Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
940 lines
30 KiB
940 lines
30 KiB
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] */ |
|
|
|
#include <openssl/ssl.h> |
|
|
|
#include <assert.h> |
|
#include <limits.h> |
|
|
|
#include <openssl/ec.h> |
|
#include <openssl/ec_key.h> |
|
#include <openssl/err.h> |
|
#include <openssl/evp.h> |
|
#include <openssl/mem.h> |
|
#include <openssl/span.h> |
|
|
|
#include "internal.h" |
|
#include "../crypto/internal.h" |
|
|
|
|
|
BSSL_NAMESPACE_BEGIN |
|
|
|
bool ssl_is_key_type_supported(int key_type) { |
|
return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC || |
|
key_type == EVP_PKEY_ED25519; |
|
} |
|
|
|
static bool ssl_set_pkey(CERT *cert, EVP_PKEY *pkey) { |
|
if (!ssl_is_key_type_supported(EVP_PKEY_id(pkey))) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); |
|
return false; |
|
} |
|
|
|
if (cert->chain != nullptr && |
|
sk_CRYPTO_BUFFER_value(cert->chain.get(), 0) != nullptr && |
|
// Sanity-check that the private key and the certificate match. |
|
!ssl_cert_check_private_key(cert, pkey)) { |
|
return false; |
|
} |
|
|
|
cert->privatekey = UpRef(pkey); |
|
return true; |
|
} |
|
|
|
typedef struct { |
|
uint16_t sigalg; |
|
int pkey_type; |
|
int curve; |
|
const EVP_MD *(*digest_func)(void); |
|
bool is_rsa_pss; |
|
} SSL_SIGNATURE_ALGORITHM; |
|
|
|
static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = { |
|
{SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1, |
|
false}, |
|
{SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1, false}, |
|
{SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, false}, |
|
{SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, false}, |
|
{SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, false}, |
|
|
|
{SSL_SIGN_RSA_PSS_RSAE_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, true}, |
|
{SSL_SIGN_RSA_PSS_RSAE_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, true}, |
|
{SSL_SIGN_RSA_PSS_RSAE_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, true}, |
|
|
|
{SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1, false}, |
|
{SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1, |
|
&EVP_sha256, false}, |
|
{SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384, |
|
false}, |
|
{SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512, |
|
false}, |
|
|
|
{SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, nullptr, false}, |
|
}; |
|
|
|
static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) { |
|
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) { |
|
if (kSignatureAlgorithms[i].sigalg == sigalg) { |
|
return &kSignatureAlgorithms[i]; |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
bool ssl_has_private_key(const SSL_HANDSHAKE *hs) { |
|
if (hs->config->cert->privatekey != nullptr || |
|
hs->config->cert->key_method != nullptr || |
|
ssl_signing_with_dc(hs)) { |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
static bool pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey, |
|
uint16_t sigalg) { |
|
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); |
|
if (alg == NULL || |
|
EVP_PKEY_id(pkey) != alg->pkey_type) { |
|
return false; |
|
} |
|
|
|
if (ssl_protocol_version(ssl) < TLS1_2_VERSION) { |
|
// TLS 1.0 and 1.1 do not negotiate algorithms and always sign one of two |
|
// hardcoded algorithms. |
|
return sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1 || |
|
sigalg == SSL_SIGN_ECDSA_SHA1; |
|
} |
|
|
|
// |SSL_SIGN_RSA_PKCS1_MD5_SHA1| is not a real SignatureScheme for TLS 1.2 and |
|
// higher. It is an internal value we use to represent TLS 1.0/1.1's MD5/SHA1 |
|
// concatenation. |
|
if (sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1) { |
|
return false; |
|
} |
|
|
|
if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
|
// RSA keys may only be used with RSA-PSS. |
|
if (alg->pkey_type == EVP_PKEY_RSA && !alg->is_rsa_pss) { |
|
return false; |
|
} |
|
|
|
// EC keys have a curve requirement. |
|
if (alg->pkey_type == EVP_PKEY_EC && |
|
(alg->curve == NID_undef || |
|
EC_GROUP_get_curve_name( |
|
EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) { |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static bool setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey, |
|
uint16_t sigalg, bool is_verify) { |
|
if (!pkey_supports_algorithm(ssl, pkey, sigalg)) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); |
|
return false; |
|
} |
|
|
|
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); |
|
const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL; |
|
EVP_PKEY_CTX *pctx; |
|
if (is_verify) { |
|
if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) { |
|
return false; |
|
} |
|
} else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) { |
|
return false; |
|
} |
|
|
|
if (alg->is_rsa_pss) { |
|
if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) || |
|
!EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) { |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
enum ssl_private_key_result_t ssl_private_key_sign( |
|
SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out, |
|
uint16_t sigalg, Span<const uint8_t> in) { |
|
SSL *const ssl = hs->ssl; |
|
SSL_HANDSHAKE_HINTS *const hints = hs->hints.get(); |
|
Array<uint8_t> spki; |
|
if (hints) { |
|
ScopedCBB spki_cbb; |
|
if (!CBB_init(spki_cbb.get(), 64) || |
|
!EVP_marshal_public_key(spki_cbb.get(), hs->local_pubkey.get()) || |
|
!CBBFinishArray(spki_cbb.get(), &spki)) { |
|
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
|
return ssl_private_key_failure; |
|
} |
|
} |
|
|
|
// Replay the signature from handshake hints if available. |
|
if (hints && !hs->hints_requested && // |
|
sigalg == hints->signature_algorithm && // |
|
in == hints->signature_input && |
|
MakeConstSpan(spki) == hints->signature_spki && |
|
!hints->signature.empty() && // |
|
hints->signature.size() <= max_out) { |
|
// Signature algorithm and input both match. Reuse the signature from hints. |
|
*out_len = hints->signature.size(); |
|
OPENSSL_memcpy(out, hints->signature.data(), hints->signature.size()); |
|
return ssl_private_key_success; |
|
} |
|
|
|
const SSL_PRIVATE_KEY_METHOD *key_method = hs->config->cert->key_method; |
|
EVP_PKEY *privatekey = hs->config->cert->privatekey.get(); |
|
assert(!hs->can_release_private_key); |
|
if (ssl_signing_with_dc(hs)) { |
|
key_method = hs->config->cert->dc_key_method; |
|
privatekey = hs->config->cert->dc_privatekey.get(); |
|
} |
|
|
|
if (key_method != NULL) { |
|
enum ssl_private_key_result_t ret; |
|
if (hs->pending_private_key_op) { |
|
ret = key_method->complete(ssl, out, out_len, max_out); |
|
} else { |
|
ret = key_method->sign(ssl, out, out_len, max_out, sigalg, in.data(), |
|
in.size()); |
|
} |
|
if (ret == ssl_private_key_failure) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED); |
|
} |
|
hs->pending_private_key_op = ret == ssl_private_key_retry; |
|
if (ret != ssl_private_key_success) { |
|
return ret; |
|
} |
|
} else { |
|
*out_len = max_out; |
|
ScopedEVP_MD_CTX ctx; |
|
if (!setup_ctx(ssl, ctx.get(), privatekey, sigalg, false /* sign */) || |
|
!EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) { |
|
return ssl_private_key_failure; |
|
} |
|
} |
|
|
|
// Save the hint if applicable. |
|
if (hints && hs->hints_requested) { |
|
hints->signature_algorithm = sigalg; |
|
hints->signature_spki = std::move(spki); |
|
if (!hints->signature_input.CopyFrom(in) || |
|
!hints->signature.CopyFrom(MakeConstSpan(out, *out_len))) { |
|
return ssl_private_key_failure; |
|
} |
|
} |
|
return ssl_private_key_success; |
|
} |
|
|
|
bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature, |
|
uint16_t sigalg, EVP_PKEY *pkey, |
|
Span<const uint8_t> in) { |
|
ScopedEVP_MD_CTX ctx; |
|
if (!setup_ctx(ssl, ctx.get(), pkey, sigalg, true /* verify */)) { |
|
return false; |
|
} |
|
bool ok = EVP_DigestVerify(ctx.get(), signature.data(), signature.size(), |
|
in.data(), in.size()); |
|
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
|
ok = true; |
|
ERR_clear_error(); |
|
#endif |
|
return ok; |
|
} |
|
|
|
enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs, |
|
uint8_t *out, |
|
size_t *out_len, |
|
size_t max_out, |
|
Span<const uint8_t> in) { |
|
SSL *const ssl = hs->ssl; |
|
assert(!hs->can_release_private_key); |
|
if (hs->config->cert->key_method != NULL) { |
|
enum ssl_private_key_result_t ret; |
|
if (hs->pending_private_key_op) { |
|
ret = hs->config->cert->key_method->complete(ssl, out, out_len, max_out); |
|
} else { |
|
ret = hs->config->cert->key_method->decrypt(ssl, out, out_len, max_out, |
|
in.data(), in.size()); |
|
} |
|
if (ret == ssl_private_key_failure) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED); |
|
} |
|
hs->pending_private_key_op = ret == ssl_private_key_retry; |
|
return ret; |
|
} |
|
|
|
RSA *rsa = EVP_PKEY_get0_RSA(hs->config->cert->privatekey.get()); |
|
if (rsa == NULL) { |
|
// Decrypt operations are only supported for RSA keys. |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
|
return ssl_private_key_failure; |
|
} |
|
|
|
// Decrypt with no padding. PKCS#1 padding will be removed as part of the |
|
// timing-sensitive code by the caller. |
|
if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(), |
|
RSA_NO_PADDING)) { |
|
return ssl_private_key_failure; |
|
} |
|
return ssl_private_key_success; |
|
} |
|
|
|
bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs, |
|
uint16_t sigalg) { |
|
SSL *const ssl = hs->ssl; |
|
if (!pkey_supports_algorithm(ssl, hs->local_pubkey.get(), sigalg)) { |
|
return false; |
|
} |
|
|
|
// Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that |
|
// emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the |
|
// hash in TLS. Reasonable RSA key sizes are large enough for the largest |
|
// defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for |
|
// SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the |
|
// size so that we can fall back to another algorithm in that case. |
|
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); |
|
if (alg->is_rsa_pss && (size_t)EVP_PKEY_size(hs->local_pubkey.get()) < |
|
2 * EVP_MD_size(alg->digest_func()) + 2) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
BSSL_NAMESPACE_END |
|
|
|
using namespace bssl; |
|
|
|
int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) { |
|
if (rsa == NULL || ssl->config == NULL) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
|
return 0; |
|
} |
|
|
|
UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); |
|
if (!pkey || |
|
!EVP_PKEY_set1_RSA(pkey.get(), rsa)) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB); |
|
return 0; |
|
} |
|
|
|
return ssl_set_pkey(ssl->config->cert.get(), pkey.get()); |
|
} |
|
|
|
int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) { |
|
UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len)); |
|
if (!rsa) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); |
|
return 0; |
|
} |
|
|
|
return SSL_use_RSAPrivateKey(ssl, rsa.get()); |
|
} |
|
|
|
int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) { |
|
if (pkey == NULL || ssl->config == NULL) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
|
return 0; |
|
} |
|
|
|
return ssl_set_pkey(ssl->config->cert.get(), pkey); |
|
} |
|
|
|
int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der, |
|
size_t der_len) { |
|
if (der_len > LONG_MAX) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
|
return 0; |
|
} |
|
|
|
const uint8_t *p = der; |
|
UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len)); |
|
if (!pkey || p != der + der_len) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); |
|
return 0; |
|
} |
|
|
|
return SSL_use_PrivateKey(ssl, pkey.get()); |
|
} |
|
|
|
int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) { |
|
if (rsa == NULL) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
|
return 0; |
|
} |
|
|
|
UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); |
|
if (!pkey || |
|
!EVP_PKEY_set1_RSA(pkey.get(), rsa)) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB); |
|
return 0; |
|
} |
|
|
|
return ssl_set_pkey(ctx->cert.get(), pkey.get()); |
|
} |
|
|
|
int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der, |
|
size_t der_len) { |
|
UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len)); |
|
if (!rsa) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); |
|
return 0; |
|
} |
|
|
|
return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get()); |
|
} |
|
|
|
int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) { |
|
if (pkey == NULL) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
|
return 0; |
|
} |
|
|
|
return ssl_set_pkey(ctx->cert.get(), pkey); |
|
} |
|
|
|
int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der, |
|
size_t der_len) { |
|
if (der_len > LONG_MAX) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
|
return 0; |
|
} |
|
|
|
const uint8_t *p = der; |
|
UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len)); |
|
if (!pkey || p != der + der_len) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); |
|
return 0; |
|
} |
|
|
|
return SSL_CTX_use_PrivateKey(ctx, pkey.get()); |
|
} |
|
|
|
void SSL_set_private_key_method(SSL *ssl, |
|
const SSL_PRIVATE_KEY_METHOD *key_method) { |
|
if (!ssl->config) { |
|
return; |
|
} |
|
ssl->config->cert->key_method = key_method; |
|
} |
|
|
|
void SSL_CTX_set_private_key_method(SSL_CTX *ctx, |
|
const SSL_PRIVATE_KEY_METHOD *key_method) { |
|
ctx->cert->key_method = key_method; |
|
} |
|
|
|
static constexpr size_t kMaxSignatureAlgorithmNameLen = 23; |
|
|
|
struct SignatureAlgorithmName { |
|
uint16_t signature_algorithm; |
|
const char name[kMaxSignatureAlgorithmNameLen]; |
|
}; |
|
|
|
// This was "constexpr" rather than "const", but that triggered a bug in MSVC |
|
// where it didn't pad the strings to the correct length. |
|
static const SignatureAlgorithmName kSignatureAlgorithmNames[] = { |
|
{SSL_SIGN_RSA_PKCS1_MD5_SHA1, "rsa_pkcs1_md5_sha1"}, |
|
{SSL_SIGN_RSA_PKCS1_SHA1, "rsa_pkcs1_sha1"}, |
|
{SSL_SIGN_RSA_PKCS1_SHA256, "rsa_pkcs1_sha256"}, |
|
{SSL_SIGN_RSA_PKCS1_SHA384, "rsa_pkcs1_sha384"}, |
|
{SSL_SIGN_RSA_PKCS1_SHA512, "rsa_pkcs1_sha512"}, |
|
{SSL_SIGN_ECDSA_SHA1, "ecdsa_sha1"}, |
|
{SSL_SIGN_ECDSA_SECP256R1_SHA256, "ecdsa_secp256r1_sha256"}, |
|
{SSL_SIGN_ECDSA_SECP384R1_SHA384, "ecdsa_secp384r1_sha384"}, |
|
{SSL_SIGN_ECDSA_SECP521R1_SHA512, "ecdsa_secp521r1_sha512"}, |
|
{SSL_SIGN_RSA_PSS_RSAE_SHA256, "rsa_pss_rsae_sha256"}, |
|
{SSL_SIGN_RSA_PSS_RSAE_SHA384, "rsa_pss_rsae_sha384"}, |
|
{SSL_SIGN_RSA_PSS_RSAE_SHA512, "rsa_pss_rsae_sha512"}, |
|
{SSL_SIGN_ED25519, "ed25519"}, |
|
}; |
|
|
|
const char *SSL_get_signature_algorithm_name(uint16_t sigalg, |
|
int include_curve) { |
|
if (!include_curve) { |
|
switch (sigalg) { |
|
case SSL_SIGN_ECDSA_SECP256R1_SHA256: |
|
return "ecdsa_sha256"; |
|
case SSL_SIGN_ECDSA_SECP384R1_SHA384: |
|
return "ecdsa_sha384"; |
|
case SSL_SIGN_ECDSA_SECP521R1_SHA512: |
|
return "ecdsa_sha512"; |
|
// If adding more here, also update |
|
// |SSL_get_all_signature_algorithm_names|. |
|
} |
|
} |
|
|
|
for (const auto &candidate : kSignatureAlgorithmNames) { |
|
if (candidate.signature_algorithm == sigalg) { |
|
return candidate.name; |
|
} |
|
} |
|
|
|
return NULL; |
|
} |
|
|
|
size_t SSL_get_all_signature_algorithm_names(const char **out, size_t max_out) { |
|
const char *kPredefinedNames[] = {"ecdsa_sha256", "ecdsa_sha384", |
|
"ecdsa_sha512"}; |
|
return GetAllNames(out, max_out, MakeConstSpan(kPredefinedNames), |
|
&SignatureAlgorithmName::name, |
|
MakeConstSpan(kSignatureAlgorithmNames)); |
|
} |
|
|
|
int SSL_get_signature_algorithm_key_type(uint16_t sigalg) { |
|
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); |
|
return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE; |
|
} |
|
|
|
const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) { |
|
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); |
|
if (alg == nullptr || alg->digest_func == nullptr) { |
|
return nullptr; |
|
} |
|
return alg->digest_func(); |
|
} |
|
|
|
int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) { |
|
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); |
|
return alg != nullptr && alg->is_rsa_pss; |
|
} |
|
|
|
static int compare_uint16_t(const void *p1, const void *p2) { |
|
uint16_t u1 = *((const uint16_t *)p1); |
|
uint16_t u2 = *((const uint16_t *)p2); |
|
if (u1 < u2) { |
|
return -1; |
|
} else if (u1 > u2) { |
|
return 1; |
|
} else { |
|
return 0; |
|
} |
|
} |
|
|
|
static bool sigalgs_unique(Span<const uint16_t> in_sigalgs) { |
|
if (in_sigalgs.size() < 2) { |
|
return true; |
|
} |
|
|
|
Array<uint16_t> sigalgs; |
|
if (!sigalgs.CopyFrom(in_sigalgs)) { |
|
return false; |
|
} |
|
|
|
qsort(sigalgs.data(), sigalgs.size(), sizeof(uint16_t), compare_uint16_t); |
|
|
|
for (size_t i = 1; i < sigalgs.size(); i++) { |
|
if (sigalgs[i - 1] == sigalgs[i]) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_SIGNATURE_ALGORITHM); |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static bool set_sigalg_prefs(Array<uint16_t> *out, Span<const uint16_t> prefs) { |
|
if (!sigalgs_unique(prefs)) { |
|
return false; |
|
} |
|
|
|
// Check for invalid algorithms, and filter out |SSL_SIGN_RSA_PKCS1_MD5_SHA1|. |
|
Array<uint16_t> filtered; |
|
if (!filtered.Init(prefs.size())) { |
|
return false; |
|
} |
|
size_t added = 0; |
|
for (uint16_t pref : prefs) { |
|
if (pref == SSL_SIGN_RSA_PKCS1_MD5_SHA1) { |
|
// Though not intended to be used with this API, we treat |
|
// |SSL_SIGN_RSA_PKCS1_MD5_SHA1| as a real signature algorithm in |
|
// |SSL_PRIVATE_KEY_METHOD|. Not accepting it here makes for a confusing |
|
// abstraction. |
|
continue; |
|
} |
|
if (get_signature_algorithm(pref) == nullptr) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
|
return false; |
|
} |
|
filtered[added] = pref; |
|
added++; |
|
} |
|
filtered.Shrink(added); |
|
|
|
// This can happen if |prefs| contained only |SSL_SIGN_RSA_PKCS1_MD5_SHA1|. |
|
// Leaving it empty would revert to the default, so treat this as an error |
|
// condition. |
|
if (!prefs.empty() && filtered.empty()) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
|
return false; |
|
} |
|
|
|
*out = std::move(filtered); |
|
return true; |
|
} |
|
|
|
int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs, |
|
size_t num_prefs) { |
|
return set_sigalg_prefs(&ctx->cert->sigalgs, MakeConstSpan(prefs, num_prefs)); |
|
} |
|
|
|
int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs, |
|
size_t num_prefs) { |
|
if (!ssl->config) { |
|
return 0; |
|
} |
|
return set_sigalg_prefs(&ssl->config->cert->sigalgs, |
|
MakeConstSpan(prefs, num_prefs)); |
|
} |
|
|
|
static constexpr struct { |
|
int pkey_type; |
|
int hash_nid; |
|
uint16_t signature_algorithm; |
|
} kSignatureAlgorithmsMapping[] = { |
|
{EVP_PKEY_RSA, NID_sha1, SSL_SIGN_RSA_PKCS1_SHA1}, |
|
{EVP_PKEY_RSA, NID_sha256, SSL_SIGN_RSA_PKCS1_SHA256}, |
|
{EVP_PKEY_RSA, NID_sha384, SSL_SIGN_RSA_PKCS1_SHA384}, |
|
{EVP_PKEY_RSA, NID_sha512, SSL_SIGN_RSA_PKCS1_SHA512}, |
|
{EVP_PKEY_RSA_PSS, NID_sha256, SSL_SIGN_RSA_PSS_RSAE_SHA256}, |
|
{EVP_PKEY_RSA_PSS, NID_sha384, SSL_SIGN_RSA_PSS_RSAE_SHA384}, |
|
{EVP_PKEY_RSA_PSS, NID_sha512, SSL_SIGN_RSA_PSS_RSAE_SHA512}, |
|
{EVP_PKEY_EC, NID_sha1, SSL_SIGN_ECDSA_SHA1}, |
|
{EVP_PKEY_EC, NID_sha256, SSL_SIGN_ECDSA_SECP256R1_SHA256}, |
|
{EVP_PKEY_EC, NID_sha384, SSL_SIGN_ECDSA_SECP384R1_SHA384}, |
|
{EVP_PKEY_EC, NID_sha512, SSL_SIGN_ECDSA_SECP521R1_SHA512}, |
|
{EVP_PKEY_ED25519, NID_undef, SSL_SIGN_ED25519}, |
|
}; |
|
|
|
static bool parse_sigalg_pairs(Array<uint16_t> *out, const int *values, |
|
size_t num_values) { |
|
if ((num_values & 1) == 1) { |
|
return false; |
|
} |
|
|
|
const size_t num_pairs = num_values / 2; |
|
if (!out->Init(num_pairs)) { |
|
return false; |
|
} |
|
|
|
for (size_t i = 0; i < num_values; i += 2) { |
|
const int hash_nid = values[i]; |
|
const int pkey_type = values[i+1]; |
|
|
|
bool found = false; |
|
for (const auto &candidate : kSignatureAlgorithmsMapping) { |
|
if (candidate.pkey_type == pkey_type && candidate.hash_nid == hash_nid) { |
|
(*out)[i / 2] = candidate.signature_algorithm; |
|
found = true; |
|
break; |
|
} |
|
} |
|
|
|
if (!found) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
|
ERR_add_error_dataf("unknown hash:%d pkey:%d", hash_nid, pkey_type); |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
int SSL_CTX_set1_sigalgs(SSL_CTX *ctx, const int *values, size_t num_values) { |
|
Array<uint16_t> sigalgs; |
|
if (!parse_sigalg_pairs(&sigalgs, values, num_values)) { |
|
return 0; |
|
} |
|
|
|
if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(), |
|
sigalgs.size()) || |
|
!SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(), |
|
sigalgs.size())) { |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int SSL_set1_sigalgs(SSL *ssl, const int *values, size_t num_values) { |
|
if (!ssl->config) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return 0; |
|
} |
|
|
|
Array<uint16_t> sigalgs; |
|
if (!parse_sigalg_pairs(&sigalgs, values, num_values)) { |
|
return 0; |
|
} |
|
|
|
if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) || |
|
!SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) { |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
static bool parse_sigalgs_list(Array<uint16_t> *out, const char *str) { |
|
// str looks like "RSA+SHA1:ECDSA+SHA256:ecdsa_secp256r1_sha256". |
|
|
|
// Count colons to give the number of output elements from any successful |
|
// parse. |
|
size_t num_elements = 1; |
|
size_t len = 0; |
|
for (const char *p = str; *p; p++) { |
|
len++; |
|
if (*p == ':') { |
|
num_elements++; |
|
} |
|
} |
|
|
|
if (!out->Init(num_elements)) { |
|
return false; |
|
} |
|
size_t out_i = 0; |
|
|
|
enum { |
|
pkey_or_name, |
|
hash_name, |
|
} state = pkey_or_name; |
|
|
|
char buf[kMaxSignatureAlgorithmNameLen]; |
|
// buf_used is always < sizeof(buf). I.e. it's always safe to write |
|
// buf[buf_used] = 0. |
|
size_t buf_used = 0; |
|
|
|
int pkey_type = 0, hash_nid = 0; |
|
|
|
// Note that the loop runs to len+1, i.e. it'll process the terminating NUL. |
|
for (size_t offset = 0; offset < len+1; offset++) { |
|
const unsigned char c = str[offset]; |
|
|
|
switch (c) { |
|
case '+': |
|
if (state == hash_name) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
|
ERR_add_error_dataf("+ found in hash name at offset %zu", offset); |
|
return false; |
|
} |
|
if (buf_used == 0) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
|
ERR_add_error_dataf("empty public key type at offset %zu", offset); |
|
return false; |
|
} |
|
buf[buf_used] = 0; |
|
|
|
if (strcmp(buf, "RSA") == 0) { |
|
pkey_type = EVP_PKEY_RSA; |
|
} else if (strcmp(buf, "RSA-PSS") == 0 || |
|
strcmp(buf, "PSS") == 0) { |
|
pkey_type = EVP_PKEY_RSA_PSS; |
|
} else if (strcmp(buf, "ECDSA") == 0) { |
|
pkey_type = EVP_PKEY_EC; |
|
} else { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
|
ERR_add_error_dataf("unknown public key type '%s'", buf); |
|
return false; |
|
} |
|
|
|
state = hash_name; |
|
buf_used = 0; |
|
break; |
|
|
|
case ':': |
|
OPENSSL_FALLTHROUGH; |
|
case 0: |
|
if (buf_used == 0) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
|
ERR_add_error_dataf("empty element at offset %zu", offset); |
|
return false; |
|
} |
|
|
|
buf[buf_used] = 0; |
|
|
|
if (state == pkey_or_name) { |
|
// No '+' was seen thus this is a TLS 1.3-style name. |
|
bool found = false; |
|
for (const auto &candidate : kSignatureAlgorithmNames) { |
|
if (strcmp(candidate.name, buf) == 0) { |
|
assert(out_i < num_elements); |
|
(*out)[out_i++] = candidate.signature_algorithm; |
|
found = true; |
|
break; |
|
} |
|
} |
|
|
|
if (!found) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
|
ERR_add_error_dataf("unknown signature algorithm '%s'", buf); |
|
return false; |
|
} |
|
} else { |
|
if (strcmp(buf, "SHA1") == 0) { |
|
hash_nid = NID_sha1; |
|
} else if (strcmp(buf, "SHA256") == 0) { |
|
hash_nid = NID_sha256; |
|
} else if (strcmp(buf, "SHA384") == 0) { |
|
hash_nid = NID_sha384; |
|
} else if (strcmp(buf, "SHA512") == 0) { |
|
hash_nid = NID_sha512; |
|
} else { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
|
ERR_add_error_dataf("unknown hash function '%s'", buf); |
|
return false; |
|
} |
|
|
|
bool found = false; |
|
for (const auto &candidate : kSignatureAlgorithmsMapping) { |
|
if (candidate.pkey_type == pkey_type && |
|
candidate.hash_nid == hash_nid) { |
|
assert(out_i < num_elements); |
|
(*out)[out_i++] = candidate.signature_algorithm; |
|
found = true; |
|
break; |
|
} |
|
} |
|
|
|
if (!found) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
|
ERR_add_error_dataf("unknown pkey:%d hash:%s", pkey_type, buf); |
|
return false; |
|
} |
|
} |
|
|
|
state = pkey_or_name; |
|
buf_used = 0; |
|
break; |
|
|
|
default: |
|
if (buf_used == sizeof(buf) - 1) { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
|
ERR_add_error_dataf("substring too long at offset %zu", offset); |
|
return false; |
|
} |
|
|
|
if (OPENSSL_isalnum(c) || c == '-' || c == '_') { |
|
buf[buf_used++] = c; |
|
} else { |
|
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM); |
|
ERR_add_error_dataf("invalid character 0x%02x at offest %zu", c, |
|
offset); |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
assert(out_i == out->size()); |
|
return true; |
|
} |
|
|
|
int SSL_CTX_set1_sigalgs_list(SSL_CTX *ctx, const char *str) { |
|
Array<uint16_t> sigalgs; |
|
if (!parse_sigalgs_list(&sigalgs, str)) { |
|
return 0; |
|
} |
|
|
|
if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(), |
|
sigalgs.size()) || |
|
!SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(), |
|
sigalgs.size())) { |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int SSL_set1_sigalgs_list(SSL *ssl, const char *str) { |
|
if (!ssl->config) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return 0; |
|
} |
|
|
|
Array<uint16_t> sigalgs; |
|
if (!parse_sigalgs_list(&sigalgs, str)) { |
|
return 0; |
|
} |
|
|
|
if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) || |
|
!SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) { |
|
return 0; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs, |
|
size_t num_prefs) { |
|
return set_sigalg_prefs(&ctx->verify_sigalgs, |
|
MakeConstSpan(prefs, num_prefs)); |
|
} |
|
|
|
int SSL_set_verify_algorithm_prefs(SSL *ssl, const uint16_t *prefs, |
|
size_t num_prefs) { |
|
if (!ssl->config) { |
|
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
|
return 0; |
|
} |
|
|
|
return set_sigalg_prefs(&ssl->config->verify_sigalgs, |
|
MakeConstSpan(prefs, num_prefs)); |
|
}
|
|
|