#define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5 |
|
#define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6 |
|
#define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7 |
|
#define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
|
p7) P8 |
|
#define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
|
p7, p8) P9 |
|
#define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
|
p7, p8, p9) P10 |
|
|
|
// The name of the class template implementing the action template. |
|
#define GMOCK_ACTION_CLASS_(name, value_params)\ |
|
GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params) |
|
|
|
#define ACTION_TEMPLATE(name, template_params, value_params) \ |
|
template <GMOCK_INTERNAL_DECL_##template_params \ |
|
GMOCK_INTERNAL_DECL_TYPE_##value_params> \ |
|
class GMOCK_ACTION_CLASS_(name, value_params) { \ |
|
public: \ |
|
explicit GMOCK_ACTION_CLASS_(name, value_params)( \ |
|
GMOCK_INTERNAL_DECL_##value_params) \ |
|
GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \ |
|
= default; , \ |
|
: impl_(std::make_shared<gmock_Impl>( \ |
|
GMOCK_INTERNAL_LIST_##value_params)) { }) \ |
|
GMOCK_ACTION_CLASS_(name, value_params)( \ |
|
const GMOCK_ACTION_CLASS_(name, value_params)&) noexcept \ |
|
GMOCK_INTERNAL_DEFN_COPY_##value_params \ |
|
GMOCK_ACTION_CLASS_(name, value_params)( \ |
|
GMOCK_ACTION_CLASS_(name, value_params)&&) noexcept \ |
|
GMOCK_INTERNAL_DEFN_COPY_##value_params \ |
|
template <typename F> \ |
|
operator ::testing::Action<F>() const { \ |
|
return GMOCK_PP_IF( \ |
|
GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \ |
|
(::testing::internal::MakeAction<F, gmock_Impl>()), \ |
|
(::testing::internal::MakeAction<F>(impl_))); \ |
|
} \ |
|
private: \ |
|
class gmock_Impl { \ |
|
public: \ |
|
explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {} \ |
|
template <typename function_type, typename return_type, \ |
|
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
|
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ |
|
GMOCK_INTERNAL_DEFN_##value_params \ |
|
}; \ |
|
GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \ |
|
, std::shared_ptr<const gmock_Impl> impl_;) \ |
|
}; \ |
|
template <GMOCK_INTERNAL_DECL_##template_params \ |
|
GMOCK_INTERNAL_DECL_TYPE_##value_params> \ |
|
GMOCK_ACTION_CLASS_(name, value_params)< \ |
|
GMOCK_INTERNAL_LIST_##template_params \ |
|
GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \ |
|
GMOCK_INTERNAL_DECL_##value_params) GTEST_MUST_USE_RESULT_; \ |
|
template <GMOCK_INTERNAL_DECL_##template_params \ |
|
GMOCK_INTERNAL_DECL_TYPE_##value_params> \ |
|
inline GMOCK_ACTION_CLASS_(name, value_params)< \ |
|
GMOCK_INTERNAL_LIST_##template_params \ |
|
GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \ |
|
GMOCK_INTERNAL_DECL_##value_params) { \ |
|
return GMOCK_ACTION_CLASS_(name, value_params)< \ |
|
GMOCK_INTERNAL_LIST_##template_params \ |
|
GMOCK_INTERNAL_LIST_TYPE_##value_params>( \ |
|
GMOCK_INTERNAL_LIST_##value_params); \ |
|
} \ |
|
template <GMOCK_INTERNAL_DECL_##template_params \ |
|
GMOCK_INTERNAL_DECL_TYPE_##value_params> \ |
|
template <typename function_type, typename return_type, typename args_type, \ |
|
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
|
return_type GMOCK_ACTION_CLASS_(name, value_params)< \ |
|
GMOCK_INTERNAL_LIST_##template_params \ |
|
GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl::gmock_PerformImpl( \ |
|
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
|
|
|
namespace testing { |
|
|
|
// The ACTION*() macros trigger warning C4100 (unreferenced formal |
|
// parameter) in MSVC with -W4. Unfortunately they cannot be fixed in |
|
// the macro definition, as the warnings are generated when the macro |
|
// is expanded and macro expansion cannot contain #pragma. Therefore |
|
// we suppress them here. |
|
#ifdef _MSC_VER |
|
# pragma warning(push) |
|
# pragma warning(disable:4100) |
|
#endif |
|
|
|
namespace internal { |
|
|
|
// internal::InvokeArgument - a helper for InvokeArgument action. |
|
// The basic overloads are provided here for generic functors. |
|
// Overloads for other custom-callables are provided in the |
|
// internal/custom/gmock-generated-actions.h header. |
|
template <typename F, typename... Args> |
|
auto InvokeArgument(F f, Args... args) -> decltype(f(args...)) { |
|
return f(args...); |
|
} |
|
|
|
template <std::size_t index, typename... Params> |
|
struct InvokeArgumentAction { |
|
template <typename... Args> |
|
auto operator()(Args&&... args) const -> decltype(internal::InvokeArgument( |
|
std::get<index>(std::forward_as_tuple(std::forward<Args>(args)...)), |
|
std::declval<const Params&>()...)) { |
|
internal::FlatTuple<Args&&...> args_tuple(FlatTupleConstructTag{}, |
|
std::forward<Args>(args)...); |
|
return params.Apply([&](const Params&... unpacked_params) { |
|
auto&& callable = args_tuple.template Get<index>(); |
|
return internal::InvokeArgument( |
|
std::forward<decltype(callable)>(callable), unpacked_params...); |
|
}); |
|
} |
|
|
|
internal::FlatTuple<Params...> params; |
|
}; |
|
|
|
} // namespace internal |
|
|
|
// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th |
|
// (0-based) argument, which must be a k-ary callable, of the mock |
|
// function, with arguments a1, a2, ..., a_k. |
|
// |
|
// Notes: |
|
// |
|
// 1. The arguments are passed by value by default. If you need to |
|
// pass an argument by reference, wrap it inside std::ref(). For |
|
// example, |
|
// |
|
// InvokeArgument<1>(5, string("Hello"), std::ref(foo)) |
|
// |
|
// passes 5 and string("Hello") by value, and passes foo by |
|
// reference. |
|
// |
|
// 2. If the callable takes an argument by reference but std::ref() is |
|
// not used, it will receive the reference to a copy of the value, |
|
// instead of the original value. For example, when the 0-th |
|
// argument of the mock function takes a const string&, the action |
|
// |
|
// InvokeArgument<0>(string("Hello")) |
|
// |
|
// makes a copy of the temporary string("Hello") object and passes a |
|
// reference of the copy, instead of the original temporary object, |
|
// to the callable. This makes it easy for a user to define an |
|
// InvokeArgument action from temporary values and have it performed |
|
// later. |
|
template <std::size_t index, typename... Params> |
|
internal::InvokeArgumentAction<index, typename std::decay<Params>::type...> |
|
InvokeArgument(Params&&... params) { |
|
return {internal::FlatTuple<typename std::decay<Params>::type...>( |
|
internal::FlatTupleConstructTag{}, std::forward<Params>(params)...)}; |
|
} |
|
|
|
#ifdef _MSC_VER |
|
# pragma warning(pop) |
|
#endif |
|
|
|
} // namespace testing |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ |
|
// Copyright 2013, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes. |
|
// |
|
// This file implements some matchers that depend on gmock-matchers.h. |
|
// |
|
// Note that tests are implemented in gmock-matchers_test.cc rather than |
|
// gmock-more-matchers-test.cc. |
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ |
|
|
|
|
|
namespace testing { |
|
|
|
// Silence C4100 (unreferenced formal |
|
// parameter) for MSVC |
|
#ifdef _MSC_VER |
|
# pragma warning(push) |
|
# pragma warning(disable:4100) |
|
#if (_MSC_VER == 1900) |
|
// and silence C4800 (C4800: 'int *const ': forcing value |
|
// to bool 'true' or 'false') for MSVC 14 |
|
# pragma warning(disable:4800) |
|
#endif |
|
#endif |
|
|
|
// Defines a matcher that matches an empty container. The container must |
|
// support both size() and empty(), which all STL-like containers provide. |
|
MATCHER(IsEmpty, negation ? "isn't empty" : "is empty") { |
|
if (arg.empty()) { |
|
return true; |
|
} |
|
*result_listener << "whose size is " << arg.size(); |
|
return false; |
|
} |
|
|
|
// Define a matcher that matches a value that evaluates in boolean |
|
// context to true. Useful for types that define "explicit operator |
|
// bool" operators and so can't be compared for equality with true |
|
// and false. |
|
MATCHER(IsTrue, negation ? "is false" : "is true") { |
|
return static_cast<bool>(arg); |
|
} |
|
|
|
// Define a matcher that matches a value that evaluates in boolean |
|
// context to false. Useful for types that define "explicit operator |
|
// bool" operators and so can't be compared for equality with true |
|
// and false. |
|
MATCHER(IsFalse, negation ? "is true" : "is false") { |
|
return !static_cast<bool>(arg); |
|
} |
|
|
|
#ifdef _MSC_VER |
|
# pragma warning(pop) |
|
#endif |
|
|
|
|
|
} // namespace testing |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ |
|
// Copyright 2008, Google Inc. |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
// Implements class templates NiceMock, NaggyMock, and StrictMock. |
|
// |
|
// Given a mock class MockFoo that is created using Google Mock, |
|
// NiceMock<MockFoo> is a subclass of MockFoo that allows |
|
// uninteresting calls (i.e. calls to mock methods that have no |
|
// EXPECT_CALL specs), NaggyMock<MockFoo> is a subclass of MockFoo |
|
// that prints a warning when an uninteresting call occurs, and |
|
// StrictMock<MockFoo> is a subclass of MockFoo that treats all |
|
// uninteresting calls as errors. |
|
// |
|
// Currently a mock is naggy by default, so MockFoo and |
|
// NaggyMock<MockFoo> behave like the same. However, we will soon |
|
// switch the default behavior of mocks to be nice, as that in general |
|
// leads to more maintainable tests. When that happens, MockFoo will |
|
// stop behaving like NaggyMock<MockFoo> and start behaving like |
|
// NiceMock<MockFoo>. |
|
// |
|
// NiceMock, NaggyMock, and StrictMock "inherit" the constructors of |
|
// their respective base class. Therefore you can write |
|
// NiceMock<MockFoo>(5, "a") to construct a nice mock where MockFoo |
|
// has a constructor that accepts (int, const char*), for example. |
|
// |
|
// A known limitation is that NiceMock<MockFoo>, NaggyMock<MockFoo>, |
|
// and StrictMock<MockFoo> only works for mock methods defined using |
|
// the MOCK_METHOD* family of macros DIRECTLY in the MockFoo class. |
|
// If a mock method is defined in a base class of MockFoo, the "nice" |
|
// or "strict" modifier may not affect it, depending on the compiler. |
|
// In particular, nesting NiceMock, NaggyMock, and StrictMock is NOT |
|
// supported. |
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE |
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ |
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ |
|
|
|
#include <type_traits> |
|
|
|
|
|
namespace testing { |
|
template <class MockClass> |
|
class NiceMock; |
|
template <class MockClass> |
|
class NaggyMock; |
|
template <class MockClass> |
|
class StrictMock; |
|
|
|
namespace internal { |
|
template <typename T> |
|
std::true_type StrictnessModifierProbe(const NiceMock<T>&); |
|
template <typename T> |
|
std::true_type StrictnessModifierProbe(const NaggyMock<T>&); |
|
template <typename T> |
|
std::true_type StrictnessModifierProbe(const StrictMock<T>&); |
|
std::false_type StrictnessModifierProbe(...); |
|
|
|
template <typename T> |
|
constexpr bool HasStrictnessModifier() { |
|
return decltype(StrictnessModifierProbe(std::declval<const T&>()))::value; |
|
} |
|
|
|
// Base classes that register and deregister with testing::Mock to alter the |
|
// default behavior around uninteresting calls. Inheriting from one of these |
|
// classes first and then MockClass ensures the MockClass constructor is run |
|
// after registration, and that the MockClass destructor runs before |
|
// deregistration. This guarantees that MockClass's constructor and destructor |
|
// run with the same level of strictness as its instance methods. |
|
|
|
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW && \ |
|
(defined(_MSC_VER) || defined(__clang__)) |
|
// We need to mark these classes with this declspec to ensure that |
|
// the empty base class optimization is performed. |
|
#define GTEST_INTERNAL_EMPTY_BASE_CLASS __declspec(empty_bases) |
|
#else |
|
#define GTEST_INTERNAL_EMPTY_BASE_CLASS |
|
#endif |
|
|
|
template <typename Base> |
|
class NiceMockImpl { |
|
public: |
|
NiceMockImpl() { ::testing::Mock::AllowUninterestingCalls(this); } |
|
|
|
~NiceMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } |
|
}; |
|
|
|
template <typename Base> |
|
class NaggyMockImpl { |
|
public: |
|
NaggyMockImpl() { ::testing::Mock::WarnUninterestingCalls(this); } |
|
|
|
~NaggyMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } |
|
}; |
|
|
|
template <typename Base> |
|
class StrictMockImpl { |
|
public: |
|
StrictMockImpl() { ::testing::Mock::FailUninterestingCalls(this); } |
|
|
|
~StrictMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } |
|
}; |
|
|
|
} // namespace internal |
|
|
|
template <class MockClass> |
|
class GTEST_INTERNAL_EMPTY_BASE_CLASS NiceMock |
|
: private internal::NiceMockImpl<MockClass>, |
|
public MockClass { |
|
public: |
|
static_assert(!internal::HasStrictnessModifier<MockClass>(), |
|
"Can't apply NiceMock to a class hierarchy that already has a " |
|
"strictness modifier. See " |
|
"https://google.github.io/googletest/" |
|
"gmock_cook_book.html#NiceStrictNaggy"); |
|
NiceMock() : MockClass() { |
|
static_assert(sizeof(*this) == sizeof(MockClass), |
|
"The impl subclass shouldn't introduce any padding"); |
|
} |
|
|
|
// Ideally, we would inherit base class's constructors through a using |
|
// declaration, which would preserve their visibility. However, many existing |
|
// tests rely on the fact that current implementation reexports protected |
|
// constructors as public. These tests would need to be cleaned up first. |
|
|
|
// Single argument constructor is special-cased so that it can be |
|
// made explicit. |
|
template <typename A> |
|
explicit NiceMock(A&& arg) : MockClass(std::forward<A>(arg)) { |
|
static_assert(sizeof(*this) == sizeof(MockClass), |
|
"The impl subclass shouldn't introduce any padding"); |
|
} |
|
|
|
template <typename TArg1, typename TArg2, typename... An> |
|
NiceMock(TArg1&& arg1, TArg2&& arg2, An&&... args) |
|
: MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), |
|
std::forward<An>(args)...) { |
|
static_assert(sizeof(*this) == sizeof(MockClass), |
|
"The impl subclass shouldn't introduce any padding"); |
|
} |
|
|
|
private: |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(NiceMock); |
|
}; |
|
|
|
template <class MockClass> |
|
class GTEST_INTERNAL_EMPTY_BASE_CLASS NaggyMock |
|
: private internal::NaggyMockImpl<MockClass>, |
|
public MockClass { |
|
static_assert(!internal::HasStrictnessModifier<MockClass>(), |
|
"Can't apply NaggyMock to a class hierarchy that already has a " |
|
"strictness modifier. See " |
|
"https://google.github.io/googletest/" |
|
"gmock_cook_book.html#NiceStrictNaggy"); |
|
|
|
public: |
|
NaggyMock() : MockClass() { |
|
static_assert(sizeof(*this) == sizeof(MockClass), |
|
"The impl subclass shouldn't introduce any padding"); |
|
} |
|
|
|
// Ideally, we would inherit base class's constructors through a using |
|
// declaration, which would preserve their visibility. However, many existing |
|
// tests rely on the fact that current implementation reexports protected |
|
// constructors as public. These tests would need to be cleaned up first. |
|
|
|
// Single argument constructor is special-cased so that it can be |
|
// made explicit. |
|
template <typename A> |
|
explicit NaggyMock(A&& arg) : MockClass(std::forward<A>(arg)) { |
|
static_assert(sizeof(*this) == sizeof(MockClass), |
|
"The impl subclass shouldn't introduce any padding"); |
|
} |
|
|
|
template <typename TArg1, typename TArg2, typename... An> |
|
NaggyMock(TArg1&& arg1, TArg2&& arg2, An&&... args) |
|
: MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), |
|
std::forward<An>(args)...) { |
|
static_assert(sizeof(*this) == sizeof(MockClass), |
|
"The impl subclass shouldn't introduce any padding"); |
|
} |
|
|
|
private: |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(NaggyMock); |
|
}; |
|
|
|
template <class MockClass> |
|
class GTEST_INTERNAL_EMPTY_BASE_CLASS StrictMock |
|
: private internal::StrictMockImpl<MockClass>, |
|
public MockClass { |
|
public: |
|
static_assert( |
|
!internal::HasStrictnessModifier<MockClass>(), |
|
"Can't apply StrictMock to a class hierarchy that already has a " |
|
"strictness modifier. See " |
|
"https://google.github.io/googletest/" |
|
"gmock_cook_book.html#NiceStrictNaggy"); |
|
StrictMock() : MockClass() { |
|
static_assert(sizeof(*this) == sizeof(MockClass), |
|
"The impl subclass shouldn't introduce any padding"); |
|
} |
|
|
|
// Ideally, we would inherit base class's constructors through a using |
|
// declaration, which would preserve their visibility. However, many existing |
|
// tests rely on the fact that current implementation reexports protected |
|
// constructors as public. These tests would need to be cleaned up first. |
|
|
|
// Single argument constructor is special-cased so that it can be |
|
// made explicit. |
|
template <typename A> |
|
explicit StrictMock(A&& arg) : MockClass(std::forward<A>(arg)) { |
|
static_assert(sizeof(*this) == sizeof(MockClass), |
|
"The impl subclass shouldn't introduce any padding"); |
|
} |
|
|
|
template <typename TArg1, typename TArg2, typename... An> |
|
StrictMock(TArg1&& arg1, TArg2&& arg2, An&&... args) |
|
: MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), |
|
std::forward<An>(args)...) { |
|
static_assert(sizeof(*this) == sizeof(MockClass), |
|
"The impl subclass shouldn't introduce any padding"); |
|
} |
|
|
|
private: |
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(StrictMock); |
|
}; |
|
|
|
#undef GTEST_INTERNAL_EMPTY_BASE_CLASS |
|
|
|
} // namespace testing |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ |
|
|
|
namespace testing { |
|
|
|
// Declares Google Mock flags that we want a user to use programmatically. |
|
GMOCK_DECLARE_bool_(catch_leaked_mocks); |
|
GMOCK_DECLARE_string_(verbose); |
|
GMOCK_DECLARE_int32_(default_mock_behavior); |
|
|
|
// Initializes Google Mock. This must be called before running the |
|
// tests. In particular, it parses the command line for the flags |
|
// that Google Mock recognizes. Whenever a Google Mock flag is seen, |
|
// it is removed from argv, and *argc is decremented. |
|
// |
|
// No value is returned. Instead, the Google Mock flag variables are |
|
// updated. |
|
// |
|
// Since Google Test is needed for Google Mock to work, this function |
|
// also initializes Google Test and parses its flags, if that hasn't |
|
// been done. |
|
GTEST_API_ void InitGoogleMock(int* argc, char** argv); |
|
|
|
// This overloaded version can be used in Windows programs compiled in |
|
// UNICODE mode. |
|
GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv); |
|
|
|
// This overloaded version can be used on Arduino/embedded platforms where |
|
// there is no argc/argv. |
|
GTEST_API_ void InitGoogleMock(); |
|
|
|
} // namespace testing |
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
|
|
|