mirror of https://github.com/c-ares/c-ares.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1473 lines
46 KiB
1473 lines
46 KiB
|
|
/* Copyright 1998 by the Massachusetts Institute of Technology. |
|
* Copyright (C) 2004-2017 by Daniel Stenberg |
|
* |
|
* Permission to use, copy, modify, and distribute this |
|
* software and its documentation for any purpose and without |
|
* fee is hereby granted, provided that the above copyright |
|
* notice appear in all copies and that both that copyright |
|
* notice and this permission notice appear in supporting |
|
* documentation, and that the name of M.I.T. not be used in |
|
* advertising or publicity pertaining to distribution of the |
|
* software without specific, written prior permission. |
|
* M.I.T. makes no representations about the suitability of |
|
* this software for any purpose. It is provided "as is" |
|
* without express or implied warranty. |
|
*/ |
|
|
|
#include "ares_setup.h" |
|
|
|
#ifdef HAVE_SYS_UIO_H |
|
# include <sys/uio.h> |
|
#endif |
|
#ifdef HAVE_NETINET_IN_H |
|
# include <netinet/in.h> |
|
#endif |
|
#ifdef HAVE_NETINET_TCP_H |
|
# include <netinet/tcp.h> |
|
#endif |
|
#ifdef HAVE_NETDB_H |
|
# include <netdb.h> |
|
#endif |
|
#ifdef HAVE_ARPA_INET_H |
|
# include <arpa/inet.h> |
|
#endif |
|
#ifdef HAVE_ARPA_NAMESER_H |
|
# include <arpa/nameser.h> |
|
#else |
|
# include "nameser.h" |
|
#endif |
|
#ifdef HAVE_ARPA_NAMESER_COMPAT_H |
|
# include <arpa/nameser_compat.h> |
|
#endif |
|
|
|
#ifdef HAVE_STRINGS_H |
|
# include <strings.h> |
|
#endif |
|
#ifdef HAVE_SYS_IOCTL_H |
|
# include <sys/ioctl.h> |
|
#endif |
|
#ifdef NETWARE |
|
# include <sys/filio.h> |
|
#endif |
|
|
|
#include <assert.h> |
|
#include <fcntl.h> |
|
#include <limits.h> |
|
|
|
#include "ares.h" |
|
#include "ares_dns.h" |
|
#include "ares_nowarn.h" |
|
#include "ares_private.h" |
|
|
|
|
|
static int try_again(int errnum); |
|
static void write_tcp_data(ares_channel channel, fd_set *write_fds, |
|
ares_socket_t write_fd, struct timeval *now); |
|
static void read_tcp_data(ares_channel channel, fd_set *read_fds, |
|
ares_socket_t read_fd, struct timeval *now); |
|
static void read_udp_packets(ares_channel channel, fd_set *read_fds, |
|
ares_socket_t read_fd, struct timeval *now); |
|
static void advance_tcp_send_queue(ares_channel channel, int whichserver, |
|
ares_ssize_t num_bytes); |
|
static void process_timeouts(ares_channel channel, struct timeval *now); |
|
static void process_broken_connections(ares_channel channel, |
|
struct timeval *now); |
|
static void process_answer(ares_channel channel, unsigned char *abuf, |
|
int alen, int whichserver, int tcp, |
|
struct timeval *now); |
|
static void handle_error(ares_channel channel, int whichserver, |
|
struct timeval *now); |
|
static void skip_server(ares_channel channel, struct query *query, |
|
int whichserver); |
|
static void next_server(ares_channel channel, struct query *query, |
|
struct timeval *now); |
|
static int open_tcp_socket(ares_channel channel, struct server_state *server); |
|
static int open_udp_socket(ares_channel channel, struct server_state *server); |
|
static int same_questions(const unsigned char *qbuf, int qlen, |
|
const unsigned char *abuf, int alen); |
|
static int same_address(struct sockaddr *sa, struct ares_addr *aa); |
|
static void end_query(ares_channel channel, struct query *query, int status, |
|
unsigned char *abuf, int alen); |
|
|
|
/* return true if now is exactly check time or later */ |
|
int ares__timedout(struct timeval *now, |
|
struct timeval *check) |
|
{ |
|
long secs = (now->tv_sec - check->tv_sec); |
|
|
|
if(secs > 0) |
|
return 1; /* yes, timed out */ |
|
if(secs < 0) |
|
return 0; /* nope, not timed out */ |
|
|
|
/* if the full seconds were identical, check the sub second parts */ |
|
return (now->tv_usec - check->tv_usec >= 0); |
|
} |
|
|
|
/* add the specific number of milliseconds to the time in the first argument */ |
|
static void timeadd(struct timeval *now, int millisecs) |
|
{ |
|
now->tv_sec += millisecs/1000; |
|
now->tv_usec += (millisecs%1000)*1000; |
|
|
|
if(now->tv_usec >= 1000000) { |
|
++(now->tv_sec); |
|
now->tv_usec -= 1000000; |
|
} |
|
} |
|
|
|
/* |
|
* generic process function |
|
*/ |
|
static void processfds(ares_channel channel, |
|
fd_set *read_fds, ares_socket_t read_fd, |
|
fd_set *write_fds, ares_socket_t write_fd) |
|
{ |
|
struct timeval now = ares__tvnow(); |
|
|
|
write_tcp_data(channel, write_fds, write_fd, &now); |
|
read_tcp_data(channel, read_fds, read_fd, &now); |
|
read_udp_packets(channel, read_fds, read_fd, &now); |
|
process_timeouts(channel, &now); |
|
process_broken_connections(channel, &now); |
|
} |
|
|
|
/* Something interesting happened on the wire, or there was a timeout. |
|
* See what's up and respond accordingly. |
|
*/ |
|
void ares_process(ares_channel channel, fd_set *read_fds, fd_set *write_fds) |
|
{ |
|
processfds(channel, read_fds, ARES_SOCKET_BAD, write_fds, ARES_SOCKET_BAD); |
|
} |
|
|
|
/* Something interesting happened on the wire, or there was a timeout. |
|
* See what's up and respond accordingly. |
|
*/ |
|
void ares_process_fd(ares_channel channel, |
|
ares_socket_t read_fd, /* use ARES_SOCKET_BAD or valid |
|
file descriptors */ |
|
ares_socket_t write_fd) |
|
{ |
|
processfds(channel, NULL, read_fd, NULL, write_fd); |
|
} |
|
|
|
|
|
/* Return 1 if the specified error number describes a readiness error, or 0 |
|
* otherwise. This is mostly for HP-UX, which could return EAGAIN or |
|
* EWOULDBLOCK. See this man page |
|
* |
|
* http://devrsrc1.external.hp.com/STKS/cgi-bin/man2html? |
|
* manpage=/usr/share/man/man2.Z/send.2 |
|
*/ |
|
static int try_again(int errnum) |
|
{ |
|
#if !defined EWOULDBLOCK && !defined EAGAIN |
|
#error "Neither EWOULDBLOCK nor EAGAIN defined" |
|
#endif |
|
switch (errnum) |
|
{ |
|
#ifdef EWOULDBLOCK |
|
case EWOULDBLOCK: |
|
return 1; |
|
#endif |
|
#if defined EAGAIN && EAGAIN != EWOULDBLOCK |
|
case EAGAIN: |
|
return 1; |
|
#endif |
|
} |
|
return 0; |
|
} |
|
|
|
static ares_ssize_t socket_writev(ares_channel channel, ares_socket_t s, const struct iovec * vec, int len) |
|
{ |
|
if (channel->sock_funcs) |
|
return channel->sock_funcs->asendv(s, vec, len, channel->sock_func_cb_data); |
|
|
|
return writev(s, vec, len); |
|
} |
|
|
|
static ares_ssize_t socket_write(ares_channel channel, ares_socket_t s, const void * data, size_t len) |
|
{ |
|
if (channel->sock_funcs) |
|
{ |
|
struct iovec vec; |
|
vec.iov_base = (void*)data; |
|
vec.iov_len = len; |
|
return channel->sock_funcs->asendv(s, &vec, 1, channel->sock_func_cb_data); |
|
} |
|
return swrite(s, data, len); |
|
} |
|
|
|
/* If any TCP sockets select true for writing, write out queued data |
|
* we have for them. |
|
*/ |
|
static void write_tcp_data(ares_channel channel, |
|
fd_set *write_fds, |
|
ares_socket_t write_fd, |
|
struct timeval *now) |
|
{ |
|
struct server_state *server; |
|
struct send_request *sendreq; |
|
struct iovec *vec; |
|
int i; |
|
ares_ssize_t scount; |
|
ares_ssize_t wcount; |
|
size_t n; |
|
|
|
if(!write_fds && (write_fd == ARES_SOCKET_BAD)) |
|
/* no possible action */ |
|
return; |
|
|
|
for (i = 0; i < channel->nservers; i++) |
|
{ |
|
/* Make sure server has data to send and is selected in write_fds or |
|
write_fd. */ |
|
server = &channel->servers[i]; |
|
if (!server->qhead || server->tcp_socket == ARES_SOCKET_BAD || |
|
server->is_broken) |
|
continue; |
|
|
|
if(write_fds) { |
|
if(!FD_ISSET(server->tcp_socket, write_fds)) |
|
continue; |
|
} |
|
else { |
|
if(server->tcp_socket != write_fd) |
|
continue; |
|
} |
|
|
|
if(write_fds) |
|
/* If there's an error and we close this socket, then open |
|
* another with the same fd to talk to another server, then we |
|
* don't want to think that it was the new socket that was |
|
* ready. This is not disastrous, but is likely to result in |
|
* extra system calls and confusion. */ |
|
FD_CLR(server->tcp_socket, write_fds); |
|
|
|
/* Count the number of send queue items. */ |
|
n = 0; |
|
for (sendreq = server->qhead; sendreq; sendreq = sendreq->next) |
|
n++; |
|
|
|
/* Allocate iovecs so we can send all our data at once. */ |
|
vec = ares_malloc(n * sizeof(struct iovec)); |
|
if (vec) |
|
{ |
|
/* Fill in the iovecs and send. */ |
|
n = 0; |
|
for (sendreq = server->qhead; sendreq; sendreq = sendreq->next) |
|
{ |
|
vec[n].iov_base = (char *) sendreq->data; |
|
vec[n].iov_len = sendreq->len; |
|
n++; |
|
} |
|
wcount = socket_writev(channel, server->tcp_socket, vec, (int)n); |
|
ares_free(vec); |
|
if (wcount < 0) |
|
{ |
|
if (!try_again(SOCKERRNO)) |
|
handle_error(channel, i, now); |
|
continue; |
|
} |
|
|
|
/* Advance the send queue by as many bytes as we sent. */ |
|
advance_tcp_send_queue(channel, i, wcount); |
|
} |
|
else |
|
{ |
|
/* Can't allocate iovecs; just send the first request. */ |
|
sendreq = server->qhead; |
|
|
|
scount = socket_write(channel, server->tcp_socket, sendreq->data, sendreq->len); |
|
if (scount < 0) |
|
{ |
|
if (!try_again(SOCKERRNO)) |
|
handle_error(channel, i, now); |
|
continue; |
|
} |
|
|
|
/* Advance the send queue by as many bytes as we sent. */ |
|
advance_tcp_send_queue(channel, i, scount); |
|
} |
|
} |
|
} |
|
|
|
/* Consume the given number of bytes from the head of the TCP send queue. */ |
|
static void advance_tcp_send_queue(ares_channel channel, int whichserver, |
|
ares_ssize_t num_bytes) |
|
{ |
|
struct send_request *sendreq; |
|
struct server_state *server = &channel->servers[whichserver]; |
|
while (num_bytes > 0) { |
|
sendreq = server->qhead; |
|
if ((size_t)num_bytes >= sendreq->len) { |
|
num_bytes -= sendreq->len; |
|
server->qhead = sendreq->next; |
|
if (sendreq->data_storage) |
|
ares_free(sendreq->data_storage); |
|
ares_free(sendreq); |
|
if (server->qhead == NULL) { |
|
SOCK_STATE_CALLBACK(channel, server->tcp_socket, 1, 0); |
|
server->qtail = NULL; |
|
|
|
/* qhead is NULL so we cannot continue this loop */ |
|
break; |
|
} |
|
} |
|
else { |
|
sendreq->data += num_bytes; |
|
sendreq->len -= num_bytes; |
|
num_bytes = 0; |
|
} |
|
} |
|
} |
|
|
|
static ares_ssize_t socket_recvfrom(ares_channel channel, |
|
ares_socket_t s, |
|
void * data, |
|
size_t data_len, |
|
int flags, |
|
struct sockaddr *from, |
|
ares_socklen_t *from_len) |
|
{ |
|
if (channel->sock_funcs) |
|
return channel->sock_funcs->arecvfrom(s, data, data_len, |
|
flags, from, from_len, |
|
channel->sock_func_cb_data); |
|
|
|
#ifdef HAVE_RECVFROM |
|
return recvfrom(s, data, data_len, flags, from, from_len); |
|
#else |
|
return sread(s, data, data_len); |
|
#endif |
|
} |
|
|
|
static ares_ssize_t socket_recv(ares_channel channel, |
|
ares_socket_t s, |
|
void * data, |
|
size_t data_len) |
|
{ |
|
if (channel->sock_funcs) |
|
return channel->sock_funcs->arecvfrom(s, data, data_len, 0, 0, 0, |
|
channel->sock_func_cb_data); |
|
|
|
return sread(s, data, data_len); |
|
} |
|
|
|
/* If any TCP socket selects true for reading, read some data, |
|
* allocate a buffer if we finish reading the length word, and process |
|
* a packet if we finish reading one. |
|
*/ |
|
static void read_tcp_data(ares_channel channel, fd_set *read_fds, |
|
ares_socket_t read_fd, struct timeval *now) |
|
{ |
|
struct server_state *server; |
|
int i; |
|
ares_ssize_t count; |
|
|
|
if(!read_fds && (read_fd == ARES_SOCKET_BAD)) |
|
/* no possible action */ |
|
return; |
|
|
|
for (i = 0; i < channel->nservers; i++) |
|
{ |
|
/* Make sure the server has a socket and is selected in read_fds. */ |
|
server = &channel->servers[i]; |
|
if (server->tcp_socket == ARES_SOCKET_BAD || server->is_broken) |
|
continue; |
|
|
|
if(read_fds) { |
|
if(!FD_ISSET(server->tcp_socket, read_fds)) |
|
continue; |
|
} |
|
else { |
|
if(server->tcp_socket != read_fd) |
|
continue; |
|
} |
|
|
|
if(read_fds) |
|
/* If there's an error and we close this socket, then open another |
|
* with the same fd to talk to another server, then we don't want to |
|
* think that it was the new socket that was ready. This is not |
|
* disastrous, but is likely to result in extra system calls and |
|
* confusion. */ |
|
FD_CLR(server->tcp_socket, read_fds); |
|
|
|
if (server->tcp_lenbuf_pos != 2) |
|
{ |
|
/* We haven't yet read a length word, so read that (or |
|
* what's left to read of it). |
|
*/ |
|
count = socket_recv(channel, server->tcp_socket, |
|
server->tcp_lenbuf + server->tcp_lenbuf_pos, |
|
2 - server->tcp_lenbuf_pos); |
|
if (count <= 0) |
|
{ |
|
if (!(count == -1 && try_again(SOCKERRNO))) |
|
handle_error(channel, i, now); |
|
continue; |
|
} |
|
|
|
server->tcp_lenbuf_pos += (int)count; |
|
if (server->tcp_lenbuf_pos == 2) |
|
{ |
|
/* We finished reading the length word. Decode the |
|
* length and allocate a buffer for the data. |
|
*/ |
|
server->tcp_length = server->tcp_lenbuf[0] << 8 |
|
| server->tcp_lenbuf[1]; |
|
server->tcp_buffer = ares_malloc(server->tcp_length); |
|
if (!server->tcp_buffer) { |
|
handle_error(channel, i, now); |
|
return; /* bail out on malloc failure. TODO: make this |
|
function return error codes */ |
|
} |
|
server->tcp_buffer_pos = 0; |
|
} |
|
} |
|
else |
|
{ |
|
/* Read data into the allocated buffer. */ |
|
count = socket_recv(channel, server->tcp_socket, |
|
server->tcp_buffer + server->tcp_buffer_pos, |
|
server->tcp_length - server->tcp_buffer_pos); |
|
if (count <= 0) |
|
{ |
|
if (!(count == -1 && try_again(SOCKERRNO))) |
|
handle_error(channel, i, now); |
|
continue; |
|
} |
|
|
|
server->tcp_buffer_pos += (int)count; |
|
if (server->tcp_buffer_pos == server->tcp_length) |
|
{ |
|
/* We finished reading this answer; process it and |
|
* prepare to read another length word. |
|
*/ |
|
process_answer(channel, server->tcp_buffer, server->tcp_length, |
|
i, 1, now); |
|
ares_free(server->tcp_buffer); |
|
server->tcp_buffer = NULL; |
|
server->tcp_lenbuf_pos = 0; |
|
server->tcp_buffer_pos = 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* If any UDP sockets select true for reading, process them. */ |
|
static void read_udp_packets(ares_channel channel, fd_set *read_fds, |
|
ares_socket_t read_fd, struct timeval *now) |
|
{ |
|
struct server_state *server; |
|
int i; |
|
ares_ssize_t count; |
|
unsigned char buf[MAXENDSSZ + 1]; |
|
#ifdef HAVE_RECVFROM |
|
ares_socklen_t fromlen; |
|
union { |
|
struct sockaddr sa; |
|
struct sockaddr_in sa4; |
|
struct sockaddr_in6 sa6; |
|
} from; |
|
#endif |
|
|
|
if(!read_fds && (read_fd == ARES_SOCKET_BAD)) |
|
/* no possible action */ |
|
return; |
|
|
|
for (i = 0; i < channel->nservers; i++) |
|
{ |
|
/* Make sure the server has a socket and is selected in read_fds. */ |
|
server = &channel->servers[i]; |
|
|
|
if (server->udp_socket == ARES_SOCKET_BAD || server->is_broken) |
|
continue; |
|
|
|
if(read_fds) { |
|
if(!FD_ISSET(server->udp_socket, read_fds)) |
|
continue; |
|
} |
|
else { |
|
if(server->udp_socket != read_fd) |
|
continue; |
|
} |
|
|
|
if(read_fds) |
|
/* If there's an error and we close this socket, then open |
|
* another with the same fd to talk to another server, then we |
|
* don't want to think that it was the new socket that was |
|
* ready. This is not disastrous, but is likely to result in |
|
* extra system calls and confusion. */ |
|
FD_CLR(server->udp_socket, read_fds); |
|
|
|
/* To reduce event loop overhead, read and process as many |
|
* packets as we can. */ |
|
do { |
|
if (server->udp_socket == ARES_SOCKET_BAD) |
|
count = 0; |
|
|
|
else { |
|
if (server->addr.family == AF_INET) |
|
fromlen = sizeof(from.sa4); |
|
else |
|
fromlen = sizeof(from.sa6); |
|
count = socket_recvfrom(channel, server->udp_socket, (void *)buf, |
|
sizeof(buf), 0, &from.sa, &fromlen); |
|
} |
|
|
|
if (count == -1 && try_again(SOCKERRNO)) |
|
continue; |
|
else if (count <= 0) |
|
handle_error(channel, i, now); |
|
#ifdef HAVE_RECVFROM |
|
else if (!same_address(&from.sa, &server->addr)) |
|
/* The address the response comes from does not match the address we |
|
* sent the request to. Someone may be attempting to perform a cache |
|
* poisoning attack. */ |
|
break; |
|
#endif |
|
else |
|
process_answer(channel, buf, (int)count, i, 0, now); |
|
} while (count > 0); |
|
} |
|
} |
|
|
|
/* If any queries have timed out, note the timeout and move them on. */ |
|
static void process_timeouts(ares_channel channel, struct timeval *now) |
|
{ |
|
time_t t; /* the time of the timeouts we're processing */ |
|
struct query *query; |
|
struct list_node* list_head; |
|
struct list_node* list_node; |
|
|
|
/* Process all the timeouts that have fired since the last time we processed |
|
* timeouts. If things are going well, then we'll have hundreds/thousands of |
|
* queries that fall into future buckets, and only a handful of requests |
|
* that fall into the "now" bucket, so this should be quite quick. |
|
*/ |
|
for (t = channel->last_timeout_processed; t <= now->tv_sec; t++) |
|
{ |
|
list_head = &(channel->queries_by_timeout[t % ARES_TIMEOUT_TABLE_SIZE]); |
|
for (list_node = list_head->next; list_node != list_head; ) |
|
{ |
|
query = list_node->data; |
|
list_node = list_node->next; /* in case the query gets deleted */ |
|
if (query->timeout.tv_sec && ares__timedout(now, &query->timeout)) |
|
{ |
|
query->error_status = ARES_ETIMEOUT; |
|
++query->timeouts; |
|
next_server(channel, query, now); |
|
} |
|
} |
|
} |
|
channel->last_timeout_processed = now->tv_sec; |
|
} |
|
|
|
/* Handle an answer from a server. */ |
|
static void process_answer(ares_channel channel, unsigned char *abuf, |
|
int alen, int whichserver, int tcp, |
|
struct timeval *now) |
|
{ |
|
int tc, rcode, packetsz; |
|
unsigned short id; |
|
struct query *query; |
|
struct list_node* list_head; |
|
struct list_node* list_node; |
|
|
|
/* If there's no room in the answer for a header, we can't do much |
|
* with it. */ |
|
if (alen < HFIXEDSZ) |
|
return; |
|
|
|
/* Grab the query ID, truncate bit, and response code from the packet. */ |
|
id = DNS_HEADER_QID(abuf); |
|
tc = DNS_HEADER_TC(abuf); |
|
rcode = DNS_HEADER_RCODE(abuf); |
|
|
|
/* Find the query corresponding to this packet. The queries are |
|
* hashed/bucketed by query id, so this lookup should be quick. Note that |
|
* both the query id and the questions must be the same; when the query id |
|
* wraps around we can have multiple outstanding queries with the same query |
|
* id, so we need to check both the id and question. |
|
*/ |
|
query = NULL; |
|
list_head = &(channel->queries_by_qid[id % ARES_QID_TABLE_SIZE]); |
|
for (list_node = list_head->next; list_node != list_head; |
|
list_node = list_node->next) |
|
{ |
|
struct query *q = list_node->data; |
|
if ((q->qid == id) && same_questions(q->qbuf, q->qlen, abuf, alen)) |
|
{ |
|
query = q; |
|
break; |
|
} |
|
} |
|
if (!query) |
|
return; |
|
|
|
packetsz = PACKETSZ; |
|
/* If we use EDNS and server answers with one of these RCODES, the protocol |
|
* extension is not understood by the responder. We must retry the query |
|
* without EDNS enabled. |
|
*/ |
|
if (channel->flags & ARES_FLAG_EDNS) |
|
{ |
|
packetsz = channel->ednspsz; |
|
if (rcode == NOTIMP || rcode == FORMERR || rcode == SERVFAIL) |
|
{ |
|
int qlen = (query->tcplen - 2) - EDNSFIXEDSZ; |
|
channel->flags ^= ARES_FLAG_EDNS; |
|
query->tcplen -= EDNSFIXEDSZ; |
|
query->qlen -= EDNSFIXEDSZ; |
|
query->tcpbuf[0] = (unsigned char)((qlen >> 8) & 0xff); |
|
query->tcpbuf[1] = (unsigned char)(qlen & 0xff); |
|
DNS_HEADER_SET_ARCOUNT(query->tcpbuf + 2, 0); |
|
query->tcpbuf = ares_realloc(query->tcpbuf, query->tcplen); |
|
query->qbuf = query->tcpbuf + 2; |
|
ares__send_query(channel, query, now); |
|
return; |
|
} |
|
} |
|
|
|
/* If we got a truncated UDP packet and are not ignoring truncation, |
|
* don't accept the packet, and switch the query to TCP if we hadn't |
|
* done so already. |
|
*/ |
|
if ((tc || alen > packetsz) && !tcp && !(channel->flags & ARES_FLAG_IGNTC)) |
|
{ |
|
if (!query->using_tcp) |
|
{ |
|
query->using_tcp = 1; |
|
ares__send_query(channel, query, now); |
|
} |
|
return; |
|
} |
|
|
|
/* Limit alen to PACKETSZ if we aren't using TCP (only relevant if we |
|
* are ignoring truncation. |
|
*/ |
|
if (alen > packetsz && !tcp) |
|
alen = packetsz; |
|
|
|
/* If we aren't passing through all error packets, discard packets |
|
* with SERVFAIL, NOTIMP, or REFUSED response codes. |
|
*/ |
|
if (!(channel->flags & ARES_FLAG_NOCHECKRESP)) |
|
{ |
|
if (rcode == SERVFAIL || rcode == NOTIMP || rcode == REFUSED) |
|
{ |
|
skip_server(channel, query, whichserver); |
|
if (query->server == whichserver) |
|
next_server(channel, query, now); |
|
return; |
|
} |
|
} |
|
|
|
end_query(channel, query, ARES_SUCCESS, abuf, alen); |
|
} |
|
|
|
/* Close all the connections that are no longer usable. */ |
|
static void process_broken_connections(ares_channel channel, |
|
struct timeval *now) |
|
{ |
|
int i; |
|
for (i = 0; i < channel->nservers; i++) |
|
{ |
|
struct server_state *server = &channel->servers[i]; |
|
if (server->is_broken) |
|
{ |
|
handle_error(channel, i, now); |
|
} |
|
} |
|
} |
|
|
|
/* Swap the contents of two lists */ |
|
static void swap_lists(struct list_node* head_a, |
|
struct list_node* head_b) |
|
{ |
|
int is_a_empty = ares__is_list_empty(head_a); |
|
int is_b_empty = ares__is_list_empty(head_b); |
|
struct list_node old_a = *head_a; |
|
struct list_node old_b = *head_b; |
|
|
|
if (is_a_empty) { |
|
ares__init_list_head(head_b); |
|
} else { |
|
*head_b = old_a; |
|
old_a.next->prev = head_b; |
|
old_a.prev->next = head_b; |
|
} |
|
if (is_b_empty) { |
|
ares__init_list_head(head_a); |
|
} else { |
|
*head_a = old_b; |
|
old_b.next->prev = head_a; |
|
old_b.prev->next = head_a; |
|
} |
|
} |
|
|
|
static void handle_error(ares_channel channel, int whichserver, |
|
struct timeval *now) |
|
{ |
|
struct server_state *server; |
|
struct query *query; |
|
struct list_node list_head; |
|
struct list_node* list_node; |
|
|
|
server = &channel->servers[whichserver]; |
|
|
|
/* Reset communications with this server. */ |
|
ares__close_sockets(channel, server); |
|
|
|
/* Tell all queries talking to this server to move on and not try this |
|
* server again. We steal the current list of queries that were in-flight to |
|
* this server, since when we call next_server this can cause the queries to |
|
* be re-sent to this server, which will re-insert these queries in that |
|
* same server->queries_to_server list. |
|
*/ |
|
ares__init_list_head(&list_head); |
|
swap_lists(&list_head, &(server->queries_to_server)); |
|
for (list_node = list_head.next; list_node != &list_head; ) |
|
{ |
|
query = list_node->data; |
|
list_node = list_node->next; /* in case the query gets deleted */ |
|
assert(query->server == whichserver); |
|
skip_server(channel, query, whichserver); |
|
next_server(channel, query, now); |
|
} |
|
/* Each query should have removed itself from our temporary list as |
|
* it re-sent itself or finished up... |
|
*/ |
|
assert(ares__is_list_empty(&list_head)); |
|
} |
|
|
|
static void skip_server(ares_channel channel, struct query *query, |
|
int whichserver) |
|
{ |
|
/* The given server gave us problems with this query, so if we have the |
|
* luxury of using other servers, then let's skip the potentially broken |
|
* server and just use the others. If we only have one server and we need to |
|
* retry then we should just go ahead and re-use that server, since it's our |
|
* only hope; perhaps we just got unlucky, and retrying will work (eg, the |
|
* server timed out our TCP connection just as we were sending another |
|
* request). |
|
*/ |
|
if (channel->nservers > 1) |
|
{ |
|
query->server_info[whichserver].skip_server = 1; |
|
} |
|
} |
|
|
|
static void next_server(ares_channel channel, struct query *query, |
|
struct timeval *now) |
|
{ |
|
/* We need to try each server channel->tries times. We have channel->nservers |
|
* servers to try. In total, we need to do channel->nservers * channel->tries |
|
* attempts. Use query->try to remember how many times we already attempted |
|
* this query. Use modular arithmetic to find the next server to try. */ |
|
while (++(query->try_count) < (channel->nservers * channel->tries)) |
|
{ |
|
struct server_state *server; |
|
|
|
/* Move on to the next server. */ |
|
query->server = (query->server + 1) % channel->nservers; |
|
server = &channel->servers[query->server]; |
|
|
|
/* We don't want to use this server if (1) we decided this connection is |
|
* broken, and thus about to be closed, (2) we've decided to skip this |
|
* server because of earlier errors we encountered, or (3) we already |
|
* sent this query over this exact connection. |
|
*/ |
|
if (!server->is_broken && |
|
!query->server_info[query->server].skip_server && |
|
!(query->using_tcp && |
|
(query->server_info[query->server].tcp_connection_generation == |
|
server->tcp_connection_generation))) |
|
{ |
|
ares__send_query(channel, query, now); |
|
return; |
|
} |
|
|
|
/* You might think that with TCP we only need one try. However, even |
|
* when using TCP, servers can time-out our connection just as we're |
|
* sending a request, or close our connection because they die, or never |
|
* send us a reply because they get wedged or tickle a bug that drops |
|
* our request. |
|
*/ |
|
} |
|
|
|
/* If we are here, all attempts to perform query failed. */ |
|
end_query(channel, query, query->error_status, NULL, 0); |
|
} |
|
|
|
void ares__send_query(ares_channel channel, struct query *query, |
|
struct timeval *now) |
|
{ |
|
struct send_request *sendreq; |
|
struct server_state *server; |
|
int timeplus; |
|
|
|
server = &channel->servers[query->server]; |
|
if (query->using_tcp) |
|
{ |
|
/* Make sure the TCP socket for this server is set up and queue |
|
* a send request. |
|
*/ |
|
if (server->tcp_socket == ARES_SOCKET_BAD) |
|
{ |
|
if (open_tcp_socket(channel, server) == -1) |
|
{ |
|
skip_server(channel, query, query->server); |
|
next_server(channel, query, now); |
|
return; |
|
} |
|
} |
|
sendreq = ares_malloc(sizeof(struct send_request)); |
|
if (!sendreq) |
|
{ |
|
end_query(channel, query, ARES_ENOMEM, NULL, 0); |
|
return; |
|
} |
|
memset(sendreq, 0, sizeof(struct send_request)); |
|
/* To make the common case fast, we avoid copies by using the query's |
|
* tcpbuf for as long as the query is alive. In the rare case where the |
|
* query ends while it's queued for transmission, then we give the |
|
* sendreq its own copy of the request packet and put it in |
|
* sendreq->data_storage. |
|
*/ |
|
sendreq->data_storage = NULL; |
|
sendreq->data = query->tcpbuf; |
|
sendreq->len = query->tcplen; |
|
sendreq->owner_query = query; |
|
sendreq->next = NULL; |
|
if (server->qtail) |
|
server->qtail->next = sendreq; |
|
else |
|
{ |
|
SOCK_STATE_CALLBACK(channel, server->tcp_socket, 1, 1); |
|
server->qhead = sendreq; |
|
} |
|
server->qtail = sendreq; |
|
query->server_info[query->server].tcp_connection_generation = |
|
server->tcp_connection_generation; |
|
} |
|
else |
|
{ |
|
if (server->udp_socket == ARES_SOCKET_BAD) |
|
{ |
|
if (open_udp_socket(channel, server) == -1) |
|
{ |
|
skip_server(channel, query, query->server); |
|
next_server(channel, query, now); |
|
return; |
|
} |
|
} |
|
if (socket_write(channel, server->udp_socket, query->qbuf, query->qlen) == -1) |
|
{ |
|
/* FIXME: Handle EAGAIN here since it likely can happen. */ |
|
skip_server(channel, query, query->server); |
|
next_server(channel, query, now); |
|
return; |
|
} |
|
} |
|
|
|
/* For each trip through the entire server list, double the channel's |
|
* assigned timeout, avoiding overflow. If channel->timeout is negative, |
|
* leave it as-is, even though that should be impossible here. |
|
*/ |
|
timeplus = channel->timeout; |
|
{ |
|
/* How many times do we want to double it? Presume sane values here. */ |
|
const int shift = query->try_count / channel->nservers; |
|
|
|
/* Is there enough room to shift timeplus left that many times? |
|
* |
|
* To find out, confirm that all of the bits we'll shift away are zero. |
|
* Stop considering a shift if we get to the point where we could shift |
|
* a 1 into the sign bit (i.e. when shift is within two of the bit |
|
* count). |
|
* |
|
* This has the side benefit of leaving negative numbers unchanged. |
|
*/ |
|
if(shift <= (int)(sizeof(int) * CHAR_BIT - 1) |
|
&& (timeplus >> (sizeof(int) * CHAR_BIT - 1 - shift)) == 0) |
|
{ |
|
timeplus <<= shift; |
|
} |
|
} |
|
|
|
query->timeout = *now; |
|
timeadd(&query->timeout, timeplus); |
|
/* Keep track of queries bucketed by timeout, so we can process |
|
* timeout events quickly. |
|
*/ |
|
ares__remove_from_list(&(query->queries_by_timeout)); |
|
ares__insert_in_list( |
|
&(query->queries_by_timeout), |
|
&(channel->queries_by_timeout[query->timeout.tv_sec % |
|
ARES_TIMEOUT_TABLE_SIZE])); |
|
|
|
/* Keep track of queries bucketed by server, so we can process server |
|
* errors quickly. |
|
*/ |
|
ares__remove_from_list(&(query->queries_to_server)); |
|
ares__insert_in_list(&(query->queries_to_server), |
|
&(server->queries_to_server)); |
|
} |
|
|
|
/* |
|
* setsocknonblock sets the given socket to either blocking or non-blocking |
|
* mode based on the 'nonblock' boolean argument. This function is highly |
|
* portable. |
|
*/ |
|
static int setsocknonblock(ares_socket_t sockfd, /* operate on this */ |
|
int nonblock /* TRUE or FALSE */) |
|
{ |
|
#if defined(USE_BLOCKING_SOCKETS) |
|
|
|
return 0; /* returns success */ |
|
|
|
#elif defined(HAVE_FCNTL_O_NONBLOCK) |
|
|
|
/* most recent unix versions */ |
|
int flags; |
|
flags = fcntl(sockfd, F_GETFL, 0); |
|
if (FALSE != nonblock) |
|
return fcntl(sockfd, F_SETFL, flags | O_NONBLOCK); |
|
else |
|
return fcntl(sockfd, F_SETFL, flags & (~O_NONBLOCK)); /* LCOV_EXCL_LINE */ |
|
|
|
#elif defined(HAVE_IOCTL_FIONBIO) |
|
|
|
/* older unix versions */ |
|
int flags = nonblock ? 1 : 0; |
|
return ioctl(sockfd, FIONBIO, &flags); |
|
|
|
#elif defined(HAVE_IOCTLSOCKET_FIONBIO) |
|
|
|
#ifdef WATT32 |
|
char flags = nonblock ? 1 : 0; |
|
#else |
|
/* Windows */ |
|
unsigned long flags = nonblock ? 1UL : 0UL; |
|
#endif |
|
return ioctlsocket(sockfd, FIONBIO, &flags); |
|
|
|
#elif defined(HAVE_IOCTLSOCKET_CAMEL_FIONBIO) |
|
|
|
/* Amiga */ |
|
long flags = nonblock ? 1L : 0L; |
|
return IoctlSocket(sockfd, FIONBIO, flags); |
|
|
|
#elif defined(HAVE_SETSOCKOPT_SO_NONBLOCK) |
|
|
|
/* BeOS */ |
|
long b = nonblock ? 1L : 0L; |
|
return setsockopt(sockfd, SOL_SOCKET, SO_NONBLOCK, &b, sizeof(b)); |
|
|
|
#else |
|
# error "no non-blocking method was found/used/set" |
|
#endif |
|
} |
|
|
|
static int configure_socket(ares_socket_t s, int family, ares_channel channel) |
|
{ |
|
union { |
|
struct sockaddr sa; |
|
struct sockaddr_in sa4; |
|
struct sockaddr_in6 sa6; |
|
} local; |
|
|
|
/* do not set options for user-managed sockets */ |
|
if (channel->sock_funcs) |
|
return 0; |
|
|
|
(void)setsocknonblock(s, TRUE); |
|
|
|
#if defined(FD_CLOEXEC) && !defined(MSDOS) |
|
/* Configure the socket fd as close-on-exec. */ |
|
if (fcntl(s, F_SETFD, FD_CLOEXEC) == -1) |
|
return -1; /* LCOV_EXCL_LINE */ |
|
#endif |
|
|
|
/* Set the socket's send and receive buffer sizes. */ |
|
if ((channel->socket_send_buffer_size > 0) && |
|
setsockopt(s, SOL_SOCKET, SO_SNDBUF, |
|
(void *)&channel->socket_send_buffer_size, |
|
sizeof(channel->socket_send_buffer_size)) == -1) |
|
return -1; |
|
|
|
if ((channel->socket_receive_buffer_size > 0) && |
|
setsockopt(s, SOL_SOCKET, SO_RCVBUF, |
|
(void *)&channel->socket_receive_buffer_size, |
|
sizeof(channel->socket_receive_buffer_size)) == -1) |
|
return -1; |
|
|
|
#ifdef SO_BINDTODEVICE |
|
if (channel->local_dev_name[0]) { |
|
if (setsockopt(s, SOL_SOCKET, SO_BINDTODEVICE, |
|
channel->local_dev_name, sizeof(channel->local_dev_name))) { |
|
/* Only root can do this, and usually not fatal if it doesn't work, so */ |
|
/* just continue on. */ |
|
} |
|
} |
|
#endif |
|
|
|
if (family == AF_INET) { |
|
if (channel->local_ip4) { |
|
memset(&local.sa4, 0, sizeof(local.sa4)); |
|
local.sa4.sin_family = AF_INET; |
|
local.sa4.sin_addr.s_addr = htonl(channel->local_ip4); |
|
if (bind(s, &local.sa, sizeof(local.sa4)) < 0) |
|
return -1; |
|
} |
|
} |
|
else if (family == AF_INET6) { |
|
if (memcmp(channel->local_ip6, &ares_in6addr_any, |
|
sizeof(channel->local_ip6)) != 0) { |
|
memset(&local.sa6, 0, sizeof(local.sa6)); |
|
local.sa6.sin6_family = AF_INET6; |
|
memcpy(&local.sa6.sin6_addr, channel->local_ip6, |
|
sizeof(channel->local_ip6)); |
|
if (bind(s, &local.sa, sizeof(local.sa6)) < 0) |
|
return -1; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static ares_socket_t open_socket(ares_channel channel, int af, int type, int protocol) |
|
{ |
|
if (channel->sock_funcs != 0) |
|
return channel->sock_funcs->asocket(af, |
|
type, |
|
protocol, |
|
channel->sock_func_cb_data); |
|
|
|
return socket(af, type, protocol); |
|
} |
|
|
|
static int connect_socket(ares_channel channel, ares_socket_t sockfd, |
|
const struct sockaddr * addr, |
|
ares_socklen_t addrlen) |
|
{ |
|
if (channel->sock_funcs != 0) |
|
return channel->sock_funcs->aconnect(sockfd, |
|
addr, |
|
addrlen, |
|
channel->sock_func_cb_data); |
|
|
|
return connect(sockfd, addr, addrlen); |
|
} |
|
|
|
static int open_tcp_socket(ares_channel channel, struct server_state *server) |
|
{ |
|
ares_socket_t s; |
|
int opt; |
|
ares_socklen_t salen; |
|
union { |
|
struct sockaddr_in sa4; |
|
struct sockaddr_in6 sa6; |
|
} saddr; |
|
struct sockaddr *sa; |
|
|
|
switch (server->addr.family) |
|
{ |
|
case AF_INET: |
|
sa = (void *)&saddr.sa4; |
|
salen = sizeof(saddr.sa4); |
|
memset(sa, 0, salen); |
|
saddr.sa4.sin_family = AF_INET; |
|
if (server->addr.tcp_port) { |
|
saddr.sa4.sin_port = aresx_sitous(server->addr.tcp_port); |
|
} else { |
|
saddr.sa4.sin_port = aresx_sitous(channel->tcp_port); |
|
} |
|
memcpy(&saddr.sa4.sin_addr, &server->addr.addrV4, |
|
sizeof(server->addr.addrV4)); |
|
break; |
|
case AF_INET6: |
|
sa = (void *)&saddr.sa6; |
|
salen = sizeof(saddr.sa6); |
|
memset(sa, 0, salen); |
|
saddr.sa6.sin6_family = AF_INET6; |
|
if (server->addr.tcp_port) { |
|
saddr.sa6.sin6_port = aresx_sitous(server->addr.tcp_port); |
|
} else { |
|
saddr.sa6.sin6_port = aresx_sitous(channel->tcp_port); |
|
} |
|
memcpy(&saddr.sa6.sin6_addr, &server->addr.addrV6, |
|
sizeof(server->addr.addrV6)); |
|
break; |
|
default: |
|
return -1; /* LCOV_EXCL_LINE */ |
|
} |
|
|
|
/* Acquire a socket. */ |
|
s = open_socket(channel, server->addr.family, SOCK_STREAM, 0); |
|
if (s == ARES_SOCKET_BAD) |
|
return -1; |
|
|
|
/* Configure it. */ |
|
if (configure_socket(s, server->addr.family, channel) < 0) |
|
{ |
|
ares__socket_close(channel, s); |
|
return -1; |
|
} |
|
|
|
#ifdef TCP_NODELAY |
|
/* |
|
* Disable the Nagle algorithm (only relevant for TCP sockets, and thus not |
|
* in configure_socket). In general, in DNS lookups we're pretty much |
|
* interested in firing off a single request and then waiting for a reply, |
|
* so batching isn't very interesting. |
|
*/ |
|
opt = 1; |
|
if (channel->sock_funcs == 0 |
|
&& |
|
setsockopt(s, IPPROTO_TCP, TCP_NODELAY, |
|
(void *)&opt, sizeof(opt)) == -1) |
|
{ |
|
ares__socket_close(channel, s); |
|
return -1; |
|
} |
|
#endif |
|
|
|
if (channel->sock_config_cb) |
|
{ |
|
int err = channel->sock_config_cb(s, SOCK_STREAM, |
|
channel->sock_config_cb_data); |
|
if (err < 0) |
|
{ |
|
ares__socket_close(channel, s); |
|
return err; |
|
} |
|
} |
|
|
|
/* Connect to the server. */ |
|
if (connect_socket(channel, s, sa, salen) == -1) |
|
{ |
|
int err = SOCKERRNO; |
|
|
|
if (err != EINPROGRESS && err != EWOULDBLOCK) |
|
{ |
|
ares__socket_close(channel, s); |
|
return -1; |
|
} |
|
} |
|
|
|
if (channel->sock_create_cb) |
|
{ |
|
int err = channel->sock_create_cb(s, SOCK_STREAM, |
|
channel->sock_create_cb_data); |
|
if (err < 0) |
|
{ |
|
ares__socket_close(channel, s); |
|
return err; |
|
} |
|
} |
|
|
|
SOCK_STATE_CALLBACK(channel, s, 1, 0); |
|
server->tcp_buffer_pos = 0; |
|
server->tcp_socket = s; |
|
server->tcp_connection_generation = ++channel->tcp_connection_generation; |
|
return 0; |
|
} |
|
|
|
static int open_udp_socket(ares_channel channel, struct server_state *server) |
|
{ |
|
ares_socket_t s; |
|
ares_socklen_t salen; |
|
union { |
|
struct sockaddr_in sa4; |
|
struct sockaddr_in6 sa6; |
|
} saddr; |
|
struct sockaddr *sa; |
|
|
|
switch (server->addr.family) |
|
{ |
|
case AF_INET: |
|
sa = (void *)&saddr.sa4; |
|
salen = sizeof(saddr.sa4); |
|
memset(sa, 0, salen); |
|
saddr.sa4.sin_family = AF_INET; |
|
if (server->addr.udp_port) { |
|
saddr.sa4.sin_port = aresx_sitous(server->addr.udp_port); |
|
} else { |
|
saddr.sa4.sin_port = aresx_sitous(channel->udp_port); |
|
} |
|
memcpy(&saddr.sa4.sin_addr, &server->addr.addrV4, |
|
sizeof(server->addr.addrV4)); |
|
break; |
|
case AF_INET6: |
|
sa = (void *)&saddr.sa6; |
|
salen = sizeof(saddr.sa6); |
|
memset(sa, 0, salen); |
|
saddr.sa6.sin6_family = AF_INET6; |
|
if (server->addr.udp_port) { |
|
saddr.sa6.sin6_port = aresx_sitous(server->addr.udp_port); |
|
} else { |
|
saddr.sa6.sin6_port = aresx_sitous(channel->udp_port); |
|
} |
|
memcpy(&saddr.sa6.sin6_addr, &server->addr.addrV6, |
|
sizeof(server->addr.addrV6)); |
|
break; |
|
default: |
|
return -1; /* LCOV_EXCL_LINE */ |
|
} |
|
|
|
/* Acquire a socket. */ |
|
s = open_socket(channel, server->addr.family, SOCK_DGRAM, 0); |
|
if (s == ARES_SOCKET_BAD) |
|
return -1; |
|
|
|
/* Set the socket non-blocking. */ |
|
if (configure_socket(s, server->addr.family, channel) < 0) |
|
{ |
|
ares__socket_close(channel, s); |
|
return -1; |
|
} |
|
|
|
if (channel->sock_config_cb) |
|
{ |
|
int err = channel->sock_config_cb(s, SOCK_DGRAM, |
|
channel->sock_config_cb_data); |
|
if (err < 0) |
|
{ |
|
ares__socket_close(channel, s); |
|
return err; |
|
} |
|
} |
|
|
|
/* Connect to the server. */ |
|
if (connect_socket(channel, s, sa, salen) == -1) |
|
{ |
|
int err = SOCKERRNO; |
|
|
|
if (err != EINPROGRESS && err != EWOULDBLOCK) |
|
{ |
|
ares__socket_close(channel, s); |
|
return -1; |
|
} |
|
} |
|
|
|
if (channel->sock_create_cb) |
|
{ |
|
int err = channel->sock_create_cb(s, SOCK_DGRAM, |
|
channel->sock_create_cb_data); |
|
if (err < 0) |
|
{ |
|
ares__socket_close(channel, s); |
|
return err; |
|
} |
|
} |
|
|
|
SOCK_STATE_CALLBACK(channel, s, 1, 0); |
|
|
|
server->udp_socket = s; |
|
return 0; |
|
} |
|
|
|
static int same_questions(const unsigned char *qbuf, int qlen, |
|
const unsigned char *abuf, int alen) |
|
{ |
|
struct { |
|
const unsigned char *p; |
|
int qdcount; |
|
char *name; |
|
long namelen; |
|
int type; |
|
int dnsclass; |
|
} q, a; |
|
int i, j; |
|
|
|
if (qlen < HFIXEDSZ || alen < HFIXEDSZ) |
|
return 0; |
|
|
|
/* Extract qdcount from the request and reply buffers and compare them. */ |
|
q.qdcount = DNS_HEADER_QDCOUNT(qbuf); |
|
a.qdcount = DNS_HEADER_QDCOUNT(abuf); |
|
if (q.qdcount != a.qdcount) |
|
return 0; |
|
|
|
/* For each question in qbuf, find it in abuf. */ |
|
q.p = qbuf + HFIXEDSZ; |
|
for (i = 0; i < q.qdcount; i++) |
|
{ |
|
/* Decode the question in the query. */ |
|
if (ares_expand_name(q.p, qbuf, qlen, &q.name, &q.namelen) |
|
!= ARES_SUCCESS) |
|
return 0; |
|
q.p += q.namelen; |
|
if (q.p + QFIXEDSZ > qbuf + qlen) |
|
{ |
|
ares_free(q.name); |
|
return 0; |
|
} |
|
q.type = DNS_QUESTION_TYPE(q.p); |
|
q.dnsclass = DNS_QUESTION_CLASS(q.p); |
|
q.p += QFIXEDSZ; |
|
|
|
/* Search for this question in the answer. */ |
|
a.p = abuf + HFIXEDSZ; |
|
for (j = 0; j < a.qdcount; j++) |
|
{ |
|
/* Decode the question in the answer. */ |
|
if (ares_expand_name(a.p, abuf, alen, &a.name, &a.namelen) |
|
!= ARES_SUCCESS) |
|
{ |
|
ares_free(q.name); |
|
return 0; |
|
} |
|
a.p += a.namelen; |
|
if (a.p + QFIXEDSZ > abuf + alen) |
|
{ |
|
ares_free(q.name); |
|
ares_free(a.name); |
|
return 0; |
|
} |
|
a.type = DNS_QUESTION_TYPE(a.p); |
|
a.dnsclass = DNS_QUESTION_CLASS(a.p); |
|
a.p += QFIXEDSZ; |
|
|
|
/* Compare the decoded questions. */ |
|
if (strcasecmp(q.name, a.name) == 0 && q.type == a.type |
|
&& q.dnsclass == a.dnsclass) |
|
{ |
|
ares_free(a.name); |
|
break; |
|
} |
|
ares_free(a.name); |
|
} |
|
|
|
ares_free(q.name); |
|
if (j == a.qdcount) |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
static int same_address(struct sockaddr *sa, struct ares_addr *aa) |
|
{ |
|
void *addr1; |
|
void *addr2; |
|
|
|
if (sa->sa_family == aa->family) |
|
{ |
|
switch (aa->family) |
|
{ |
|
case AF_INET: |
|
addr1 = &aa->addrV4; |
|
addr2 = &((struct sockaddr_in *)sa)->sin_addr; |
|
if (memcmp(addr1, addr2, sizeof(aa->addrV4)) == 0) |
|
return 1; /* match */ |
|
break; |
|
case AF_INET6: |
|
addr1 = &aa->addrV6; |
|
addr2 = &((struct sockaddr_in6 *)sa)->sin6_addr; |
|
if (memcmp(addr1, addr2, sizeof(aa->addrV6)) == 0) |
|
return 1; /* match */ |
|
break; |
|
default: |
|
break; /* LCOV_EXCL_LINE */ |
|
} |
|
} |
|
return 0; /* different */ |
|
} |
|
|
|
static void end_query (ares_channel channel, struct query *query, int status, |
|
unsigned char *abuf, int alen) |
|
{ |
|
int i; |
|
|
|
/* First we check to see if this query ended while one of our send |
|
* queues still has pointers to it. |
|
*/ |
|
for (i = 0; i < channel->nservers; i++) |
|
{ |
|
struct server_state *server = &channel->servers[i]; |
|
struct send_request *sendreq; |
|
for (sendreq = server->qhead; sendreq; sendreq = sendreq->next) |
|
if (sendreq->owner_query == query) |
|
{ |
|
sendreq->owner_query = NULL; |
|
assert(sendreq->data_storage == NULL); |
|
if (status == ARES_SUCCESS) |
|
{ |
|
/* We got a reply for this query, but this queued sendreq |
|
* points into this soon-to-be-gone query's tcpbuf. Probably |
|
* this means we timed out and queued the query for |
|
* retransmission, then received a response before actually |
|
* retransmitting. This is perfectly fine, so we want to keep |
|
* the connection running smoothly if we can. But in the worst |
|
* case we may have sent only some prefix of the query, with |
|
* some suffix of the query left to send. Also, the buffer may |
|
* be queued on multiple queues. To prevent dangling pointers |
|
* to the query's tcpbuf and handle these cases, we just give |
|
* such sendreqs their own copy of the query packet. |
|
*/ |
|
sendreq->data_storage = ares_malloc(sendreq->len); |
|
if (sendreq->data_storage != NULL) |
|
{ |
|
memcpy(sendreq->data_storage, sendreq->data, sendreq->len); |
|
sendreq->data = sendreq->data_storage; |
|
} |
|
} |
|
if ((status != ARES_SUCCESS) || (sendreq->data_storage == NULL)) |
|
{ |
|
/* We encountered an error (probably a timeout, suggesting the |
|
* DNS server we're talking to is probably unreachable, |
|
* wedged, or severely overloaded) or we couldn't copy the |
|
* request, so mark the connection as broken. When we get to |
|
* process_broken_connections() we'll close the connection and |
|
* try to re-send requests to another server. |
|
*/ |
|
server->is_broken = 1; |
|
/* Just to be paranoid, zero out this sendreq... */ |
|
sendreq->data = NULL; |
|
sendreq->len = 0; |
|
} |
|
} |
|
} |
|
|
|
/* Invoke the callback */ |
|
query->callback(query->arg, status, query->timeouts, abuf, alen); |
|
ares__free_query(query); |
|
|
|
/* Simple cleanup policy: if no queries are remaining, close all network |
|
* sockets unless STAYOPEN is set. |
|
*/ |
|
if (!(channel->flags & ARES_FLAG_STAYOPEN) && |
|
ares__is_list_empty(&(channel->all_queries))) |
|
{ |
|
for (i = 0; i < channel->nservers; i++) |
|
ares__close_sockets(channel, &channel->servers[i]); |
|
} |
|
} |
|
|
|
void ares__free_query(struct query *query) |
|
{ |
|
/* Remove the query from all the lists in which it is linked */ |
|
ares__remove_from_list(&(query->queries_by_qid)); |
|
ares__remove_from_list(&(query->queries_by_timeout)); |
|
ares__remove_from_list(&(query->queries_to_server)); |
|
ares__remove_from_list(&(query->all_queries)); |
|
/* Zero out some important stuff, to help catch bugs */ |
|
query->callback = NULL; |
|
query->arg = NULL; |
|
/* Deallocate the memory associated with the query */ |
|
ares_free(query->tcpbuf); |
|
ares_free(query->server_info); |
|
ares_free(query); |
|
} |
|
|
|
void ares__socket_close(ares_channel channel, ares_socket_t s) |
|
{ |
|
if (channel->sock_funcs) |
|
channel->sock_funcs->aclose(s, channel->sock_func_cb_data); |
|
else |
|
sclose(s); |
|
}
|
|
|