Mirror of BoringSSL (grpc依赖) https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

238 lines
10 KiB

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#ifndef OPENSSL_HEADER_DES_INTERNAL_H
#define OPENSSL_HEADER_DES_INTERNAL_H
#include <openssl/base.h>
#include "../internal.h"
#if defined(__cplusplus)
extern "C" {
#endif
#define c2l(c, l) \
do { \
(l) = ((uint32_t)(*((c)++))); \
(l) |= ((uint32_t)(*((c)++))) << 8L; \
(l) |= ((uint32_t)(*((c)++))) << 16L; \
(l) |= ((uint32_t)(*((c)++))) << 24L; \
} while (0)
#define l2c(l, c) \
do { \
*((c)++) = (unsigned char)(((l)) & 0xff); \
*((c)++) = (unsigned char)(((l) >> 8L) & 0xff); \
*((c)++) = (unsigned char)(((l) >> 16L) & 0xff); \
*((c)++) = (unsigned char)(((l) >> 24L) & 0xff); \
} while (0)
// NOTE - c is not incremented as per c2l
#define c2ln(c, l1, l2, n) \
do { \
(c) += (n); \
(l1) = (l2) = 0; \
switch (n) { \
case 8: \
(l2) = ((uint32_t)(*(--(c)))) << 24L; \
OPENSSL_FALLTHROUGH; \
case 7: \
(l2) |= ((uint32_t)(*(--(c)))) << 16L; \
OPENSSL_FALLTHROUGH; \
case 6: \
(l2) |= ((uint32_t)(*(--(c)))) << 8L; \
OPENSSL_FALLTHROUGH; \
case 5: \
(l2) |= ((uint32_t)(*(--(c)))); \
OPENSSL_FALLTHROUGH; \
case 4: \
(l1) = ((uint32_t)(*(--(c)))) << 24L; \
OPENSSL_FALLTHROUGH; \
case 3: \
(l1) |= ((uint32_t)(*(--(c)))) << 16L; \
OPENSSL_FALLTHROUGH; \
case 2: \
(l1) |= ((uint32_t)(*(--(c)))) << 8L; \
OPENSSL_FALLTHROUGH; \
case 1: \
(l1) |= ((uint32_t)(*(--(c)))); \
} \
} while (0)
// NOTE - c is not incremented as per l2c
#define l2cn(l1, l2, c, n) \
do { \
(c) += (n); \
switch (n) { \
case 8: \
*(--(c)) = (unsigned char)(((l2) >> 24L) & 0xff); \
OPENSSL_FALLTHROUGH; \
case 7: \
*(--(c)) = (unsigned char)(((l2) >> 16L) & 0xff); \
OPENSSL_FALLTHROUGH; \
case 6: \
*(--(c)) = (unsigned char)(((l2) >> 8L) & 0xff); \
OPENSSL_FALLTHROUGH; \
case 5: \
*(--(c)) = (unsigned char)(((l2)) & 0xff); \
OPENSSL_FALLTHROUGH; \
case 4: \
*(--(c)) = (unsigned char)(((l1) >> 24L) & 0xff); \
OPENSSL_FALLTHROUGH; \
case 3: \
*(--(c)) = (unsigned char)(((l1) >> 16L) & 0xff); \
OPENSSL_FALLTHROUGH; \
case 2: \
*(--(c)) = (unsigned char)(((l1) >> 8L) & 0xff); \
OPENSSL_FALLTHROUGH; \
case 1: \
*(--(c)) = (unsigned char)(((l1)) & 0xff); \
} \
} while (0)
/* IP and FP
* The problem is more of a geometric problem that random bit fiddling.
0 1 2 3 4 5 6 7 62 54 46 38 30 22 14 6
8 9 10 11 12 13 14 15 60 52 44 36 28 20 12 4
16 17 18 19 20 21 22 23 58 50 42 34 26 18 10 2
24 25 26 27 28 29 30 31 to 56 48 40 32 24 16 8 0
32 33 34 35 36 37 38 39 63 55 47 39 31 23 15 7
40 41 42 43 44 45 46 47 61 53 45 37 29 21 13 5
48 49 50 51 52 53 54 55 59 51 43 35 27 19 11 3
56 57 58 59 60 61 62 63 57 49 41 33 25 17 9 1
The output has been subject to swaps of the form
0 1 -> 3 1 but the odd and even bits have been put into
2 3 2 0
different words. The main trick is to remember that
t=((l>>size)^r)&(mask);
r^=t;
l^=(t<<size);
can be used to swap and move bits between words.
So l = 0 1 2 3 r = 16 17 18 19
4 5 6 7 20 21 22 23
8 9 10 11 24 25 26 27
12 13 14 15 28 29 30 31
becomes (for size == 2 and mask == 0x3333)
t = 2^16 3^17 -- -- l = 0 1 16 17 r = 2 3 18 19
6^20 7^21 -- -- 4 5 20 21 6 7 22 23
10^24 11^25 -- -- 8 9 24 25 10 11 24 25
14^28 15^29 -- -- 12 13 28 29 14 15 28 29
Thanks for hints from Richard Outerbridge - he told me IP&FP
could be done in 15 xor, 10 shifts and 5 ands.
When I finally started to think of the problem in 2D
I first got ~42 operations without xors. When I remembered
how to use xors :-) I got it to its final state.
*/
#define PERM_OP(a, b, t, n, m) \
do { \
(t) = ((((a) >> (n)) ^ (b)) & (m)); \
(b) ^= (t); \
(a) ^= ((t) << (n)); \
} while (0)
#define IP(l, r) \
do { \
uint32_t tt; \
PERM_OP(r, l, tt, 4, 0x0f0f0f0fL); \
PERM_OP(l, r, tt, 16, 0x0000ffffL); \
PERM_OP(r, l, tt, 2, 0x33333333L); \
PERM_OP(l, r, tt, 8, 0x00ff00ffL); \
PERM_OP(r, l, tt, 1, 0x55555555L); \
} while (0)
#define FP(l, r) \
do { \
uint32_t tt; \
PERM_OP(l, r, tt, 1, 0x55555555L); \
PERM_OP(r, l, tt, 8, 0x00ff00ffL); \
PERM_OP(l, r, tt, 2, 0x33333333L); \
PERM_OP(r, l, tt, 16, 0x0000ffffL); \
PERM_OP(l, r, tt, 4, 0x0f0f0f0fL); \
} while (0)
#define LOAD_DATA(ks, R, S, u, t, E0, E1) \
do { \
(u) = (R) ^ (ks)->subkeys[S][0]; \
(t) = (R) ^ (ks)->subkeys[S][1]; \
} while (0)
#define D_ENCRYPT(ks, LL, R, S) \
do { \
LOAD_DATA(ks, R, S, u, t, E0, E1); \
t = CRYPTO_rotr_u32(t, 4); \
(LL) ^= \
DES_SPtrans[0][(u >> 2L) & 0x3f] ^ DES_SPtrans[2][(u >> 10L) & 0x3f] ^ \
DES_SPtrans[4][(u >> 18L) & 0x3f] ^ \
DES_SPtrans[6][(u >> 26L) & 0x3f] ^ DES_SPtrans[1][(t >> 2L) & 0x3f] ^ \
DES_SPtrans[3][(t >> 10L) & 0x3f] ^ \
DES_SPtrans[5][(t >> 18L) & 0x3f] ^ DES_SPtrans[7][(t >> 26L) & 0x3f]; \
} while (0)
#define ITERATIONS 16
#define HALF_ITERATIONS 8
#if defined(__cplusplus)
} // extern C
#endif
#endif // OPENSSL_HEADER_DES_INTERNAL_H