A C library for asynchronous DNS requests (grpc依赖)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

639 lines
18 KiB

/*
* Copyright (C) The c-ares project
*
* Permission to use, copy, modify, and distribute this
* software and its documentation for any purpose and without
* fee is hereby granted, provided that the above copyright
* notice appear in all copies and that both that copyright
* notice and this permission notice appear in supporting
* documentation, and that the name of M.I.T. not be used in
* advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.
* M.I.T. makes no representations about the suitability of
* this software for any purpose. It is provided "as is"
* without express or implied warranty.
*
* SPDX-License-Identifier: MIT
*/
// -*- mode: c++ -*-
#ifndef ARES_TEST_H
#define ARES_TEST_H
#include "ares_setup.h"
#include "ares.h"
#include "dns-proto.h"
// Include ares internal file for DNS protocol constants
#include "ares_nameser.h"
#include "gtest/gtest.h"
#include "gmock/gmock.h"
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#if defined(HAVE_USER_NAMESPACE) && defined(HAVE_UTS_NAMESPACE)
# define HAVE_CONTAINER
#endif
#include <functional>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
namespace ares {
typedef unsigned char byte;
namespace test {
extern bool verbose;
extern int mock_port;
extern const std::vector<int> both_families;
extern const std::vector<int> ipv4_family;
extern const std::vector<int> ipv6_family;
extern const std::vector<std::pair<int, bool>> both_families_both_modes;
extern const std::vector<std::pair<int, bool>> ipv4_family_both_modes;
extern const std::vector<std::pair<int, bool>> ipv6_family_both_modes;
// Which parameters to use in tests
extern std::vector<int> families;
extern std::vector<std::pair<int, bool>> families_modes;
// Process all pending work on ares-owned file descriptors, plus
// optionally the given set-of-FDs + work function.
1 year ago
void ProcessWork(ares_channel_t *channel,
std::function<std::set<int>()> get_extrafds,
std::function<void(int)> process_extra);
std::set<int> NoExtraFDs();
// Test fixture that ensures library initialization, and allows
// memory allocations to be failed.
class LibraryTest : public ::testing::Test {
public:
LibraryTest()
{
EXPECT_EQ(ARES_SUCCESS, ares_library_init_mem(
ARES_LIB_INIT_ALL, &LibraryTest::amalloc,
&LibraryTest::afree, &LibraryTest::arealloc));
}
~LibraryTest()
{
ares_library_cleanup();
ClearFails();
}
// Set the n-th malloc call (of any size) from the library to fail.
// (nth == 1 means the next call)
static void SetAllocFail(int nth);
// Set the next malloc call for the given size to fail.
static void SetAllocSizeFail(size_t size);
// Remove any pending alloc failures.
static void ClearFails();
static void *amalloc(size_t size);
static void *arealloc(void *ptr, size_t size);
static void afree(void *ptr);
private:
static bool ShouldAllocFail(size_t size);
static unsigned long long fails_;
static std::map<size_t, int> size_fails_;
};
// Test fixture that uses a default channel.
class DefaultChannelTest : public LibraryTest {
public:
DefaultChannelTest() : channel_(nullptr)
{
EXPECT_EQ(ARES_SUCCESS, ares_init(&channel_));
EXPECT_NE(nullptr, channel_);
}
~DefaultChannelTest()
{
ares_destroy(channel_);
channel_ = nullptr;
}
// Process all pending work on ares-owned file descriptors.
void Process();
protected:
`ares_channel` -> `ares_channel_t *`: don't bury the pointer (#595) `ares_channel` is defined as `typedef struct ares_channeldata *ares_channel;`. The problem with this, is it embeds the pointer into the typedef, which means an `ares_channel` can never be declared as `const` as if you write `const ares_channel channel`, that expands to `struct ares_channeldata * const ares_channel` and not `const struct ares_channeldata *channel`. We will now typedef `ares_channel_t` as `typedef struct ares_channeldata ares_channel_t;`, so if you write `const ares_channel_t *channel`, it properly expands to `const struct ares_channeldata *channel`. We are maintaining the old typedef for API compatibility with existing integrations, and due to typedef expansion this should not even cause any compiler warnings for existing code. There are no ABI implications with this change. I could be convinced to keep existing public functions as `ares_channel` if a sufficient argument exists, but internally we really need make this change for modern best practices. This change will allow us to internally use `const ares_channel_t *` where appropriate. Whether or not we decide to change any public interfaces to use `const` may require further discussion on if there might be ABI implications (I don't think so, but I'm also not 100% sure what a compiler internally does with `const` when emitting machine code ... I think more likely ABI implications would occur going the opposite direction). FYI, This PR was done via a combination of sed and clang-format, the only manual code change was the addition of the new typedef, and a couple doc fixes :) Fix By: Brad House (@bradh352)
1 year ago
ares_channel_t *channel_;
};
Replace hosts parser, add caching capabilities (#591) HOSTS FILE PROCESSING OVERVIEW ============================== The hosts file on the system contains static entries to be processed locally rather than querying the nameserver. Each row is an IP address followed by a list of space delimited hostnames that match the ip address. This is used for both forward and reverse lookups. We are caching the entire parsed hosts file for performance reasons. Some files may be quite sizable and as per Issue #458 can approach 1/2MB in size, and the parse overhead on a rapid succession of queries can be quite large. The entries are stored in forwards and backwards hashtables so we can get O(1) performance on lookup. The file is cached until the file modification timestamp changes (or 60s if there is no implemented stat() capability). The hosts file processing is quite unique. It has to merge all related hosts and ips into a single entry due to file formatting requirements. For instance take the below: ``` 127.0.0.1 localhost.localdomain localhost ::1 localhost.localdomain localhost 192.168.1.1 host.example.com host 192.168.1.5 host.example.com host 2620:1234::1 host.example.com host6.example.com host6 host ``` This will yield 2 entries. 1) ips: `127.0.0.1,::1` hosts: `localhost.localdomain,localhost` 2) ips: `192.168.1.1,192.168.1.5,2620:1234::1` hosts: `host.example.com,host,host6.example.com,host6` It could be argued that if searching for `192.168.1.1` that the `host6` hostnames should not be returned, but this implementation will return them since they are related (both ips have the fqdn of host.example.com). It is unlikely this will matter in the real world. Fix By: Brad House (@bradh352)
1 year ago
// Test fixture that uses a file-only channel.
class FileChannelTest : public LibraryTest {
public:
FileChannelTest() : channel_(nullptr)
{
struct ares_options opts = { 0 };
opts.lookups = strdup("f");
int optmask = ARES_OPT_LOOKUPS;
EXPECT_EQ(ARES_SUCCESS, ares_init_options(&channel_, &opts, optmask));
EXPECT_NE(nullptr, channel_);
free(opts.lookups);
}
~FileChannelTest()
{
ares_destroy(channel_);
channel_ = nullptr;
}
// Process all pending work on ares-owned file descriptors.
void Process();
protected:
`ares_channel` -> `ares_channel_t *`: don't bury the pointer (#595) `ares_channel` is defined as `typedef struct ares_channeldata *ares_channel;`. The problem with this, is it embeds the pointer into the typedef, which means an `ares_channel` can never be declared as `const` as if you write `const ares_channel channel`, that expands to `struct ares_channeldata * const ares_channel` and not `const struct ares_channeldata *channel`. We will now typedef `ares_channel_t` as `typedef struct ares_channeldata ares_channel_t;`, so if you write `const ares_channel_t *channel`, it properly expands to `const struct ares_channeldata *channel`. We are maintaining the old typedef for API compatibility with existing integrations, and due to typedef expansion this should not even cause any compiler warnings for existing code. There are no ABI implications with this change. I could be convinced to keep existing public functions as `ares_channel` if a sufficient argument exists, but internally we really need make this change for modern best practices. This change will allow us to internally use `const ares_channel_t *` where appropriate. Whether or not we decide to change any public interfaces to use `const` may require further discussion on if there might be ABI implications (I don't think so, but I'm also not 100% sure what a compiler internally does with `const` when emitting machine code ... I think more likely ABI implications would occur going the opposite direction). FYI, This PR was done via a combination of sed and clang-format, the only manual code change was the addition of the new typedef, and a couple doc fixes :) Fix By: Brad House (@bradh352)
1 year ago
ares_channel_t *channel_;
Replace hosts parser, add caching capabilities (#591) HOSTS FILE PROCESSING OVERVIEW ============================== The hosts file on the system contains static entries to be processed locally rather than querying the nameserver. Each row is an IP address followed by a list of space delimited hostnames that match the ip address. This is used for both forward and reverse lookups. We are caching the entire parsed hosts file for performance reasons. Some files may be quite sizable and as per Issue #458 can approach 1/2MB in size, and the parse overhead on a rapid succession of queries can be quite large. The entries are stored in forwards and backwards hashtables so we can get O(1) performance on lookup. The file is cached until the file modification timestamp changes (or 60s if there is no implemented stat() capability). The hosts file processing is quite unique. It has to merge all related hosts and ips into a single entry due to file formatting requirements. For instance take the below: ``` 127.0.0.1 localhost.localdomain localhost ::1 localhost.localdomain localhost 192.168.1.1 host.example.com host 192.168.1.5 host.example.com host 2620:1234::1 host.example.com host6.example.com host6 host ``` This will yield 2 entries. 1) ips: `127.0.0.1,::1` hosts: `localhost.localdomain,localhost` 2) ips: `192.168.1.1,192.168.1.5,2620:1234::1` hosts: `host.example.com,host,host6.example.com,host6` It could be argued that if searching for `192.168.1.1` that the `host6` hostnames should not be returned, but this implementation will return them since they are related (both ips have the fqdn of host.example.com). It is unlikely this will matter in the real world. Fix By: Brad House (@bradh352)
1 year ago
};
// Test fixture that uses a default channel with the specified lookup mode.
class DefaultChannelModeTest
: public LibraryTest,
public ::testing::WithParamInterface<std::string> {
public:
DefaultChannelModeTest() : channel_(nullptr)
{
struct ares_options opts = { 0 };
opts.lookups = strdup(GetParam().c_str());
int optmask = ARES_OPT_LOOKUPS;
EXPECT_EQ(ARES_SUCCESS, ares_init_options(&channel_, &opts, optmask));
EXPECT_NE(nullptr, channel_);
free(opts.lookups);
}
~DefaultChannelModeTest()
{
ares_destroy(channel_);
channel_ = nullptr;
}
// Process all pending work on ares-owned file descriptors.
void Process();
protected:
`ares_channel` -> `ares_channel_t *`: don't bury the pointer (#595) `ares_channel` is defined as `typedef struct ares_channeldata *ares_channel;`. The problem with this, is it embeds the pointer into the typedef, which means an `ares_channel` can never be declared as `const` as if you write `const ares_channel channel`, that expands to `struct ares_channeldata * const ares_channel` and not `const struct ares_channeldata *channel`. We will now typedef `ares_channel_t` as `typedef struct ares_channeldata ares_channel_t;`, so if you write `const ares_channel_t *channel`, it properly expands to `const struct ares_channeldata *channel`. We are maintaining the old typedef for API compatibility with existing integrations, and due to typedef expansion this should not even cause any compiler warnings for existing code. There are no ABI implications with this change. I could be convinced to keep existing public functions as `ares_channel` if a sufficient argument exists, but internally we really need make this change for modern best practices. This change will allow us to internally use `const ares_channel_t *` where appropriate. Whether or not we decide to change any public interfaces to use `const` may require further discussion on if there might be ABI implications (I don't think so, but I'm also not 100% sure what a compiler internally does with `const` when emitting machine code ... I think more likely ABI implications would occur going the opposite direction). FYI, This PR was done via a combination of sed and clang-format, the only manual code change was the addition of the new typedef, and a couple doc fixes :) Fix By: Brad House (@bradh352)
1 year ago
ares_channel_t *channel_;
};
// Mock DNS server to allow responses to be scripted by tests.
class MockServer {
public:
MockServer(int family, int port);
~MockServer();
// Mock method indicating the processing of a particular <name, RRtype>
// request.
MOCK_METHOD2(OnRequest, void(const std::string &name, int rrtype));
// Set the reply to be sent next; the query ID field will be overwritten
// with the value from the request.
void SetReplyData(const std::vector<byte> &reply)
{
reply_ = reply;
}
void SetReply(const DNSPacket *reply)
{
SetReplyData(reply->data());
}
void SetReplyQID(int qid)
{
qid_ = qid;
}
void Disconnect()
{
for (int fd : connfds_) {
sclose(fd);
}
connfds_.clear();
free(tcp_data_);
tcp_data_ = NULL;
tcp_data_len_ = 0;
}
// The set of file descriptors that the server handles.
std::set<int> fds() const;
// Process activity on a file descriptor.
void ProcessFD(int fd);
// Ports the server is responding to
int udpport() const
{
return udpport_;
}
int tcpport() const
{
return tcpport_;
}
private:
void ProcessRequest(int fd, struct sockaddr_storage *addr, int addrlen,
int qid, const std::string &name, int rrtype);
Reimplement ares_gethostbyname() by wrapping ares_getaddrinfo() (#428) ares_gethostbyname() and ares_getaddrinfo() do a lot of similar things, however ares_getaddrinfo() has some desirable behaviors that should be imported into ares_gethostbyname(). For one, it sorts the address lists for the most likely to succeed based on the current system routes. Next, when AF_UNSPEC is specified, it properly handles search lists instead of first searching all of AF_INET6 then AF_INET, since ares_gethostbyname() searches in parallel. Therefore, this PR should also resolve the issues attempted in #94. A few things this PR does: 1. ares_parse_a_reply() and ares_parse_aaaa_reply() had very similar code to translate struct ares_addrinfo into a struct hostent as well as into struct ares_addrttl/ares_addr6ttl this has been split out into helper functions of ares__addrinfo2hostent() and ares__addrinfo2addrttl() to prevent this duplicative code. 2. ares_getaddrinfo() was apparently never honoring HOSTALIASES, and this was discovered once ares_gethostbyname() was turned into a wrapper, the affected test cases started failing. 3. A slight API modification to save the query hostname into struct ares_addrinfo as the last element of name. Since this is the last element, and all user-level instances of struct ares_addrinfo are allocated internally by c-ares, this is not an ABI-breaking change nor would it impact any API compatibility. This was needed since struct hostent has an h_name element. 4. Test Framework: MockServer tests via TCP would fail if more than 1 request was received at a time which is common when ares_getaddrinfo() queries for both A and AAAA records simultaneously. Infact, this was a long standing issue in which the ares_getaddrinfo() test were bypassing TCP alltogether. This has been corrected, the message is now processed in a loop. 5. Some tests had to be updated for overall correctness as they were invalid but somehow passing prior to this change. Change By: Brad House (@bradh352)
3 years ago
void ProcessPacket(int fd, struct sockaddr_storage *addr, socklen_t addrlen,
byte *data, int len);
int udpport_;
int tcpport_;
int udpfd_;
int tcpfd_;
std::set<int> connfds_;
std::vector<byte> reply_;
int qid_;
unsigned char *tcp_data_;
size_t tcp_data_len_;
};
// Test fixture that uses a mock DNS server.
class MockChannelOptsTest : public LibraryTest {
public:
MockChannelOptsTest(int count, int family, bool force_tcp,
struct ares_options *givenopts, int optmask);
~MockChannelOptsTest();
// Process all pending work on ares-owned and mock-server-owned file
// descriptors.
void Process();
protected:
// NiceMockServer doesn't complain about uninteresting calls.
typedef testing::NiceMock<MockServer> NiceMockServer;
typedef std::vector<std::unique_ptr<NiceMockServer>> NiceMockServers;
std::set<int> fds() const;
void ProcessFD(int fd);
static NiceMockServers BuildServers(int count, int family, int base_port);
NiceMockServers servers_;
// Convenience reference to first server.
NiceMockServer &server_;
1 year ago
ares_channel_t *channel_;
};
class MockChannelTest
: public MockChannelOptsTest,
public ::testing::WithParamInterface<std::pair<int, bool>> {
public:
MockChannelTest()
: MockChannelOptsTest(1, GetParam().first, GetParam().second, nullptr, 0)
{
}
};
class MockUDPChannelTest : public MockChannelOptsTest,
public ::testing::WithParamInterface<int> {
public:
MockUDPChannelTest() : MockChannelOptsTest(1, GetParam(), false, nullptr, 0)
{
}
};
class MockTCPChannelTest : public MockChannelOptsTest,
public ::testing::WithParamInterface<int> {
public:
MockTCPChannelTest() : MockChannelOptsTest(1, GetParam(), true, nullptr, 0)
{
}
};
// gMock action to set the reply for a mock server.
ACTION_P2(SetReplyData, mockserver, data)
{
mockserver->SetReplyData(data);
}
ACTION_P2(SetReply, mockserver, reply)
{
mockserver->SetReply(reply);
}
ACTION_P2(SetReplyQID, mockserver, qid)
{
mockserver->SetReplyQID(qid);
}
// gMock action to cancel a channel.
ACTION_P2(CancelChannel, mockserver, channel)
{
ares_cancel(channel);
}
// gMock action to disconnect all connections.
ACTION_P2(Disconnect, mockserver)
{
mockserver->Disconnect();
}
// C++ wrapper for struct hostent.
struct HostEnt {
HostEnt() : addrtype_(-1)
{
}
HostEnt(const struct hostent *hostent);
std::string name_;
std::vector<std::string> aliases_;
int addrtype_; // AF_INET or AF_INET6
std::vector<std::string> addrs_;
};
std::ostream &operator<<(std::ostream &os, const HostEnt &result);
// Structure that describes the result of an ares_host_callback invocation.
struct HostResult {
HostResult() : done_(false), status_(0), timeouts_(0)
{
}
// Whether the callback has been invoked.
bool done_;
// Explicitly provided result information.
int status_;
int timeouts_;
// Contents of the hostent structure, if provided.
HostEnt host_;
};
std::ostream &operator<<(std::ostream &os, const HostResult &result);
// Structure that describes the result of an ares_callback invocation.
struct SearchResult {
// Whether the callback has been invoked.
bool done_;
// Explicitly provided result information.
int status_;
int timeouts_;
std::vector<byte> data_;
};
std::ostream &operator<<(std::ostream &os, const SearchResult &result);
// Structure that describes the result of an ares_nameinfo_callback invocation.
struct NameInfoResult {
// Whether the callback has been invoked.
bool done_;
// Explicitly provided result information.
int status_;
int timeouts_;
std::string node_;
std::string service_;
};
std::ostream &operator<<(std::ostream &os, const NameInfoResult &result);
struct AddrInfoDeleter {
void operator()(ares_addrinfo *ptr)
{
if (ptr) {
ares_freeaddrinfo(ptr);
}
}
};
// C++ wrapper for struct ares_addrinfo.
using AddrInfo = std::unique_ptr<ares_addrinfo, AddrInfoDeleter>;
std::ostream &operator<<(std::ostream &os, const AddrInfo &result);
// Structure that describes the result of an ares_addrinfo_callback invocation.
struct AddrInfoResult {
AddrInfoResult() : done_(false), status_(-1), timeouts_(0)
{
}
// Whether the callback has been invoked.
bool done_;
// Explicitly provided result information.
int status_;
int timeouts_;
// Contents of the ares_addrinfo structure, if provided.
AddrInfo ai_;
};
std::ostream &operator<<(std::ostream &os, const AddrInfoResult &result);
// Standard implementation of ares callbacks that fill out the corresponding
// structures.
void HostCallback(void *data, int status, int timeouts,
struct hostent *hostent);
void SearchCallback(void *data, int status, int timeouts, unsigned char *abuf,
int alen);
void NameInfoCallback(void *data, int status, int timeouts, char *node,
char *service);
void AddrInfoCallback(void *data, int status, int timeouts,
struct ares_addrinfo *res);
// Retrieve the name servers used by a channel.
`ares_channel` -> `ares_channel_t *`: don't bury the pointer (#595) `ares_channel` is defined as `typedef struct ares_channeldata *ares_channel;`. The problem with this, is it embeds the pointer into the typedef, which means an `ares_channel` can never be declared as `const` as if you write `const ares_channel channel`, that expands to `struct ares_channeldata * const ares_channel` and not `const struct ares_channeldata *channel`. We will now typedef `ares_channel_t` as `typedef struct ares_channeldata ares_channel_t;`, so if you write `const ares_channel_t *channel`, it properly expands to `const struct ares_channeldata *channel`. We are maintaining the old typedef for API compatibility with existing integrations, and due to typedef expansion this should not even cause any compiler warnings for existing code. There are no ABI implications with this change. I could be convinced to keep existing public functions as `ares_channel` if a sufficient argument exists, but internally we really need make this change for modern best practices. This change will allow us to internally use `const ares_channel_t *` where appropriate. Whether or not we decide to change any public interfaces to use `const` may require further discussion on if there might be ABI implications (I don't think so, but I'm also not 100% sure what a compiler internally does with `const` when emitting machine code ... I think more likely ABI implications would occur going the opposite direction). FYI, This PR was done via a combination of sed and clang-format, the only manual code change was the addition of the new typedef, and a couple doc fixes :) Fix By: Brad House (@bradh352)
1 year ago
std::vector<std::string> GetNameServers(ares_channel_t *channel);
// RAII class to temporarily create a directory of a given name.
class TransientDir {
public:
TransientDir(const std::string &dirname);
~TransientDir();
private:
std::string dirname_;
};
// C++ wrapper around tempnam()
std::string TempNam(const char *dir, const char *prefix);
// RAII class to temporarily create file of a given name and contents.
class TransientFile {
public:
TransientFile(const std::string &filename, const std::string &contents);
~TransientFile();
protected:
std::string filename_;
};
// RAII class for a temporary file with the given contents.
class TempFile : public TransientFile {
public:
TempFile(const std::string &contents);
const char *filename() const
{
return filename_.c_str();
}
};
#ifdef _WIN32
extern "C" {
static int setenv(const char *name, const char *value, int overwrite)
{
char *buffer;
size_t buf_size;
if (name == NULL) {
return -1;
}
if (value == NULL) {
value = ""; /* For unset */
}
if (!overwrite && getenv(name) != NULL) {
return -1;
}
buf_size = strlen(name) + strlen(value) + 1 /* = */ + 1 /* NULL */;
buffer = (char *)malloc(buf_size);
_snprintf(buffer, buf_size, "%s=%s", name, value);
_putenv(buffer);
free(buffer);
return 0;
}
static int unsetenv(const char *name)
{
return setenv(name, NULL, 1);
}
} /* extern "C" */
#endif
// RAII class for a temporary environment variable value.
class EnvValue {
public:
EnvValue(const char *name, const char *value) : name_(name), restore_(false)
{
char *original = getenv(name);
if (original) {
restore_ = true;
original_ = original;
}
setenv(name_.c_str(), value, 1);
}
~EnvValue()
{
if (restore_) {
setenv(name_.c_str(), original_.c_str(), 1);
} else {
unsetenv(name_.c_str());
}
}
private:
std::string name_;
bool restore_;
std::string original_;
};
#ifdef HAVE_CONTAINER
// Linux-specific functionality for running code in a container, implemented
// in ares-test-ns.cc
typedef std::function<int(void)> VoidToIntFn;
typedef std::vector<std::pair<std::string, std::string>> NameContentList;
class ContainerFilesystem {
public:
ContainerFilesystem(NameContentList files, const std::string &mountpt);
~ContainerFilesystem();
std::string root() const
{
return rootdir_;
}
std::string mountpt() const
{
return mountpt_;
}
private:
void EnsureDirExists(const std::string &dir);
std::string rootdir_;
std::string mountpt_;
std::list<std::string> dirs_;
std::vector<std::unique_ptr<TransientFile>> files_;
};
int RunInContainer(ContainerFilesystem *fs, const std::string &hostname,
const std::string &domainname, VoidToIntFn fn);
# define ICLASS_NAME(casename, testname) Contained##casename##_##testname
# define CONTAINED_TEST_F(casename, testname, hostname, domainname, files) \
class ICLASS_NAME(casename, testname) : public casename { \
public: \
ICLASS_NAME(casename, testname)() \
{ \
} \
static int InnerTestBody(); \
}; \
TEST_F(ICLASS_NAME(casename, testname), _) \
{ \
ContainerFilesystem chroot(files, ".."); \
VoidToIntFn fn(ICLASS_NAME(casename, testname)::InnerTestBody); \
EXPECT_EQ(0, RunInContainer(&chroot, hostname, domainname, fn)); \
} \
int ICLASS_NAME(casename, testname)::InnerTestBody()
#endif
/* Assigns virtual IO functions to a channel. These functions simply call
* the actual system functions.
*/
class VirtualizeIO {
public:
VirtualizeIO(ares_channel);
~VirtualizeIO();
static const ares_socket_functions default_functions;
private:
`ares_channel` -> `ares_channel_t *`: don't bury the pointer (#595) `ares_channel` is defined as `typedef struct ares_channeldata *ares_channel;`. The problem with this, is it embeds the pointer into the typedef, which means an `ares_channel` can never be declared as `const` as if you write `const ares_channel channel`, that expands to `struct ares_channeldata * const ares_channel` and not `const struct ares_channeldata *channel`. We will now typedef `ares_channel_t` as `typedef struct ares_channeldata ares_channel_t;`, so if you write `const ares_channel_t *channel`, it properly expands to `const struct ares_channeldata *channel`. We are maintaining the old typedef for API compatibility with existing integrations, and due to typedef expansion this should not even cause any compiler warnings for existing code. There are no ABI implications with this change. I could be convinced to keep existing public functions as `ares_channel` if a sufficient argument exists, but internally we really need make this change for modern best practices. This change will allow us to internally use `const ares_channel_t *` where appropriate. Whether or not we decide to change any public interfaces to use `const` may require further discussion on if there might be ABI implications (I don't think so, but I'm also not 100% sure what a compiler internally does with `const` when emitting machine code ... I think more likely ABI implications would occur going the opposite direction). FYI, This PR was done via a combination of sed and clang-format, the only manual code change was the addition of the new typedef, and a couple doc fixes :) Fix By: Brad House (@bradh352)
1 year ago
ares_channel_t *channel_;
};
/*
* Slightly white-box macro to generate two runs for a given test case:
* One with no modifications, and one with all IO functions set to use
* the virtual io structure.
* Since no magic socket setup or anything is done in the latter case
* this should probably only be used for test with very vanilla IO
* requirements.
*/
#define VCLASS_NAME(casename, testname) Virt##casename##_##testname
#define VIRT_NONVIRT_TEST_F(casename, testname) \
class VCLASS_NAME(casename, testname) : public casename { \
public: \
VCLASS_NAME(casename, testname)() \
{ \
} \
void InnerTestBody(); \
}; \
GTEST_TEST_(casename, testname, VCLASS_NAME(casename, testname), \
::testing::internal::GetTypeId<casename>()) \
{ \
InnerTestBody(); \
} \
GTEST_TEST_(casename, testname##_virtualized, \
VCLASS_NAME(casename, testname), \
::testing::internal::GetTypeId<casename>()) \
{ \
VirtualizeIO vio(channel_); \
InnerTestBody(); \
} \
void VCLASS_NAME(casename, testname)::InnerTestBody()
} // namespace test
} // namespace ares
#endif