Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1399 lines
45 KiB
1399 lines
45 KiB
/* Copyright (c) 2014, Google Inc. |
|
* |
|
* Permission to use, copy, modify, and/or distribute this software for any |
|
* purpose with or without fee is hereby granted, provided that the above |
|
* copyright notice and this permission notice appear in all copies. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
|
|
|
#include <algorithm> |
|
#include <functional> |
|
#include <memory> |
|
#include <string> |
|
#include <vector> |
|
|
|
#include <assert.h> |
|
#include <errno.h> |
|
#include <stdint.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#include <openssl/aead.h> |
|
#include <openssl/aes.h> |
|
#include <openssl/bn.h> |
|
#include <openssl/curve25519.h> |
|
#include <openssl/crypto.h> |
|
#include <openssl/digest.h> |
|
#include <openssl/err.h> |
|
#include <openssl/ec.h> |
|
#include <openssl/ecdsa.h> |
|
#include <openssl/ec_key.h> |
|
#include <openssl/evp.h> |
|
#include <openssl/hrss.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/nid.h> |
|
#include <openssl/rand.h> |
|
#include <openssl/rsa.h> |
|
#include <openssl/trust_token.h> |
|
|
|
#if defined(OPENSSL_WINDOWS) |
|
OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
|
#include <windows.h> |
|
OPENSSL_MSVC_PRAGMA(warning(pop)) |
|
#elif defined(OPENSSL_APPLE) |
|
#include <sys/time.h> |
|
#else |
|
#include <time.h> |
|
#endif |
|
|
|
#include "../crypto/ec_extra/internal.h" |
|
#include "../crypto/fipsmodule/ec/internal.h" |
|
#include "../crypto/internal.h" |
|
#include "../crypto/trust_token/internal.h" |
|
#include "internal.h" |
|
|
|
// g_print_json is true if printed output is JSON formatted. |
|
static bool g_print_json = false; |
|
|
|
// TimeResults represents the results of benchmarking a function. |
|
struct TimeResults { |
|
// num_calls is the number of function calls done in the time period. |
|
unsigned num_calls; |
|
// us is the number of microseconds that elapsed in the time period. |
|
unsigned us; |
|
|
|
void Print(const std::string &description) const { |
|
if (g_print_json) { |
|
PrintJSON(description); |
|
} else { |
|
printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls, |
|
description.c_str(), us, |
|
(static_cast<double>(num_calls) / us) * 1000000); |
|
} |
|
} |
|
|
|
void PrintWithBytes(const std::string &description, |
|
size_t bytes_per_call) const { |
|
if (g_print_json) { |
|
PrintJSON(description, bytes_per_call); |
|
} else { |
|
printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n", |
|
num_calls, description.c_str(), us, |
|
(static_cast<double>(num_calls) / us) * 1000000, |
|
static_cast<double>(bytes_per_call * num_calls) / us); |
|
} |
|
} |
|
|
|
private: |
|
void PrintJSON(const std::string &description, |
|
size_t bytes_per_call = 0) const { |
|
if (first_json_printed) { |
|
puts(","); |
|
} |
|
|
|
printf("{\"description\": \"%s\", \"numCalls\": %u, \"microseconds\": %u", |
|
description.c_str(), num_calls, us); |
|
|
|
if (bytes_per_call > 0) { |
|
printf(", \"bytesPerCall\": %zu", bytes_per_call); |
|
} |
|
|
|
printf("}"); |
|
first_json_printed = true; |
|
} |
|
|
|
// first_json_printed is true if |g_print_json| is true and the first item in |
|
// the JSON results has been printed already. This is used to handle the |
|
// commas between each item in the result list. |
|
static bool first_json_printed; |
|
}; |
|
|
|
bool TimeResults::first_json_printed = false; |
|
|
|
#if defined(OPENSSL_WINDOWS) |
|
static uint64_t time_now() { return GetTickCount64() * 1000; } |
|
#elif defined(OPENSSL_APPLE) |
|
static uint64_t time_now() { |
|
struct timeval tv; |
|
uint64_t ret; |
|
|
|
gettimeofday(&tv, NULL); |
|
ret = tv.tv_sec; |
|
ret *= 1000000; |
|
ret += tv.tv_usec; |
|
return ret; |
|
} |
|
#else |
|
static uint64_t time_now() { |
|
struct timespec ts; |
|
clock_gettime(CLOCK_MONOTONIC, &ts); |
|
|
|
uint64_t ret = ts.tv_sec; |
|
ret *= 1000000; |
|
ret += ts.tv_nsec / 1000; |
|
return ret; |
|
} |
|
#endif |
|
|
|
static uint64_t g_timeout_seconds = 1; |
|
static std::vector<size_t> g_chunk_lengths = {16, 256, 1350, 8192, 16384}; |
|
|
|
static bool TimeFunction(TimeResults *results, std::function<bool()> func) { |
|
// total_us is the total amount of time that we'll aim to measure a function |
|
// for. |
|
const uint64_t total_us = g_timeout_seconds * 1000000; |
|
uint64_t start = time_now(), now, delta; |
|
unsigned done = 0, iterations_between_time_checks; |
|
|
|
if (!func()) { |
|
return false; |
|
} |
|
now = time_now(); |
|
delta = now - start; |
|
if (delta == 0) { |
|
iterations_between_time_checks = 250; |
|
} else { |
|
// Aim for about 100ms between time checks. |
|
iterations_between_time_checks = |
|
static_cast<double>(100000) / static_cast<double>(delta); |
|
if (iterations_between_time_checks > 1000) { |
|
iterations_between_time_checks = 1000; |
|
} else if (iterations_between_time_checks < 1) { |
|
iterations_between_time_checks = 1; |
|
} |
|
} |
|
|
|
for (;;) { |
|
for (unsigned i = 0; i < iterations_between_time_checks; i++) { |
|
if (!func()) { |
|
return false; |
|
} |
|
done++; |
|
} |
|
|
|
now = time_now(); |
|
if (now - start > total_us) { |
|
break; |
|
} |
|
} |
|
|
|
results->us = now - start; |
|
results->num_calls = done; |
|
return true; |
|
} |
|
|
|
static bool SpeedRSA(const std::string &selected) { |
|
if (!selected.empty() && selected.find("RSA") == std::string::npos) { |
|
return true; |
|
} |
|
|
|
static const struct { |
|
const char *name; |
|
const uint8_t *key; |
|
const size_t key_len; |
|
} kRSAKeys[] = { |
|
{"RSA 2048", kDERRSAPrivate2048, kDERRSAPrivate2048Len}, |
|
{"RSA 4096", kDERRSAPrivate4096, kDERRSAPrivate4096Len}, |
|
}; |
|
|
|
for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kRSAKeys); i++) { |
|
const std::string name = kRSAKeys[i].name; |
|
|
|
bssl::UniquePtr<RSA> key( |
|
RSA_private_key_from_bytes(kRSAKeys[i].key, kRSAKeys[i].key_len)); |
|
if (key == nullptr) { |
|
fprintf(stderr, "Failed to parse %s key.\n", name.c_str()); |
|
ERR_print_errors_fp(stderr); |
|
return false; |
|
} |
|
|
|
std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key.get())]); |
|
const uint8_t fake_sha256_hash[32] = {0}; |
|
unsigned sig_len; |
|
|
|
TimeResults results; |
|
if (!TimeFunction(&results, |
|
[&key, &sig, &fake_sha256_hash, &sig_len]() -> bool { |
|
// Usually during RSA signing we're using a long-lived |RSA| that has |
|
// already had all of its |BN_MONT_CTX|s constructed, so it makes |
|
// sense to use |key| directly here. |
|
return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), |
|
sig.get(), &sig_len, key.get()); |
|
})) { |
|
fprintf(stderr, "RSA_sign failed.\n"); |
|
ERR_print_errors_fp(stderr); |
|
return false; |
|
} |
|
results.Print(name + " signing"); |
|
|
|
if (!TimeFunction(&results, |
|
[&key, &fake_sha256_hash, &sig, sig_len]() -> bool { |
|
return RSA_verify( |
|
NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), |
|
sig.get(), sig_len, key.get()); |
|
})) { |
|
fprintf(stderr, "RSA_verify failed.\n"); |
|
ERR_print_errors_fp(stderr); |
|
return false; |
|
} |
|
results.Print(name + " verify (same key)"); |
|
|
|
if (!TimeFunction(&results, |
|
[&key, &fake_sha256_hash, &sig, sig_len]() -> bool { |
|
// Usually during RSA verification we have to parse an RSA key from a |
|
// certificate or similar, in which case we'd need to construct a new |
|
// RSA key, with a new |BN_MONT_CTX| for the public modulus. If we |
|
// were to use |key| directly instead, then these costs wouldn't be |
|
// accounted for. |
|
bssl::UniquePtr<RSA> verify_key(RSA_new()); |
|
if (!verify_key) { |
|
return false; |
|
} |
|
verify_key->n = BN_dup(key->n); |
|
verify_key->e = BN_dup(key->e); |
|
if (!verify_key->n || |
|
!verify_key->e) { |
|
return false; |
|
} |
|
return RSA_verify(NID_sha256, fake_sha256_hash, |
|
sizeof(fake_sha256_hash), sig.get(), sig_len, |
|
verify_key.get()); |
|
})) { |
|
fprintf(stderr, "RSA_verify failed.\n"); |
|
ERR_print_errors_fp(stderr); |
|
return false; |
|
} |
|
results.Print(name + " verify (fresh key)"); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static bool SpeedRSAKeyGen(const std::string &selected) { |
|
// Don't run this by default because it's so slow. |
|
if (selected != "RSAKeyGen") { |
|
return true; |
|
} |
|
|
|
bssl::UniquePtr<BIGNUM> e(BN_new()); |
|
if (!BN_set_word(e.get(), 65537)) { |
|
return false; |
|
} |
|
|
|
const std::vector<int> kSizes = {2048, 3072, 4096}; |
|
for (int size : kSizes) { |
|
const uint64_t start = time_now(); |
|
unsigned num_calls = 0; |
|
unsigned us; |
|
std::vector<unsigned> durations; |
|
|
|
for (;;) { |
|
bssl::UniquePtr<RSA> rsa(RSA_new()); |
|
|
|
const uint64_t iteration_start = time_now(); |
|
if (!RSA_generate_key_ex(rsa.get(), size, e.get(), nullptr)) { |
|
fprintf(stderr, "RSA_generate_key_ex failed.\n"); |
|
ERR_print_errors_fp(stderr); |
|
return false; |
|
} |
|
const uint64_t iteration_end = time_now(); |
|
|
|
num_calls++; |
|
durations.push_back(iteration_end - iteration_start); |
|
|
|
us = iteration_end - start; |
|
if (us > 30 * 1000000 /* 30 secs */) { |
|
break; |
|
} |
|
} |
|
|
|
std::sort(durations.begin(), durations.end()); |
|
const std::string description = |
|
std::string("RSA ") + std::to_string(size) + std::string(" key-gen"); |
|
const TimeResults results = {num_calls, us}; |
|
results.Print(description); |
|
const size_t n = durations.size(); |
|
assert(n > 0); |
|
|
|
// Distribution information is useful, but doesn't fit into the standard |
|
// format used by |g_print_json|. |
|
if (!g_print_json) { |
|
// |min| and |max| must be stored in temporary variables to avoid an MSVC |
|
// bug on x86. There, size_t is a typedef for unsigned, but MSVC's printf |
|
// warning tries to retain the distinction and suggest %zu for size_t |
|
// instead of %u. It gets confused if std::vector<unsigned> and |
|
// std::vector<size_t> are both instantiated. Being typedefs, the two |
|
// instantiations are identical, which somehow breaks the size_t vs |
|
// unsigned metadata. |
|
unsigned min = durations[0]; |
|
unsigned median = n & 1 ? durations[n / 2] |
|
: (durations[n / 2 - 1] + durations[n / 2]) / 2; |
|
unsigned max = durations[n - 1]; |
|
printf(" min: %uus, median: %uus, max: %uus\n", min, median, max); |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static uint8_t *align(uint8_t *in, unsigned alignment) { |
|
return reinterpret_cast<uint8_t *>( |
|
(reinterpret_cast<uintptr_t>(in) + alignment) & |
|
~static_cast<size_t>(alignment - 1)); |
|
} |
|
|
|
static std::string ChunkLenSuffix(size_t chunk_len) { |
|
char buf[32]; |
|
snprintf(buf, sizeof(buf), " (%zu byte%s)", chunk_len, |
|
chunk_len != 1 ? "s" : ""); |
|
return buf; |
|
} |
|
|
|
static bool SpeedAEADChunk(const EVP_AEAD *aead, std::string name, |
|
size_t chunk_len, size_t ad_len, |
|
evp_aead_direction_t direction) { |
|
static const unsigned kAlignment = 16; |
|
|
|
name += ChunkLenSuffix(chunk_len); |
|
bssl::ScopedEVP_AEAD_CTX ctx; |
|
const size_t key_len = EVP_AEAD_key_length(aead); |
|
const size_t nonce_len = EVP_AEAD_nonce_length(aead); |
|
const size_t overhead_len = EVP_AEAD_max_overhead(aead); |
|
|
|
std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]); |
|
OPENSSL_memset(key.get(), 0, key_len); |
|
std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]); |
|
OPENSSL_memset(nonce.get(), 0, nonce_len); |
|
std::unique_ptr<uint8_t[]> in_storage(new uint8_t[chunk_len + kAlignment]); |
|
// N.B. for EVP_AEAD_CTX_seal_scatter the input and output buffers may be the |
|
// same size. However, in the direction == evp_aead_open case we still use |
|
// non-scattering seal, hence we add overhead_len to the size of this buffer. |
|
std::unique_ptr<uint8_t[]> out_storage( |
|
new uint8_t[chunk_len + overhead_len + kAlignment]); |
|
std::unique_ptr<uint8_t[]> in2_storage( |
|
new uint8_t[chunk_len + overhead_len + kAlignment]); |
|
std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]); |
|
OPENSSL_memset(ad.get(), 0, ad_len); |
|
std::unique_ptr<uint8_t[]> tag_storage( |
|
new uint8_t[overhead_len + kAlignment]); |
|
|
|
|
|
uint8_t *const in = align(in_storage.get(), kAlignment); |
|
OPENSSL_memset(in, 0, chunk_len); |
|
uint8_t *const out = align(out_storage.get(), kAlignment); |
|
OPENSSL_memset(out, 0, chunk_len + overhead_len); |
|
uint8_t *const tag = align(tag_storage.get(), kAlignment); |
|
OPENSSL_memset(tag, 0, overhead_len); |
|
uint8_t *const in2 = align(in2_storage.get(), kAlignment); |
|
|
|
if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len, |
|
EVP_AEAD_DEFAULT_TAG_LENGTH, |
|
evp_aead_seal)) { |
|
fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n"); |
|
ERR_print_errors_fp(stderr); |
|
return false; |
|
} |
|
|
|
TimeResults results; |
|
if (direction == evp_aead_seal) { |
|
if (!TimeFunction(&results, |
|
[chunk_len, nonce_len, ad_len, overhead_len, in, out, tag, |
|
&ctx, &nonce, &ad]() -> bool { |
|
size_t tag_len; |
|
return EVP_AEAD_CTX_seal_scatter( |
|
ctx.get(), out, tag, &tag_len, overhead_len, |
|
nonce.get(), nonce_len, in, chunk_len, nullptr, 0, |
|
ad.get(), ad_len); |
|
})) { |
|
fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n"); |
|
ERR_print_errors_fp(stderr); |
|
return false; |
|
} |
|
} else { |
|
size_t out_len; |
|
EVP_AEAD_CTX_seal(ctx.get(), out, &out_len, chunk_len + overhead_len, |
|
nonce.get(), nonce_len, in, chunk_len, ad.get(), ad_len); |
|
|
|
ctx.Reset(); |
|
if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len, |
|
EVP_AEAD_DEFAULT_TAG_LENGTH, |
|
evp_aead_open)) { |
|
fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n"); |
|
ERR_print_errors_fp(stderr); |
|
return false; |
|
} |
|
|
|
if (!TimeFunction(&results, |
|
[chunk_len, overhead_len, nonce_len, ad_len, in2, out, |
|
out_len, &ctx, &nonce, &ad]() -> bool { |
|
size_t in2_len; |
|
// N.B. EVP_AEAD_CTX_open_gather is not implemented for |
|
// all AEADs. |
|
return EVP_AEAD_CTX_open(ctx.get(), in2, &in2_len, |
|
chunk_len + overhead_len, |
|
nonce.get(), nonce_len, out, |
|
out_len, ad.get(), ad_len); |
|
})) { |
|
fprintf(stderr, "EVP_AEAD_CTX_open failed.\n"); |
|
ERR_print_errors_fp(stderr); |
|
return false; |
|
} |
|
} |
|
|
|
results.PrintWithBytes( |
|
name + (direction == evp_aead_seal ? " seal" : " open"), chunk_len); |
|
return true; |
|
} |
|
|
|
static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name, |
|
size_t ad_len, const std::string &selected) { |
|
if (!selected.empty() && name.find(selected) == std::string::npos) { |
|
return true; |
|
} |
|
|
|
for (size_t chunk_len : g_chunk_lengths) { |
|
if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_seal)) { |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
static bool SpeedAEADOpen(const EVP_AEAD *aead, const std::string &name, |
|
size_t ad_len, const std::string &selected) { |
|
if (!selected.empty() && name.find(selected) == std::string::npos) { |
|
return true; |
|
} |
|
|
|
for (size_t chunk_len : g_chunk_lengths) { |
|
if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_open)) { |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static bool SpeedAESBlock(const std::string &name, unsigned bits, |
|
const std::string &selected) { |
|
if (!selected.empty() && name.find(selected) == std::string::npos) { |
|
return true; |
|
} |
|
|
|
static const uint8_t kZero[32] = {0}; |
|
|
|
{ |
|
TimeResults results; |
|
if (!TimeFunction(&results, [&]() -> bool { |
|
AES_KEY key; |
|
return AES_set_encrypt_key(kZero, bits, &key) == 0; |
|
})) { |
|
fprintf(stderr, "AES_set_encrypt_key failed.\n"); |
|
return false; |
|
} |
|
results.Print(name + " encrypt setup"); |
|
} |
|
|
|
{ |
|
AES_KEY key; |
|
if (AES_set_encrypt_key(kZero, bits, &key) != 0) { |
|
return false; |
|
} |
|
uint8_t block[16] = {0}; |
|
TimeResults results; |
|
if (!TimeFunction(&results, [&]() -> bool { |
|
AES_encrypt(block, block, &key); |
|
return true; |
|
})) { |
|
fprintf(stderr, "AES_encrypt failed.\n"); |
|
return false; |
|
} |
|
results.Print(name + " encrypt"); |
|
} |
|
|
|
{ |
|
TimeResults results; |
|
if (!TimeFunction(&results, [&]() -> bool { |
|
AES_KEY key; |
|
return AES_set_decrypt_key(kZero, bits, &key) == 0; |
|
})) { |
|
fprintf(stderr, "AES_set_decrypt_key failed.\n"); |
|
return false; |
|
} |
|
results.Print(name + " decrypt setup"); |
|
} |
|
|
|
{ |
|
AES_KEY key; |
|
if (AES_set_decrypt_key(kZero, bits, &key) != 0) { |
|
return false; |
|
} |
|
uint8_t block[16] = {0}; |
|
TimeResults results; |
|
if (!TimeFunction(&results, [&]() -> bool { |
|
AES_decrypt(block, block, &key); |
|
return true; |
|
})) { |
|
fprintf(stderr, "AES_decrypt failed.\n"); |
|
return false; |
|
} |
|
results.Print(name + " decrypt"); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static bool SpeedHashChunk(const EVP_MD *md, std::string name, |
|
size_t chunk_len) { |
|
bssl::ScopedEVP_MD_CTX ctx; |
|
uint8_t scratch[16384]; |
|
|
|
if (chunk_len > sizeof(scratch)) { |
|
return false; |
|
} |
|
|
|
name += ChunkLenSuffix(chunk_len); |
|
TimeResults results; |
|
if (!TimeFunction(&results, [&ctx, md, chunk_len, &scratch]() -> bool { |
|
uint8_t digest[EVP_MAX_MD_SIZE]; |
|
unsigned int md_len; |
|
|
|
return EVP_DigestInit_ex(ctx.get(), md, NULL /* ENGINE */) && |
|
EVP_DigestUpdate(ctx.get(), scratch, chunk_len) && |
|
EVP_DigestFinal_ex(ctx.get(), digest, &md_len); |
|
})) { |
|
fprintf(stderr, "EVP_DigestInit_ex failed.\n"); |
|
ERR_print_errors_fp(stderr); |
|
return false; |
|
} |
|
|
|
results.PrintWithBytes(name, chunk_len); |
|
return true; |
|
} |
|
|
|
static bool SpeedHash(const EVP_MD *md, const std::string &name, |
|
const std::string &selected) { |
|
if (!selected.empty() && name.find(selected) == std::string::npos) { |
|
return true; |
|
} |
|
|
|
for (size_t chunk_len : g_chunk_lengths) { |
|
if (!SpeedHashChunk(md, name, chunk_len)) { |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static bool SpeedRandomChunk(std::string name, size_t chunk_len) { |
|
uint8_t scratch[16384]; |
|
|
|
if (chunk_len > sizeof(scratch)) { |
|
return false; |
|
} |
|
|
|
name += ChunkLenSuffix(chunk_len); |
|
TimeResults results; |
|
if (!TimeFunction(&results, [chunk_len, &scratch]() -> bool { |
|
RAND_bytes(scratch, chunk_len); |
|
return true; |
|
})) { |
|
return false; |
|
} |
|
|
|
results.PrintWithBytes(name, chunk_len); |
|
return true; |
|
} |
|
|
|
static bool SpeedRandom(const std::string &selected) { |
|
if (!selected.empty() && selected != "RNG") { |
|
return true; |
|
} |
|
|
|
for (size_t chunk_len : g_chunk_lengths) { |
|
if (!SpeedRandomChunk("RNG", chunk_len)) { |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static bool SpeedECDHCurve(const std::string &name, int nid, |
|
const std::string &selected) { |
|
if (!selected.empty() && name.find(selected) == std::string::npos) { |
|
return true; |
|
} |
|
|
|
bssl::UniquePtr<EC_KEY> peer_key(EC_KEY_new_by_curve_name(nid)); |
|
if (!peer_key || |
|
!EC_KEY_generate_key(peer_key.get())) { |
|
return false; |
|
} |
|
|
|
size_t peer_value_len = EC_POINT_point2oct( |
|
EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()), |
|
POINT_CONVERSION_UNCOMPRESSED, nullptr, 0, nullptr); |
|
if (peer_value_len == 0) { |
|
return false; |
|
} |
|
std::unique_ptr<uint8_t[]> peer_value(new uint8_t[peer_value_len]); |
|
peer_value_len = EC_POINT_point2oct( |
|
EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()), |
|
POINT_CONVERSION_UNCOMPRESSED, peer_value.get(), peer_value_len, nullptr); |
|
if (peer_value_len == 0) { |
|
return false; |
|
} |
|
|
|
TimeResults results; |
|
if (!TimeFunction(&results, [nid, peer_value_len, &peer_value]() -> bool { |
|
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid)); |
|
if (!key || |
|
!EC_KEY_generate_key(key.get())) { |
|
return false; |
|
} |
|
const EC_GROUP *const group = EC_KEY_get0_group(key.get()); |
|
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group)); |
|
bssl::UniquePtr<EC_POINT> peer_point(EC_POINT_new(group)); |
|
bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
|
bssl::UniquePtr<BIGNUM> x(BN_new()); |
|
if (!point || !peer_point || !ctx || !x || |
|
!EC_POINT_oct2point(group, peer_point.get(), peer_value.get(), |
|
peer_value_len, ctx.get()) || |
|
!EC_POINT_mul(group, point.get(), nullptr, peer_point.get(), |
|
EC_KEY_get0_private_key(key.get()), ctx.get()) || |
|
!EC_POINT_get_affine_coordinates_GFp(group, point.get(), x.get(), |
|
nullptr, ctx.get())) { |
|
return false; |
|
} |
|
|
|
return true; |
|
})) { |
|
return false; |
|
} |
|
|
|
results.Print(name); |
|
return true; |
|
} |
|
|
|
static bool SpeedECDSACurve(const std::string &name, int nid, |
|
const std::string &selected) { |
|
if (!selected.empty() && name.find(selected) == std::string::npos) { |
|
return true; |
|
} |
|
|
|
bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid)); |
|
if (!key || |
|
!EC_KEY_generate_key(key.get())) { |
|
return false; |
|
} |
|
|
|
uint8_t signature[256]; |
|
if (ECDSA_size(key.get()) > sizeof(signature)) { |
|
return false; |
|
} |
|
uint8_t digest[20]; |
|
OPENSSL_memset(digest, 42, sizeof(digest)); |
|
unsigned sig_len; |
|
|
|
TimeResults results; |
|
if (!TimeFunction(&results, [&key, &signature, &digest, &sig_len]() -> bool { |
|
return ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len, |
|
key.get()) == 1; |
|
})) { |
|
return false; |
|
} |
|
|
|
results.Print(name + " signing"); |
|
|
|
if (!TimeFunction(&results, [&key, &signature, &digest, sig_len]() -> bool { |
|
return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len, |
|
key.get()) == 1; |
|
})) { |
|
return false; |
|
} |
|
|
|
results.Print(name + " verify"); |
|
|
|
return true; |
|
} |
|
|
|
static bool SpeedECDH(const std::string &selected) { |
|
return SpeedECDHCurve("ECDH P-224", NID_secp224r1, selected) && |
|
SpeedECDHCurve("ECDH P-256", NID_X9_62_prime256v1, selected) && |
|
SpeedECDHCurve("ECDH P-384", NID_secp384r1, selected) && |
|
SpeedECDHCurve("ECDH P-521", NID_secp521r1, selected); |
|
} |
|
|
|
static bool SpeedECDSA(const std::string &selected) { |
|
return SpeedECDSACurve("ECDSA P-224", NID_secp224r1, selected) && |
|
SpeedECDSACurve("ECDSA P-256", NID_X9_62_prime256v1, selected) && |
|
SpeedECDSACurve("ECDSA P-384", NID_secp384r1, selected) && |
|
SpeedECDSACurve("ECDSA P-521", NID_secp521r1, selected); |
|
} |
|
|
|
static bool Speed25519(const std::string &selected) { |
|
if (!selected.empty() && selected.find("25519") == std::string::npos) { |
|
return true; |
|
} |
|
|
|
TimeResults results; |
|
|
|
uint8_t public_key[32], private_key[64]; |
|
|
|
if (!TimeFunction(&results, [&public_key, &private_key]() -> bool { |
|
ED25519_keypair(public_key, private_key); |
|
return true; |
|
})) { |
|
return false; |
|
} |
|
|
|
results.Print("Ed25519 key generation"); |
|
|
|
static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5}; |
|
uint8_t signature[64]; |
|
|
|
if (!TimeFunction(&results, [&private_key, &signature]() -> bool { |
|
return ED25519_sign(signature, kMessage, sizeof(kMessage), |
|
private_key) == 1; |
|
})) { |
|
return false; |
|
} |
|
|
|
results.Print("Ed25519 signing"); |
|
|
|
if (!TimeFunction(&results, [&public_key, &signature]() -> bool { |
|
return ED25519_verify(kMessage, sizeof(kMessage), signature, |
|
public_key) == 1; |
|
})) { |
|
fprintf(stderr, "Ed25519 verify failed.\n"); |
|
return false; |
|
} |
|
|
|
results.Print("Ed25519 verify"); |
|
|
|
if (!TimeFunction(&results, []() -> bool { |
|
uint8_t out[32], in[32]; |
|
OPENSSL_memset(in, 0, sizeof(in)); |
|
X25519_public_from_private(out, in); |
|
return true; |
|
})) { |
|
fprintf(stderr, "Curve25519 base-point multiplication failed.\n"); |
|
return false; |
|
} |
|
|
|
results.Print("Curve25519 base-point multiplication"); |
|
|
|
if (!TimeFunction(&results, []() -> bool { |
|
uint8_t out[32], in1[32], in2[32]; |
|
OPENSSL_memset(in1, 0, sizeof(in1)); |
|
OPENSSL_memset(in2, 0, sizeof(in2)); |
|
in1[0] = 1; |
|
in2[0] = 9; |
|
return X25519(out, in1, in2) == 1; |
|
})) { |
|
fprintf(stderr, "Curve25519 arbitrary point multiplication failed.\n"); |
|
return false; |
|
} |
|
|
|
results.Print("Curve25519 arbitrary point multiplication"); |
|
|
|
return true; |
|
} |
|
|
|
static bool SpeedSPAKE2(const std::string &selected) { |
|
if (!selected.empty() && selected.find("SPAKE2") == std::string::npos) { |
|
return true; |
|
} |
|
|
|
TimeResults results; |
|
|
|
static const uint8_t kAliceName[] = {'A'}; |
|
static const uint8_t kBobName[] = {'B'}; |
|
static const uint8_t kPassword[] = "password"; |
|
bssl::UniquePtr<SPAKE2_CTX> alice(SPAKE2_CTX_new(spake2_role_alice, |
|
kAliceName, sizeof(kAliceName), kBobName, |
|
sizeof(kBobName))); |
|
uint8_t alice_msg[SPAKE2_MAX_MSG_SIZE]; |
|
size_t alice_msg_len; |
|
|
|
if (!SPAKE2_generate_msg(alice.get(), alice_msg, &alice_msg_len, |
|
sizeof(alice_msg), |
|
kPassword, sizeof(kPassword))) { |
|
fprintf(stderr, "SPAKE2_generate_msg failed.\n"); |
|
return false; |
|
} |
|
|
|
if (!TimeFunction(&results, [&alice_msg, alice_msg_len]() -> bool { |
|
bssl::UniquePtr<SPAKE2_CTX> bob(SPAKE2_CTX_new(spake2_role_bob, |
|
kBobName, sizeof(kBobName), kAliceName, |
|
sizeof(kAliceName))); |
|
uint8_t bob_msg[SPAKE2_MAX_MSG_SIZE], bob_key[64]; |
|
size_t bob_msg_len, bob_key_len; |
|
if (!SPAKE2_generate_msg(bob.get(), bob_msg, &bob_msg_len, |
|
sizeof(bob_msg), kPassword, |
|
sizeof(kPassword)) || |
|
!SPAKE2_process_msg(bob.get(), bob_key, &bob_key_len, |
|
sizeof(bob_key), alice_msg, alice_msg_len)) { |
|
return false; |
|
} |
|
|
|
return true; |
|
})) { |
|
fprintf(stderr, "SPAKE2 failed.\n"); |
|
} |
|
|
|
results.Print("SPAKE2 over Ed25519"); |
|
|
|
return true; |
|
} |
|
|
|
static bool SpeedScrypt(const std::string &selected) { |
|
if (!selected.empty() && selected.find("scrypt") == std::string::npos) { |
|
return true; |
|
} |
|
|
|
TimeResults results; |
|
|
|
static const char kPassword[] = "password"; |
|
static const uint8_t kSalt[] = "NaCl"; |
|
|
|
if (!TimeFunction(&results, [&]() -> bool { |
|
uint8_t out[64]; |
|
return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt, |
|
sizeof(kSalt) - 1, 1024, 8, 16, 0 /* max_mem */, |
|
out, sizeof(out)); |
|
})) { |
|
fprintf(stderr, "scrypt failed.\n"); |
|
return false; |
|
} |
|
results.Print("scrypt (N = 1024, r = 8, p = 16)"); |
|
|
|
if (!TimeFunction(&results, [&]() -> bool { |
|
uint8_t out[64]; |
|
return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt, |
|
sizeof(kSalt) - 1, 16384, 8, 1, 0 /* max_mem */, |
|
out, sizeof(out)); |
|
})) { |
|
fprintf(stderr, "scrypt failed.\n"); |
|
return false; |
|
} |
|
results.Print("scrypt (N = 16384, r = 8, p = 1)"); |
|
|
|
return true; |
|
} |
|
|
|
static bool SpeedHRSS(const std::string &selected) { |
|
if (!selected.empty() && selected != "HRSS") { |
|
return true; |
|
} |
|
|
|
TimeResults results; |
|
|
|
if (!TimeFunction(&results, []() -> bool { |
|
struct HRSS_public_key pub; |
|
struct HRSS_private_key priv; |
|
uint8_t entropy[HRSS_GENERATE_KEY_BYTES]; |
|
RAND_bytes(entropy, sizeof(entropy)); |
|
HRSS_generate_key(&pub, &priv, entropy); |
|
return true; |
|
})) { |
|
fprintf(stderr, "Failed to time HRSS_generate_key.\n"); |
|
return false; |
|
} |
|
|
|
results.Print("HRSS generate"); |
|
|
|
struct HRSS_public_key pub; |
|
struct HRSS_private_key priv; |
|
uint8_t key_entropy[HRSS_GENERATE_KEY_BYTES]; |
|
RAND_bytes(key_entropy, sizeof(key_entropy)); |
|
HRSS_generate_key(&pub, &priv, key_entropy); |
|
|
|
uint8_t ciphertext[HRSS_CIPHERTEXT_BYTES]; |
|
if (!TimeFunction(&results, [&pub, &ciphertext]() -> bool { |
|
uint8_t entropy[HRSS_ENCAP_BYTES]; |
|
uint8_t shared_key[HRSS_KEY_BYTES]; |
|
RAND_bytes(entropy, sizeof(entropy)); |
|
HRSS_encap(ciphertext, shared_key, &pub, entropy); |
|
return true; |
|
})) { |
|
fprintf(stderr, "Failed to time HRSS_encap.\n"); |
|
return false; |
|
} |
|
|
|
results.Print("HRSS encap"); |
|
|
|
if (!TimeFunction(&results, [&priv, &ciphertext]() -> bool { |
|
uint8_t shared_key[HRSS_KEY_BYTES]; |
|
HRSS_decap(shared_key, &priv, ciphertext, sizeof(ciphertext)); |
|
return true; |
|
})) { |
|
fprintf(stderr, "Failed to time HRSS_encap.\n"); |
|
return false; |
|
} |
|
|
|
results.Print("HRSS decap"); |
|
|
|
return true; |
|
} |
|
|
|
static bool SpeedHashToCurve(const std::string &selected) { |
|
if (!selected.empty() && selected.find("hashtocurve") == std::string::npos) { |
|
return true; |
|
} |
|
|
|
uint8_t input[64]; |
|
RAND_bytes(input, sizeof(input)); |
|
|
|
static const uint8_t kLabel[] = "label"; |
|
|
|
TimeResults results; |
|
{ |
|
EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1); |
|
if (group == NULL) { |
|
return false; |
|
} |
|
if (!TimeFunction(&results, [&]() -> bool { |
|
EC_RAW_POINT out; |
|
return ec_hash_to_curve_p384_xmd_sha512_sswu_draft07( |
|
group, &out, kLabel, sizeof(kLabel), input, sizeof(input)); |
|
})) { |
|
fprintf(stderr, "hash-to-curve failed.\n"); |
|
return false; |
|
} |
|
results.Print("hash-to-curve P384_XMD:SHA-512_SSWU_RO_"); |
|
|
|
if (!TimeFunction(&results, [&]() -> bool { |
|
EC_SCALAR out; |
|
return ec_hash_to_scalar_p384_xmd_sha512_draft07( |
|
group, &out, kLabel, sizeof(kLabel), input, sizeof(input)); |
|
})) { |
|
fprintf(stderr, "hash-to-scalar failed.\n"); |
|
return false; |
|
} |
|
results.Print("hash-to-scalar P384_XMD:SHA-512"); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static TRUST_TOKEN_PRETOKEN *trust_token_pretoken_dup( |
|
TRUST_TOKEN_PRETOKEN *in) { |
|
TRUST_TOKEN_PRETOKEN *out = |
|
(TRUST_TOKEN_PRETOKEN *)OPENSSL_malloc(sizeof(TRUST_TOKEN_PRETOKEN)); |
|
if (out) { |
|
OPENSSL_memcpy(out, in, sizeof(TRUST_TOKEN_PRETOKEN)); |
|
} |
|
return out; |
|
} |
|
|
|
static bool SpeedTrustToken(std::string name, const TRUST_TOKEN_METHOD *method, |
|
size_t batchsize, const std::string &selected) { |
|
if (!selected.empty() && selected.find("trusttoken") == std::string::npos) { |
|
return true; |
|
} |
|
|
|
TimeResults results; |
|
if (!TimeFunction(&results, [&]() -> bool { |
|
uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE]; |
|
uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE]; |
|
size_t priv_key_len, pub_key_len; |
|
return TRUST_TOKEN_generate_key( |
|
method, priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, |
|
pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0); |
|
})) { |
|
fprintf(stderr, "TRUST_TOKEN_generate_key failed.\n"); |
|
return false; |
|
} |
|
results.Print(name + " generate_key"); |
|
|
|
bssl::UniquePtr<TRUST_TOKEN_CLIENT> client( |
|
TRUST_TOKEN_CLIENT_new(method, batchsize)); |
|
bssl::UniquePtr<TRUST_TOKEN_ISSUER> issuer( |
|
TRUST_TOKEN_ISSUER_new(method, batchsize)); |
|
uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE]; |
|
uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE]; |
|
size_t priv_key_len, pub_key_len, key_index; |
|
if (!client || !issuer || |
|
!TRUST_TOKEN_generate_key( |
|
method, priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE, |
|
pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0) || |
|
!TRUST_TOKEN_CLIENT_add_key(client.get(), &key_index, pub_key, |
|
pub_key_len) || |
|
!TRUST_TOKEN_ISSUER_add_key(issuer.get(), priv_key, priv_key_len)) { |
|
fprintf(stderr, "failed to generate trust token key.\n"); |
|
return false; |
|
} |
|
|
|
uint8_t public_key[32], private_key[64]; |
|
ED25519_keypair(public_key, private_key); |
|
bssl::UniquePtr<EVP_PKEY> priv( |
|
EVP_PKEY_new_raw_private_key(EVP_PKEY_ED25519, nullptr, private_key, 32)); |
|
bssl::UniquePtr<EVP_PKEY> pub( |
|
EVP_PKEY_new_raw_public_key(EVP_PKEY_ED25519, nullptr, public_key, 32)); |
|
if (!priv || !pub) { |
|
fprintf(stderr, "failed to generate trust token SRR key.\n"); |
|
return false; |
|
} |
|
|
|
TRUST_TOKEN_CLIENT_set_srr_key(client.get(), pub.get()); |
|
TRUST_TOKEN_ISSUER_set_srr_key(issuer.get(), priv.get()); |
|
uint8_t metadata_key[32]; |
|
RAND_bytes(metadata_key, sizeof(metadata_key)); |
|
if (!TRUST_TOKEN_ISSUER_set_metadata_key(issuer.get(), metadata_key, |
|
sizeof(metadata_key))) { |
|
fprintf(stderr, "failed to generate trust token metadata key.\n"); |
|
return false; |
|
} |
|
|
|
if (!TimeFunction(&results, [&]() -> bool { |
|
uint8_t *issue_msg = NULL; |
|
size_t msg_len; |
|
int ok = TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, |
|
&msg_len, batchsize); |
|
OPENSSL_free(issue_msg); |
|
// Clear pretokens. |
|
sk_TRUST_TOKEN_PRETOKEN_pop_free(client->pretokens, |
|
TRUST_TOKEN_PRETOKEN_free); |
|
client->pretokens = sk_TRUST_TOKEN_PRETOKEN_new_null(); |
|
return ok; |
|
})) { |
|
fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_issuance failed.\n"); |
|
return false; |
|
} |
|
results.Print(name + " begin_issuance"); |
|
|
|
uint8_t *issue_msg = NULL; |
|
size_t msg_len; |
|
if (!TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len, |
|
batchsize)) { |
|
fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_issuance failed.\n"); |
|
return false; |
|
} |
|
bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg); |
|
|
|
bssl::UniquePtr<STACK_OF(TRUST_TOKEN_PRETOKEN)> pretokens( |
|
sk_TRUST_TOKEN_PRETOKEN_deep_copy(client->pretokens, |
|
trust_token_pretoken_dup, |
|
TRUST_TOKEN_PRETOKEN_free)); |
|
|
|
if (!TimeFunction(&results, [&]() -> bool { |
|
uint8_t *issue_resp = NULL; |
|
size_t resp_len, tokens_issued; |
|
int ok = TRUST_TOKEN_ISSUER_issue(issuer.get(), &issue_resp, &resp_len, |
|
&tokens_issued, issue_msg, msg_len, |
|
/*public_metadata=*/0, |
|
/*private_metadata=*/0, |
|
/*max_issuance=*/batchsize); |
|
OPENSSL_free(issue_resp); |
|
return ok; |
|
})) { |
|
fprintf(stderr, "TRUST_TOKEN_ISSUER_issue failed.\n"); |
|
return false; |
|
} |
|
results.Print(name + " issue"); |
|
|
|
uint8_t *issue_resp = NULL; |
|
size_t resp_len, tokens_issued; |
|
if (!TRUST_TOKEN_ISSUER_issue(issuer.get(), &issue_resp, &resp_len, |
|
&tokens_issued, issue_msg, msg_len, |
|
/*public_metadata=*/0, /*private_metadata=*/0, |
|
/*max_issuance=*/batchsize)) { |
|
fprintf(stderr, "TRUST_TOKEN_ISSUER_issue failed.\n"); |
|
return false; |
|
} |
|
bssl::UniquePtr<uint8_t> free_issue_resp(issue_resp); |
|
|
|
if (!TimeFunction(&results, [&]() -> bool { |
|
size_t key_index2; |
|
bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens( |
|
TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index2, |
|
issue_resp, resp_len)); |
|
|
|
// Reset pretokens. |
|
client->pretokens = sk_TRUST_TOKEN_PRETOKEN_deep_copy( |
|
pretokens.get(), trust_token_pretoken_dup, |
|
TRUST_TOKEN_PRETOKEN_free); |
|
return !!tokens; |
|
})) { |
|
fprintf(stderr, "TRUST_TOKEN_CLIENT_finish_issuance failed.\n"); |
|
return false; |
|
} |
|
results.Print(name + " finish_issuance"); |
|
|
|
bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens( |
|
TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp, |
|
resp_len)); |
|
if (!tokens || sk_TRUST_TOKEN_num(tokens.get()) < 1) { |
|
fprintf(stderr, "TRUST_TOKEN_CLIENT_finish_issuance failed.\n"); |
|
return false; |
|
} |
|
|
|
const TRUST_TOKEN *token = sk_TRUST_TOKEN_value(tokens.get(), 0); |
|
|
|
const uint8_t kClientData[] = "\x70TEST CLIENT DATA"; |
|
uint64_t kRedemptionTime = 13374242; |
|
|
|
if (!TimeFunction(&results, [&]() -> bool { |
|
uint8_t *redeem_msg = NULL; |
|
size_t redeem_msg_len; |
|
int ok = TRUST_TOKEN_CLIENT_begin_redemption( |
|
client.get(), &redeem_msg, &redeem_msg_len, token, kClientData, |
|
sizeof(kClientData) - 1, kRedemptionTime); |
|
OPENSSL_free(redeem_msg); |
|
return ok; |
|
})) { |
|
fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_redemption failed.\n"); |
|
return false; |
|
} |
|
results.Print(name + " begin_redemption"); |
|
|
|
uint8_t *redeem_msg = NULL; |
|
size_t redeem_msg_len; |
|
if (!TRUST_TOKEN_CLIENT_begin_redemption( |
|
client.get(), &redeem_msg, &redeem_msg_len, token, kClientData, |
|
sizeof(kClientData) - 1, kRedemptionTime)) { |
|
fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_redemption failed.\n"); |
|
return false; |
|
} |
|
bssl::UniquePtr<uint8_t> free_redeem_msg(redeem_msg); |
|
|
|
if (!TimeFunction(&results, [&]() -> bool { |
|
uint8_t *redeem_resp = NULL; |
|
size_t redeem_resp_len; |
|
TRUST_TOKEN *rtoken = NULL; |
|
uint8_t *client_data = NULL; |
|
size_t client_data_len; |
|
uint64_t redemption_time; |
|
int ok = TRUST_TOKEN_ISSUER_redeem( |
|
issuer.get(), &redeem_resp, &redeem_resp_len, &rtoken, &client_data, |
|
&client_data_len, &redemption_time, redeem_msg, redeem_msg_len, |
|
/*lifetime=*/600); |
|
OPENSSL_free(redeem_resp); |
|
OPENSSL_free(client_data); |
|
TRUST_TOKEN_free(rtoken); |
|
return ok; |
|
})) { |
|
fprintf(stderr, "TRUST_TOKEN_ISSUER_redeem failed.\n"); |
|
return false; |
|
} |
|
results.Print(name + " redeem"); |
|
|
|
uint8_t *redeem_resp = NULL; |
|
size_t redeem_resp_len; |
|
TRUST_TOKEN *rtoken = NULL; |
|
uint8_t *client_data = NULL; |
|
size_t client_data_len; |
|
uint64_t redemption_time; |
|
if (!TRUST_TOKEN_ISSUER_redeem(issuer.get(), &redeem_resp, &redeem_resp_len, |
|
&rtoken, &client_data, &client_data_len, |
|
&redemption_time, redeem_msg, redeem_msg_len, |
|
/*lifetime=*/600)) { |
|
fprintf(stderr, "TRUST_TOKEN_ISSUER_redeem failed.\n"); |
|
return false; |
|
} |
|
bssl::UniquePtr<uint8_t> free_redeem_resp(redeem_resp); |
|
bssl::UniquePtr<uint8_t> free_client_data(client_data); |
|
bssl::UniquePtr<TRUST_TOKEN> free_rtoken(rtoken); |
|
|
|
if (!TimeFunction(&results, [&]() -> bool { |
|
uint8_t *srr = NULL, *sig = NULL; |
|
size_t srr_len, sig_len; |
|
int ok = TRUST_TOKEN_CLIENT_finish_redemption( |
|
client.get(), &srr, &srr_len, &sig, &sig_len, redeem_resp, |
|
redeem_resp_len); |
|
OPENSSL_free(srr); |
|
OPENSSL_free(sig); |
|
return ok; |
|
})) { |
|
fprintf(stderr, "TRUST_TOKEN_CLIENT_finish_redemption failed.\n"); |
|
return false; |
|
} |
|
results.Print(name + " finish_redemption"); |
|
|
|
return true; |
|
} |
|
|
|
#if defined(BORINGSSL_FIPS) |
|
static bool SpeedSelfTest(const std::string &selected) { |
|
if (!selected.empty() && selected.find("self-test") == std::string::npos) { |
|
return true; |
|
} |
|
|
|
TimeResults results; |
|
if (!TimeFunction(&results, []() -> bool { return BORINGSSL_self_test(); })) { |
|
fprintf(stderr, "BORINGSSL_self_test faileid.\n"); |
|
ERR_print_errors_fp(stderr); |
|
return false; |
|
} |
|
|
|
results.Print("self-test"); |
|
return true; |
|
} |
|
#endif |
|
|
|
static const struct argument kArguments[] = { |
|
{ |
|
"-filter", |
|
kOptionalArgument, |
|
"A filter on the speed tests to run", |
|
}, |
|
{ |
|
"-timeout", |
|
kOptionalArgument, |
|
"The number of seconds to run each test for (default is 1)", |
|
}, |
|
{ |
|
"-chunks", |
|
kOptionalArgument, |
|
"A comma-separated list of input sizes to run tests at (default is " |
|
"16,256,1350,8192,16384)", |
|
}, |
|
{ |
|
"-json", |
|
kBooleanArgument, |
|
"If this flag is set, speed will print the output of each benchmark in " |
|
"JSON format as follows: \"{\"description\": " |
|
"\"descriptionOfOperation\", \"numCalls\": 1234, " |
|
"\"timeInMicroseconds\": 1234567, \"bytesPerCall\": 1234}\". When " |
|
"there is no information about the bytes per call for an operation, " |
|
"the JSON field for bytesPerCall will be omitted.", |
|
}, |
|
{ |
|
"", |
|
kOptionalArgument, |
|
"", |
|
}, |
|
}; |
|
|
|
bool Speed(const std::vector<std::string> &args) { |
|
std::map<std::string, std::string> args_map; |
|
if (!ParseKeyValueArguments(&args_map, args, kArguments)) { |
|
PrintUsage(kArguments); |
|
return false; |
|
} |
|
|
|
std::string selected; |
|
if (args_map.count("-filter") != 0) { |
|
selected = args_map["-filter"]; |
|
} |
|
|
|
if (args_map.count("-json") != 0) { |
|
g_print_json = true; |
|
} |
|
|
|
if (args_map.count("-timeout") != 0) { |
|
g_timeout_seconds = atoi(args_map["-timeout"].c_str()); |
|
} |
|
|
|
if (args_map.count("-chunks") != 0) { |
|
g_chunk_lengths.clear(); |
|
const char *start = args_map["-chunks"].data(); |
|
const char *end = start + args_map["-chunks"].size(); |
|
while (start != end) { |
|
errno = 0; |
|
char *ptr; |
|
unsigned long long val = strtoull(start, &ptr, 10); |
|
if (ptr == start /* no numeric characters found */ || |
|
errno == ERANGE /* overflow */ || |
|
static_cast<size_t>(val) != val) { |
|
fprintf(stderr, "Error parsing -chunks argument\n"); |
|
return false; |
|
} |
|
g_chunk_lengths.push_back(static_cast<size_t>(val)); |
|
start = ptr; |
|
if (start != end) { |
|
if (*start != ',') { |
|
fprintf(stderr, "Error parsing -chunks argument\n"); |
|
return false; |
|
} |
|
start++; |
|
} |
|
} |
|
} |
|
|
|
// kTLSADLen is the number of bytes of additional data that TLS passes to |
|
// AEADs. |
|
static const size_t kTLSADLen = 13; |
|
// kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs. |
|
// These are AEADs that weren't originally defined as AEADs, but which we use |
|
// via the AEAD interface. In order for that to work, they have some TLS |
|
// knowledge in them and construct a couple of the AD bytes internally. |
|
static const size_t kLegacyADLen = kTLSADLen - 2; |
|
|
|
if (g_print_json) { |
|
puts("["); |
|
} |
|
if (!SpeedRSA(selected) || |
|
!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) || |
|
!SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) || |
|
!SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen, |
|
selected) || |
|
!SpeedAEAD(EVP_aead_des_ede3_cbc_sha1_tls(), "DES-EDE3-CBC-SHA1", |
|
kLegacyADLen, selected) || |
|
!SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", |
|
kLegacyADLen, selected) || |
|
!SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", |
|
kLegacyADLen, selected) || |
|
!SpeedAEADOpen(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", |
|
kLegacyADLen, selected) || |
|
!SpeedAEADOpen(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", |
|
kLegacyADLen, selected) || |
|
!SpeedAEAD(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen, |
|
selected) || |
|
!SpeedAEAD(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen, |
|
selected) || |
|
!SpeedAEADOpen(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen, |
|
selected) || |
|
!SpeedAEADOpen(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen, |
|
selected) || |
|
!SpeedAEAD(EVP_aead_aes_128_ccm_bluetooth(), "AES-128-CCM-Bluetooth", |
|
kTLSADLen, selected) || |
|
!SpeedAESBlock("AES-128", 128, selected) || |
|
!SpeedAESBlock("AES-256", 256, selected) || |
|
!SpeedHash(EVP_sha1(), "SHA-1", selected) || |
|
!SpeedHash(EVP_sha256(), "SHA-256", selected) || |
|
!SpeedHash(EVP_sha512(), "SHA-512", selected) || |
|
!SpeedHash(EVP_blake2b256(), "BLAKE2b-256", selected) || |
|
!SpeedRandom(selected) || |
|
!SpeedECDH(selected) || |
|
!SpeedECDSA(selected) || |
|
!Speed25519(selected) || |
|
!SpeedSPAKE2(selected) || |
|
!SpeedScrypt(selected) || |
|
!SpeedRSAKeyGen(selected) || |
|
!SpeedHRSS(selected) || |
|
!SpeedHashToCurve(selected) || |
|
!SpeedTrustToken("TrustToken-Exp1-Batch1", TRUST_TOKEN_experiment_v1(), 1, |
|
selected) || |
|
!SpeedTrustToken("TrustToken-Exp1-Batch10", TRUST_TOKEN_experiment_v1(), |
|
10, selected) || |
|
!SpeedTrustToken("TrustToken-Exp2VOPRF-Batch1", |
|
TRUST_TOKEN_experiment_v2_voprf(), 1, selected) || |
|
!SpeedTrustToken("TrustToken-Exp2VOPRF-Batch10", |
|
TRUST_TOKEN_experiment_v2_voprf(), 10, selected) || |
|
!SpeedTrustToken("TrustToken-Exp2PMB-Batch1", |
|
TRUST_TOKEN_experiment_v2_pmb(), 1, selected) || |
|
!SpeedTrustToken("TrustToken-Exp2PMB-Batch10", |
|
TRUST_TOKEN_experiment_v2_pmb(), 10, selected)) { |
|
return false; |
|
} |
|
#if defined(BORINGSSL_FIPS) |
|
if (!SpeedSelfTest(selected)) { |
|
return false; |
|
} |
|
#endif |
|
if (g_print_json) { |
|
puts("\n]"); |
|
} |
|
|
|
return true; |
|
}
|
|
|