Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
479 lines
22 KiB
479 lines
22 KiB
/* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] */ |
|
|
|
#ifndef OPENSSL_HEADER_PEM_H |
|
#define OPENSSL_HEADER_PEM_H |
|
|
|
#include <openssl/base64.h> |
|
#include <openssl/bio.h> |
|
#include <openssl/cipher.h> |
|
#include <openssl/digest.h> |
|
#include <openssl/evp.h> |
|
#include <openssl/pkcs7.h> |
|
#include <openssl/stack.h> |
|
#include <openssl/x509.h> |
|
|
|
// For compatibility with open-iscsi, which assumes that it can get |
|
// |OPENSSL_malloc| from pem.h or err.h |
|
#include <openssl/crypto.h> |
|
|
|
#ifdef __cplusplus |
|
extern "C" { |
|
#endif |
|
|
|
|
|
#define PEM_BUFSIZE 1024 |
|
|
|
#define PEM_STRING_X509_OLD "X509 CERTIFICATE" |
|
#define PEM_STRING_X509 "CERTIFICATE" |
|
#define PEM_STRING_X509_PAIR "CERTIFICATE PAIR" |
|
#define PEM_STRING_X509_TRUSTED "TRUSTED CERTIFICATE" |
|
#define PEM_STRING_X509_REQ_OLD "NEW CERTIFICATE REQUEST" |
|
#define PEM_STRING_X509_REQ "CERTIFICATE REQUEST" |
|
#define PEM_STRING_X509_CRL "X509 CRL" |
|
#define PEM_STRING_EVP_PKEY "ANY PRIVATE KEY" |
|
#define PEM_STRING_PUBLIC "PUBLIC KEY" |
|
#define PEM_STRING_RSA "RSA PRIVATE KEY" |
|
#define PEM_STRING_RSA_PUBLIC "RSA PUBLIC KEY" |
|
#define PEM_STRING_DSA "DSA PRIVATE KEY" |
|
#define PEM_STRING_DSA_PUBLIC "DSA PUBLIC KEY" |
|
#define PEM_STRING_EC "EC PRIVATE KEY" |
|
#define PEM_STRING_PKCS7 "PKCS7" |
|
#define PEM_STRING_PKCS7_SIGNED "PKCS #7 SIGNED DATA" |
|
#define PEM_STRING_PKCS8 "ENCRYPTED PRIVATE KEY" |
|
#define PEM_STRING_PKCS8INF "PRIVATE KEY" |
|
#define PEM_STRING_DHPARAMS "DH PARAMETERS" |
|
#define PEM_STRING_SSL_SESSION "SSL SESSION PARAMETERS" |
|
#define PEM_STRING_DSAPARAMS "DSA PARAMETERS" |
|
#define PEM_STRING_ECDSA_PUBLIC "ECDSA PUBLIC KEY" |
|
#define PEM_STRING_ECPRIVATEKEY "EC PRIVATE KEY" |
|
#define PEM_STRING_CMS "CMS" |
|
|
|
// enc_type is one off |
|
#define PEM_TYPE_ENCRYPTED 10 |
|
#define PEM_TYPE_MIC_ONLY 20 |
|
#define PEM_TYPE_MIC_CLEAR 30 |
|
#define PEM_TYPE_CLEAR 40 |
|
|
|
// These macros make the PEM_read/PEM_write functions easier to maintain and |
|
// write. Now they are all implemented with either: |
|
// IMPLEMENT_PEM_rw(...) or IMPLEMENT_PEM_rw_cb(...) |
|
|
|
|
|
#define IMPLEMENT_PEM_read_fp(name, type, str, asn1) \ |
|
static void *pem_read_##name##_d2i(void **x, const unsigned char **inp, \ |
|
long len) { \ |
|
return d2i_##asn1((type **)x, inp, len); \ |
|
} \ |
|
OPENSSL_EXPORT type *PEM_read_##name(FILE *fp, type **x, \ |
|
pem_password_cb *cb, void *u) { \ |
|
return (type *)PEM_ASN1_read(pem_read_##name##_d2i, str, fp, (void **)x, \ |
|
cb, u); \ |
|
} |
|
|
|
#define IMPLEMENT_PEM_write_fp(name, type, str, asn1) \ |
|
static int pem_write_##name##_i2d(const void *x, unsigned char **outp) { \ |
|
return i2d_##asn1((type *)x, outp); \ |
|
} \ |
|
OPENSSL_EXPORT int PEM_write_##name(FILE *fp, type *x) { \ |
|
return PEM_ASN1_write(pem_write_##name##_i2d, str, fp, x, NULL, NULL, 0, \ |
|
NULL, NULL); \ |
|
} |
|
|
|
#define IMPLEMENT_PEM_write_fp_const(name, type, str, asn1) \ |
|
static int pem_write_##name##_i2d(const void *x, unsigned char **outp) { \ |
|
return i2d_##asn1((const type *)x, outp); \ |
|
} \ |
|
OPENSSL_EXPORT int PEM_write_##name(FILE *fp, const type *x) { \ |
|
return PEM_ASN1_write(pem_write_##name##_i2d, str, fp, (void *)x, NULL, \ |
|
NULL, 0, NULL, NULL); \ |
|
} |
|
|
|
#define IMPLEMENT_PEM_write_cb_fp(name, type, str, asn1) \ |
|
static int pem_write_##name##_i2d(const void *x, unsigned char **outp) { \ |
|
return i2d_##asn1((type *)x, outp); \ |
|
} \ |
|
OPENSSL_EXPORT int PEM_write_##name( \ |
|
FILE *fp, type *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, \ |
|
pem_password_cb *cb, void *u) { \ |
|
return PEM_ASN1_write(pem_write_##name##_i2d, str, fp, x, enc, kstr, klen, \ |
|
cb, u); \ |
|
} |
|
|
|
#define IMPLEMENT_PEM_write_cb_fp_const(name, type, str, asn1) \ |
|
static int pem_write_##name##_i2d(const void *x, unsigned char **outp) { \ |
|
return i2d_##asn1((const type *)x, outp); \ |
|
} \ |
|
OPENSSL_EXPORT int PEM_write_##name( \ |
|
FILE *fp, type *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, \ |
|
pem_password_cb *cb, void *u) { \ |
|
return PEM_ASN1_write(pem_write_##name##_i2d, str, fp, x, enc, kstr, klen, \ |
|
cb, u); \ |
|
} |
|
|
|
|
|
#define IMPLEMENT_PEM_read_bio(name, type, str, asn1) \ |
|
static void *pem_read_bio_##name##_d2i(void **x, const unsigned char **inp, \ |
|
long len) { \ |
|
return d2i_##asn1((type **)x, inp, len); \ |
|
} \ |
|
OPENSSL_EXPORT type *PEM_read_bio_##name(BIO *bp, type **x, \ |
|
pem_password_cb *cb, void *u) { \ |
|
return (type *)PEM_ASN1_read_bio(pem_read_bio_##name##_d2i, str, bp, \ |
|
(void **)x, cb, u); \ |
|
} |
|
|
|
#define IMPLEMENT_PEM_write_bio(name, type, str, asn1) \ |
|
static int pem_write_bio_##name##_i2d(const void *x, unsigned char **outp) { \ |
|
return i2d_##asn1((type *)x, outp); \ |
|
} \ |
|
OPENSSL_EXPORT int PEM_write_bio_##name(BIO *bp, type *x) { \ |
|
return PEM_ASN1_write_bio(pem_write_bio_##name##_i2d, str, bp, x, NULL, \ |
|
NULL, 0, NULL, NULL); \ |
|
} |
|
|
|
#define IMPLEMENT_PEM_write_bio_const(name, type, str, asn1) \ |
|
static int pem_write_bio_##name##_i2d(const void *x, unsigned char **outp) { \ |
|
return i2d_##asn1((const type *)x, outp); \ |
|
} \ |
|
OPENSSL_EXPORT int PEM_write_bio_##name(BIO *bp, const type *x) { \ |
|
return PEM_ASN1_write_bio(pem_write_bio_##name##_i2d, str, bp, (void *)x, \ |
|
NULL, NULL, 0, NULL, NULL); \ |
|
} |
|
|
|
#define IMPLEMENT_PEM_write_cb_bio(name, type, str, asn1) \ |
|
static int pem_write_bio_##name##_i2d(const void *x, unsigned char **outp) { \ |
|
return i2d_##asn1((type *)x, outp); \ |
|
} \ |
|
OPENSSL_EXPORT int PEM_write_bio_##name( \ |
|
BIO *bp, type *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, \ |
|
pem_password_cb *cb, void *u) { \ |
|
return PEM_ASN1_write_bio(pem_write_bio_##name##_i2d, str, bp, x, enc, \ |
|
kstr, klen, cb, u); \ |
|
} |
|
|
|
#define IMPLEMENT_PEM_write_cb_bio_const(name, type, str, asn1) \ |
|
static int pem_write_bio_##name##_i2d(const void *x, unsigned char **outp) { \ |
|
return i2d_##asn1((const type *)x, outp); \ |
|
} \ |
|
OPENSSL_EXPORT int PEM_write_bio_##name( \ |
|
BIO *bp, type *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, \ |
|
pem_password_cb *cb, void *u) { \ |
|
return PEM_ASN1_write_bio(pem_write_bio_##name##_i2d, str, bp, (void *)x, \ |
|
enc, kstr, klen, cb, u); \ |
|
} |
|
|
|
#define IMPLEMENT_PEM_write(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_write_bio(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_write_fp(name, type, str, asn1) |
|
|
|
#define IMPLEMENT_PEM_write_const(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_write_bio_const(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_write_fp_const(name, type, str, asn1) |
|
|
|
#define IMPLEMENT_PEM_write_cb(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_write_cb_bio(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_write_cb_fp(name, type, str, asn1) |
|
|
|
#define IMPLEMENT_PEM_write_cb_const(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_write_cb_bio_const(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_write_cb_fp_const(name, type, str, asn1) |
|
|
|
#define IMPLEMENT_PEM_read(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_read_bio(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_read_fp(name, type, str, asn1) |
|
|
|
#define IMPLEMENT_PEM_rw(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_read(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_write(name, type, str, asn1) |
|
|
|
#define IMPLEMENT_PEM_rw_const(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_read(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_write_const(name, type, str, asn1) |
|
|
|
#define IMPLEMENT_PEM_rw_cb(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_read(name, type, str, asn1) \ |
|
IMPLEMENT_PEM_write_cb(name, type, str, asn1) |
|
|
|
// These are the same except they are for the declarations |
|
|
|
#define DECLARE_PEM_read_fp(name, type) \ |
|
OPENSSL_EXPORT type *PEM_read_##name(FILE *fp, type **x, \ |
|
pem_password_cb *cb, void *u); |
|
|
|
#define DECLARE_PEM_write_fp(name, type) \ |
|
OPENSSL_EXPORT int PEM_write_##name(FILE *fp, type *x); |
|
|
|
#define DECLARE_PEM_write_fp_const(name, type) \ |
|
OPENSSL_EXPORT int PEM_write_##name(FILE *fp, const type *x); |
|
|
|
#define DECLARE_PEM_write_cb_fp(name, type) \ |
|
OPENSSL_EXPORT int PEM_write_##name( \ |
|
FILE *fp, type *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, \ |
|
pem_password_cb *cb, void *u); |
|
|
|
#define DECLARE_PEM_read_bio(name, type) \ |
|
OPENSSL_EXPORT type *PEM_read_bio_##name(BIO *bp, type **x, \ |
|
pem_password_cb *cb, void *u); |
|
|
|
#define DECLARE_PEM_write_bio(name, type) \ |
|
OPENSSL_EXPORT int PEM_write_bio_##name(BIO *bp, type *x); |
|
|
|
#define DECLARE_PEM_write_bio_const(name, type) \ |
|
OPENSSL_EXPORT int PEM_write_bio_##name(BIO *bp, const type *x); |
|
|
|
#define DECLARE_PEM_write_cb_bio(name, type) \ |
|
OPENSSL_EXPORT int PEM_write_bio_##name( \ |
|
BIO *bp, type *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, \ |
|
pem_password_cb *cb, void *u); |
|
|
|
|
|
#define DECLARE_PEM_write(name, type) \ |
|
DECLARE_PEM_write_bio(name, type) \ |
|
DECLARE_PEM_write_fp(name, type) |
|
|
|
#define DECLARE_PEM_write_const(name, type) \ |
|
DECLARE_PEM_write_bio_const(name, type) \ |
|
DECLARE_PEM_write_fp_const(name, type) |
|
|
|
#define DECLARE_PEM_write_cb(name, type) \ |
|
DECLARE_PEM_write_cb_bio(name, type) \ |
|
DECLARE_PEM_write_cb_fp(name, type) |
|
|
|
#define DECLARE_PEM_read(name, type) \ |
|
DECLARE_PEM_read_bio(name, type) \ |
|
DECLARE_PEM_read_fp(name, type) |
|
|
|
#define DECLARE_PEM_rw(name, type) \ |
|
DECLARE_PEM_read(name, type) \ |
|
DECLARE_PEM_write(name, type) |
|
|
|
#define DECLARE_PEM_rw_const(name, type) \ |
|
DECLARE_PEM_read(name, type) \ |
|
DECLARE_PEM_write_const(name, type) |
|
|
|
#define DECLARE_PEM_rw_cb(name, type) \ |
|
DECLARE_PEM_read(name, type) \ |
|
DECLARE_PEM_write_cb(name, type) |
|
|
|
// "userdata": new with OpenSSL 0.9.4 |
|
typedef int pem_password_cb(char *buf, int size, int rwflag, void *userdata); |
|
|
|
OPENSSL_EXPORT int PEM_get_EVP_CIPHER_INFO(char *header, |
|
EVP_CIPHER_INFO *cipher); |
|
OPENSSL_EXPORT int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, |
|
long *len, pem_password_cb *callback, void *u); |
|
|
|
// PEM_read_bio reads from |bp|, until the next PEM block. If one is found, it |
|
// returns one and sets |*name|, |*header|, and |*data| to newly-allocated |
|
// buffers containing the PEM type, the header block, and the decoded data, |
|
// respectively. |*name| and |*header| are NUL-terminated C strings, while |
|
// |*data| has |*len| bytes. The caller must release each of |*name|, |*header|, |
|
// and |*data| with |OPENSSL_free| when done. If no PEM block is found, this |
|
// function returns zero and pushes |PEM_R_NO_START_LINE| to the error queue. If |
|
// one is found, but there is an error decoding it, it returns zero and pushes |
|
// some other error to the error queue. |
|
OPENSSL_EXPORT int PEM_read_bio(BIO *bp, char **name, char **header, |
|
unsigned char **data, long *len); |
|
|
|
// PEM_write_bio writes a PEM block to |bp|, containing |len| bytes from |data| |
|
// as data. |name| and |hdr| are NUL-terminated C strings containing the PEM |
|
// type and header block, respectively. This function returns zero on error and |
|
// the number of bytes written on success. |
|
OPENSSL_EXPORT int PEM_write_bio(BIO *bp, const char *name, const char *hdr, |
|
const unsigned char *data, long len); |
|
|
|
OPENSSL_EXPORT int PEM_bytes_read_bio(unsigned char **pdata, long *plen, |
|
char **pnm, const char *name, BIO *bp, |
|
pem_password_cb *cb, void *u); |
|
OPENSSL_EXPORT void *PEM_ASN1_read_bio(d2i_of_void *d2i, const char *name, |
|
BIO *bp, void **x, pem_password_cb *cb, |
|
void *u); |
|
OPENSSL_EXPORT int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, |
|
BIO *bp, void *x, const EVP_CIPHER *enc, |
|
unsigned char *kstr, int klen, |
|
pem_password_cb *cb, void *u); |
|
|
|
OPENSSL_EXPORT STACK_OF(X509_INFO) *PEM_X509_INFO_read_bio( |
|
BIO *bp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, void *u); |
|
|
|
OPENSSL_EXPORT int PEM_read(FILE *fp, char **name, char **header, |
|
unsigned char **data, long *len); |
|
OPENSSL_EXPORT int PEM_write(FILE *fp, const char *name, const char *hdr, |
|
const unsigned char *data, long len); |
|
OPENSSL_EXPORT void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, |
|
void **x, pem_password_cb *cb, void *u); |
|
OPENSSL_EXPORT int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, |
|
void *x, const EVP_CIPHER *enc, |
|
unsigned char *kstr, int klen, |
|
pem_password_cb *callback, void *u); |
|
OPENSSL_EXPORT STACK_OF(X509_INFO) *PEM_X509_INFO_read(FILE *fp, |
|
STACK_OF(X509_INFO) *sk, |
|
pem_password_cb *cb, |
|
void *u); |
|
|
|
// PEM_def_callback treats |userdata| as a string and copies it into |buf|, |
|
// assuming its |size| is sufficient. Returns the length of the string, or 0 |
|
// if there is not enough room. If either |buf| or |userdata| is NULL, 0 is |
|
// returned. Note that this is different from OpenSSL, which prompts for a |
|
// password. |
|
OPENSSL_EXPORT int PEM_def_callback(char *buf, int size, int rwflag, |
|
void *userdata); |
|
OPENSSL_EXPORT void PEM_proc_type(char *buf, int type); |
|
OPENSSL_EXPORT void PEM_dek_info(char *buf, const char *type, int len, |
|
char *str); |
|
|
|
|
|
DECLARE_PEM_rw(X509, X509) |
|
|
|
DECLARE_PEM_rw(X509_AUX, X509) |
|
|
|
DECLARE_PEM_rw(X509_REQ, X509_REQ) |
|
DECLARE_PEM_write(X509_REQ_NEW, X509_REQ) |
|
|
|
DECLARE_PEM_rw(X509_CRL, X509_CRL) |
|
|
|
DECLARE_PEM_rw(PKCS7, PKCS7) |
|
DECLARE_PEM_rw(PKCS8, X509_SIG) |
|
|
|
DECLARE_PEM_rw(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO) |
|
|
|
DECLARE_PEM_rw_cb(RSAPrivateKey, RSA) |
|
|
|
DECLARE_PEM_rw_const(RSAPublicKey, RSA) |
|
DECLARE_PEM_rw(RSA_PUBKEY, RSA) |
|
|
|
#ifndef OPENSSL_NO_DSA |
|
|
|
DECLARE_PEM_rw_cb(DSAPrivateKey, DSA) |
|
|
|
DECLARE_PEM_rw(DSA_PUBKEY, DSA) |
|
|
|
DECLARE_PEM_rw_const(DSAparams, DSA) |
|
|
|
#endif |
|
|
|
DECLARE_PEM_rw_cb(ECPrivateKey, EC_KEY) |
|
DECLARE_PEM_rw(EC_PUBKEY, EC_KEY) |
|
|
|
|
|
DECLARE_PEM_rw_const(DHparams, DH) |
|
|
|
|
|
DECLARE_PEM_rw_cb(PrivateKey, EVP_PKEY) |
|
|
|
DECLARE_PEM_rw(PUBKEY, EVP_PKEY) |
|
|
|
OPENSSL_EXPORT int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, |
|
int nid, char *kstr, |
|
int klen, |
|
pem_password_cb *cb, |
|
void *u); |
|
OPENSSL_EXPORT int PEM_write_bio_PKCS8PrivateKey(BIO *, EVP_PKEY *, |
|
const EVP_CIPHER *, char *, |
|
int, pem_password_cb *, |
|
void *); |
|
OPENSSL_EXPORT int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, |
|
const EVP_CIPHER *enc, char *kstr, |
|
int klen, pem_password_cb *cb, |
|
void *u); |
|
OPENSSL_EXPORT int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid, |
|
char *kstr, int klen, |
|
pem_password_cb *cb, void *u); |
|
OPENSSL_EXPORT EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, |
|
pem_password_cb *cb, void *u); |
|
|
|
OPENSSL_EXPORT int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, |
|
const EVP_CIPHER *enc, char *kstr, |
|
int klen, pem_password_cb *cb, |
|
void *u); |
|
OPENSSL_EXPORT int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid, |
|
char *kstr, int klen, |
|
pem_password_cb *cb, void *u); |
|
OPENSSL_EXPORT int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, |
|
char *kstr, int klen, |
|
pem_password_cb *cb, void *u); |
|
|
|
OPENSSL_EXPORT EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, |
|
pem_password_cb *cb, void *u); |
|
|
|
OPENSSL_EXPORT int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, |
|
const EVP_CIPHER *enc, char *kstr, |
|
int klen, pem_password_cb *cd, |
|
void *u); |
|
|
|
|
|
#ifdef __cplusplus |
|
} |
|
#endif |
|
|
|
#define PEM_R_BAD_BASE64_DECODE 100 |
|
#define PEM_R_BAD_DECRYPT 101 |
|
#define PEM_R_BAD_END_LINE 102 |
|
#define PEM_R_BAD_IV_CHARS 103 |
|
#define PEM_R_BAD_PASSWORD_READ 104 |
|
#define PEM_R_CIPHER_IS_NULL 105 |
|
#define PEM_R_ERROR_CONVERTING_PRIVATE_KEY 106 |
|
#define PEM_R_NOT_DEK_INFO 107 |
|
#define PEM_R_NOT_ENCRYPTED 108 |
|
#define PEM_R_NOT_PROC_TYPE 109 |
|
#define PEM_R_NO_START_LINE 110 |
|
#define PEM_R_READ_KEY 111 |
|
#define PEM_R_SHORT_HEADER 112 |
|
#define PEM_R_UNSUPPORTED_CIPHER 113 |
|
#define PEM_R_UNSUPPORTED_ENCRYPTION 114 |
|
|
|
#endif // OPENSSL_HEADER_PEM_H
|
|
|