Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
352 lines
13 KiB
352 lines
13 KiB
/* Originally written by Bodo Moeller for the OpenSSL project. |
|
* ==================================================================== |
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* 3. All advertising materials mentioning features or use of this |
|
* software must display the following acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
|
* |
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
|
* endorse or promote products derived from this software without |
|
* prior written permission. For written permission, please contact |
|
* openssl-core@openssl.org. |
|
* |
|
* 5. Products derived from this software may not be called "OpenSSL" |
|
* nor may "OpenSSL" appear in their names without prior written |
|
* permission of the OpenSSL Project. |
|
* |
|
* 6. Redistributions of any form whatsoever must retain the following |
|
* acknowledgment: |
|
* "This product includes software developed by the OpenSSL Project |
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
|
* OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* ==================================================================== |
|
* |
|
* This product includes cryptographic software written by Eric Young |
|
* (eay@cryptsoft.com). This product includes software written by Tim |
|
* Hudson (tjh@cryptsoft.com). |
|
* |
|
*/ |
|
/* ==================================================================== |
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
|
* |
|
* Portions of the attached software ("Contribution") are developed by |
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
|
* |
|
* The Contribution is licensed pursuant to the OpenSSL open source |
|
* license provided above. |
|
* |
|
* The elliptic curve binary polynomial software is originally written by |
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
|
* Laboratories. */ |
|
|
|
#include <openssl/ec.h> |
|
|
|
#include <string.h> |
|
|
|
#include <openssl/bn.h> |
|
#include <openssl/err.h> |
|
#include <openssl/mem.h> |
|
|
|
#include "internal.h" |
|
#include "../../internal.h" |
|
|
|
|
|
// Most method functions in this file are designed to work with non-trivial |
|
// representations of field elements if necessary (see ecp_mont.c): while |
|
// standard modular addition and subtraction are used, the field_mul and |
|
// field_sqr methods will be used for multiplication, and field_encode and |
|
// field_decode (if defined) will be used for converting between |
|
// representations. |
|
// |
|
// Functions here specifically assume that if a non-trivial representation is |
|
// used, it is a Montgomery representation (i.e. 'encoding' means multiplying |
|
// by some factor R). |
|
|
|
int ec_GFp_simple_group_init(EC_GROUP *group) { |
|
BN_init(&group->field); |
|
group->a_is_minus3 = 0; |
|
return 1; |
|
} |
|
|
|
void ec_GFp_simple_group_finish(EC_GROUP *group) { |
|
BN_free(&group->field); |
|
} |
|
|
|
int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
|
const BIGNUM *a, const BIGNUM *b, |
|
BN_CTX *ctx) { |
|
// p must be a prime > 3 |
|
if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD); |
|
return 0; |
|
} |
|
|
|
int ret = 0; |
|
BN_CTX_start(ctx); |
|
BIGNUM *tmp = BN_CTX_get(ctx); |
|
if (tmp == NULL) { |
|
goto err; |
|
} |
|
|
|
// group->field |
|
if (!BN_copy(&group->field, p)) { |
|
goto err; |
|
} |
|
BN_set_negative(&group->field, 0); |
|
// Store the field in minimal form, so it can be used with |BN_ULONG| arrays. |
|
bn_set_minimal_width(&group->field); |
|
|
|
if (!ec_bignum_to_felem(group, &group->a, a) || |
|
!ec_bignum_to_felem(group, &group->b, b) || |
|
!ec_bignum_to_felem(group, &group->one, BN_value_one())) { |
|
goto err; |
|
} |
|
|
|
// group->a_is_minus3 |
|
if (!BN_copy(tmp, a) || |
|
!BN_add_word(tmp, 3)) { |
|
goto err; |
|
} |
|
group->a_is_minus3 = (0 == BN_cmp(tmp, &group->field)); |
|
|
|
ret = 1; |
|
|
|
err: |
|
BN_CTX_end(ctx); |
|
return ret; |
|
} |
|
|
|
int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, |
|
BIGNUM *b) { |
|
if ((p != NULL && !BN_copy(p, &group->field)) || |
|
(a != NULL && !ec_felem_to_bignum(group, a, &group->a)) || |
|
(b != NULL && !ec_felem_to_bignum(group, b, &group->b))) { |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
void ec_GFp_simple_point_init(EC_RAW_POINT *point) { |
|
OPENSSL_memset(&point->X, 0, sizeof(EC_FELEM)); |
|
OPENSSL_memset(&point->Y, 0, sizeof(EC_FELEM)); |
|
OPENSSL_memset(&point->Z, 0, sizeof(EC_FELEM)); |
|
} |
|
|
|
void ec_GFp_simple_point_copy(EC_RAW_POINT *dest, const EC_RAW_POINT *src) { |
|
OPENSSL_memcpy(&dest->X, &src->X, sizeof(EC_FELEM)); |
|
OPENSSL_memcpy(&dest->Y, &src->Y, sizeof(EC_FELEM)); |
|
OPENSSL_memcpy(&dest->Z, &src->Z, sizeof(EC_FELEM)); |
|
} |
|
|
|
void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, |
|
EC_RAW_POINT *point) { |
|
// Although it is strictly only necessary to zero Z, we zero the entire point |
|
// in case |point| was stack-allocated and yet to be initialized. |
|
ec_GFp_simple_point_init(point); |
|
} |
|
|
|
void ec_GFp_simple_invert(const EC_GROUP *group, EC_RAW_POINT *point) { |
|
ec_felem_neg(group, &point->Y, &point->Y); |
|
} |
|
|
|
int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, |
|
const EC_RAW_POINT *point) { |
|
return ec_felem_non_zero_mask(group, &point->Z) == 0; |
|
} |
|
|
|
int ec_GFp_simple_is_on_curve(const EC_GROUP *group, |
|
const EC_RAW_POINT *point) { |
|
// We have a curve defined by a Weierstrass equation |
|
// y^2 = x^3 + a*x + b. |
|
// The point to consider is given in Jacobian projective coordinates |
|
// where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). |
|
// Substituting this and multiplying by Z^6 transforms the above equation |
|
// into |
|
// Y^2 = X^3 + a*X*Z^4 + b*Z^6. |
|
// To test this, we add up the right-hand side in 'rh'. |
|
// |
|
// This function may be used when double-checking the secret result of a point |
|
// multiplication, so we proceed in constant-time. |
|
|
|
void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
|
const EC_FELEM *b) = group->meth->felem_mul; |
|
void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = |
|
group->meth->felem_sqr; |
|
|
|
// rh := X^2 |
|
EC_FELEM rh; |
|
felem_sqr(group, &rh, &point->X); |
|
|
|
EC_FELEM tmp, Z4, Z6; |
|
felem_sqr(group, &tmp, &point->Z); |
|
felem_sqr(group, &Z4, &tmp); |
|
felem_mul(group, &Z6, &Z4, &tmp); |
|
|
|
// rh := rh + a*Z^4 |
|
if (group->a_is_minus3) { |
|
ec_felem_add(group, &tmp, &Z4, &Z4); |
|
ec_felem_add(group, &tmp, &tmp, &Z4); |
|
ec_felem_sub(group, &rh, &rh, &tmp); |
|
} else { |
|
felem_mul(group, &tmp, &Z4, &group->a); |
|
ec_felem_add(group, &rh, &rh, &tmp); |
|
} |
|
|
|
// rh := (rh + a*Z^4)*X |
|
felem_mul(group, &rh, &rh, &point->X); |
|
|
|
// rh := rh + b*Z^6 |
|
felem_mul(group, &tmp, &group->b, &Z6); |
|
ec_felem_add(group, &rh, &rh, &tmp); |
|
|
|
// 'lh' := Y^2 |
|
felem_sqr(group, &tmp, &point->Y); |
|
|
|
ec_felem_sub(group, &tmp, &tmp, &rh); |
|
BN_ULONG not_equal = ec_felem_non_zero_mask(group, &tmp); |
|
|
|
// If Z = 0, the point is infinity, which is always on the curve. |
|
BN_ULONG not_infinity = ec_felem_non_zero_mask(group, &point->Z); |
|
|
|
return 1 & ~(not_infinity & not_equal); |
|
} |
|
|
|
int ec_GFp_simple_points_equal(const EC_GROUP *group, const EC_RAW_POINT *a, |
|
const EC_RAW_POINT *b) { |
|
// This function is implemented in constant-time for two reasons. First, |
|
// although EC points are usually public, their Jacobian Z coordinates may be |
|
// secret, or at least are not obviously public. Second, more complex |
|
// protocols will sometimes manipulate secret points. |
|
// |
|
// This does mean that we pay a 6M+2S Jacobian comparison when comparing two |
|
// publicly affine points costs no field operations at all. If needed, we can |
|
// restore this optimization by keeping better track of affine vs. Jacobian |
|
// forms. See https://crbug.com/boringssl/326. |
|
|
|
// If neither |a| or |b| is infinity, we have to decide whether |
|
// (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), |
|
// or equivalently, whether |
|
// (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). |
|
|
|
void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
|
const EC_FELEM *b) = group->meth->felem_mul; |
|
void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = |
|
group->meth->felem_sqr; |
|
|
|
EC_FELEM tmp1, tmp2, Za23, Zb23; |
|
felem_sqr(group, &Zb23, &b->Z); // Zb23 = Z_b^2 |
|
felem_mul(group, &tmp1, &a->X, &Zb23); // tmp1 = X_a * Z_b^2 |
|
felem_sqr(group, &Za23, &a->Z); // Za23 = Z_a^2 |
|
felem_mul(group, &tmp2, &b->X, &Za23); // tmp2 = X_b * Z_a^2 |
|
ec_felem_sub(group, &tmp1, &tmp1, &tmp2); |
|
const BN_ULONG x_not_equal = ec_felem_non_zero_mask(group, &tmp1); |
|
|
|
felem_mul(group, &Zb23, &Zb23, &b->Z); // Zb23 = Z_b^3 |
|
felem_mul(group, &tmp1, &a->Y, &Zb23); // tmp1 = Y_a * Z_b^3 |
|
felem_mul(group, &Za23, &Za23, &a->Z); // Za23 = Z_a^3 |
|
felem_mul(group, &tmp2, &b->Y, &Za23); // tmp2 = Y_b * Z_a^3 |
|
ec_felem_sub(group, &tmp1, &tmp1, &tmp2); |
|
const BN_ULONG y_not_equal = ec_felem_non_zero_mask(group, &tmp1); |
|
const BN_ULONG x_and_y_equal = ~(x_not_equal | y_not_equal); |
|
|
|
const BN_ULONG a_not_infinity = ec_felem_non_zero_mask(group, &a->Z); |
|
const BN_ULONG b_not_infinity = ec_felem_non_zero_mask(group, &b->Z); |
|
const BN_ULONG a_and_b_infinity = ~(a_not_infinity | b_not_infinity); |
|
|
|
const BN_ULONG equal = |
|
a_and_b_infinity | (a_not_infinity & b_not_infinity & x_and_y_equal); |
|
return equal & 1; |
|
} |
|
|
|
int ec_affine_jacobian_equal(const EC_GROUP *group, const EC_AFFINE *a, |
|
const EC_RAW_POINT *b) { |
|
// If |b| is not infinity, we have to decide whether |
|
// (X_a, Y_a) = (X_b/Z_b^2, Y_b/Z_b^3), |
|
// or equivalently, whether |
|
// (X_a*Z_b^2, Y_a*Z_b^3) = (X_b, Y_b). |
|
|
|
void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
|
const EC_FELEM *b) = group->meth->felem_mul; |
|
void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = |
|
group->meth->felem_sqr; |
|
|
|
EC_FELEM tmp, Zb2; |
|
felem_sqr(group, &Zb2, &b->Z); // Zb2 = Z_b^2 |
|
felem_mul(group, &tmp, &a->X, &Zb2); // tmp = X_a * Z_b^2 |
|
ec_felem_sub(group, &tmp, &tmp, &b->X); |
|
const BN_ULONG x_not_equal = ec_felem_non_zero_mask(group, &tmp); |
|
|
|
felem_mul(group, &tmp, &a->Y, &Zb2); // tmp = Y_a * Z_b^2 |
|
felem_mul(group, &tmp, &tmp, &b->Z); // tmp = Y_a * Z_b^3 |
|
ec_felem_sub(group, &tmp, &tmp, &b->Y); |
|
const BN_ULONG y_not_equal = ec_felem_non_zero_mask(group, &tmp); |
|
const BN_ULONG x_and_y_equal = ~(x_not_equal | y_not_equal); |
|
|
|
const BN_ULONG b_not_infinity = ec_felem_non_zero_mask(group, &b->Z); |
|
|
|
const BN_ULONG equal = b_not_infinity & x_and_y_equal; |
|
return equal & 1; |
|
} |
|
|
|
int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p, |
|
const EC_SCALAR *r) { |
|
if (ec_GFp_simple_is_at_infinity(group, p)) { |
|
// |ec_get_x_coordinate_as_scalar| will check this internally, but this way |
|
// we do not push to the error queue. |
|
return 0; |
|
} |
|
|
|
EC_SCALAR x; |
|
return ec_get_x_coordinate_as_scalar(group, &x, p) && |
|
ec_scalar_equal_vartime(group, &x, r); |
|
} |
|
|
|
void ec_GFp_simple_felem_to_bytes(const EC_GROUP *group, uint8_t *out, |
|
size_t *out_len, const EC_FELEM *in) { |
|
size_t len = BN_num_bytes(&group->field); |
|
bn_words_to_big_endian(out, len, in->words, group->field.width); |
|
*out_len = len; |
|
} |
|
|
|
int ec_GFp_simple_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out, |
|
const uint8_t *in, size_t len) { |
|
if (len != BN_num_bytes(&group->field)) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
|
return 0; |
|
} |
|
|
|
bn_big_endian_to_words(out->words, group->field.width, in, len); |
|
|
|
if (!bn_less_than_words(out->words, group->field.d, group->field.width)) { |
|
OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); |
|
return 0; |
|
} |
|
|
|
return 1; |
|
}
|
|
|