Mirror of BoringSSL (grpc依赖) https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

242 lines
7.9 KiB

// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "verify_signed_data.h"
#include <memory>
#include <set>
#include "cert_errors.h"
#include "mock_signature_verify_cache.h"
#include "signature_algorithm.h"
#include "test_helpers.h"
#include "input.h"
#include "parse_values.h"
#include "parser.h"
#include <gtest/gtest.h>
#include <optional>
namespace bssl {
namespace {
enum VerifyResult {
SUCCESS,
FAILURE,
};
// Reads test data from |file_name| and runs VerifySignedData() over its
// inputs.
//
// If expected_result was SUCCESS then the test will only succeed if
// VerifySignedData() returns true.
//
// If expected_result was FAILURE then the test will only succeed if
// VerifySignedData() returns false.
void RunTestCase(VerifyResult expected_result,
const char* file_name,
SignatureVerifyCache* cache) {
std::string path =
std::string("testdata/verify_signed_data_unittest/") + file_name;
std::string public_key;
std::string algorithm;
std::string signed_data;
std::string signature_value;
const PemBlockMapping mappings[] = {
{"PUBLIC KEY", &public_key},
{"ALGORITHM", &algorithm},
{"DATA", &signed_data},
{"SIGNATURE", &signature_value},
};
ASSERT_TRUE(ReadTestDataFromPemFile(path, mappings));
std::optional<SignatureAlgorithm> signature_algorithm =
ParseSignatureAlgorithm(der::Input(algorithm));
ASSERT_TRUE(signature_algorithm);
der::Parser signature_value_parser((der::Input(signature_value)));
std::optional<der::BitString> signature_value_bit_string =
signature_value_parser.ReadBitString();
ASSERT_TRUE(signature_value_bit_string.has_value())
<< "The signature value is not a valid BIT STRING";
bool expected_result_bool = expected_result == SUCCESS;
bool result = VerifySignedData(*signature_algorithm, der::Input(signed_data),
signature_value_bit_string.value(),
der::Input(public_key), cache);
EXPECT_EQ(expected_result_bool, result);
}
void RunTestCase(VerifyResult expected_result, const char* file_name) {
RunTestCase(expected_result, file_name, /*cache=*/nullptr);
}
// Read the descriptions in the test files themselves for details on what is
// being tested.
TEST(VerifySignedDataTest, RsaPkcs1Sha1) {
RunTestCase(SUCCESS, "rsa-pkcs1-sha1.pem");
}
TEST(VerifySignedDataTest, RsaPkcs1Sha256) {
RunTestCase(SUCCESS, "rsa-pkcs1-sha256.pem");
}
TEST(VerifySignedDataTest, Rsa2048Pkcs1Sha512) {
RunTestCase(SUCCESS, "rsa2048-pkcs1-sha512.pem");
}
TEST(VerifySignedDataTest, RsaPkcs1Sha256KeyEncodedBer) {
RunTestCase(FAILURE, "rsa-pkcs1-sha256-key-encoded-ber.pem");
}
TEST(VerifySignedDataTest, EcdsaSecp384r1Sha256) {
RunTestCase(SUCCESS, "ecdsa-secp384r1-sha256.pem");
}
TEST(VerifySignedDataTest, EcdsaPrime256v1Sha512) {
RunTestCase(SUCCESS, "ecdsa-prime256v1-sha512.pem");
}
TEST(VerifySignedDataTest, RsaPssSha256) {
RunTestCase(SUCCESS, "rsa-pss-sha256.pem");
}
TEST(VerifySignedDataTest, RsaPssSha256WrongSalt) {
RunTestCase(FAILURE, "rsa-pss-sha256-wrong-salt.pem");
}
TEST(VerifySignedDataTest, EcdsaSecp384r1Sha256CorruptedData) {
RunTestCase(FAILURE, "ecdsa-secp384r1-sha256-corrupted-data.pem");
}
TEST(VerifySignedDataTest, RsaPkcs1Sha1WrongAlgorithm) {
RunTestCase(FAILURE, "rsa-pkcs1-sha1-wrong-algorithm.pem");
}
TEST(VerifySignedDataTest, EcdsaPrime256v1Sha512WrongSignatureFormat) {
RunTestCase(FAILURE, "ecdsa-prime256v1-sha512-wrong-signature-format.pem");
}
TEST(VerifySignedDataTest, EcdsaUsingRsaKey) {
RunTestCase(FAILURE, "ecdsa-using-rsa-key.pem");
}
TEST(VerifySignedDataTest, RsaUsingEcKey) {
RunTestCase(FAILURE, "rsa-using-ec-key.pem");
}
TEST(VerifySignedDataTest, RsaPkcs1Sha1BadKeyDerNull) {
RunTestCase(FAILURE, "rsa-pkcs1-sha1-bad-key-der-null.pem");
}
TEST(VerifySignedDataTest, RsaPkcs1Sha1BadKeyDerLength) {
RunTestCase(FAILURE, "rsa-pkcs1-sha1-bad-key-der-length.pem");
}
TEST(VerifySignedDataTest, RsaPkcs1Sha256UsingEcdsaAlgorithm) {
RunTestCase(FAILURE, "rsa-pkcs1-sha256-using-ecdsa-algorithm.pem");
}
TEST(VerifySignedDataTest, EcdsaPrime256v1Sha512UsingRsaAlgorithm) {
RunTestCase(FAILURE, "ecdsa-prime256v1-sha512-using-rsa-algorithm.pem");
}
TEST(VerifySignedDataTest, EcdsaPrime256v1Sha512UsingEcdhKey) {
RunTestCase(FAILURE, "ecdsa-prime256v1-sha512-using-ecdh-key.pem");
}
TEST(VerifySignedDataTest, EcdsaPrime256v1Sha512UsingEcmqvKey) {
RunTestCase(FAILURE, "ecdsa-prime256v1-sha512-using-ecmqv-key.pem");
}
TEST(VerifySignedDataTest, RsaPkcs1Sha1KeyParamsAbsent) {
RunTestCase(FAILURE, "rsa-pkcs1-sha1-key-params-absent.pem");
}
TEST(VerifySignedDataTest, RsaPkcs1Sha1UsingPssKeyNoParams) {
RunTestCase(FAILURE, "rsa-pkcs1-sha1-using-pss-key-no-params.pem");
}
TEST(VerifySignedDataTest, RsaPssSha256UsingPssKeyWithParams) {
// We do not support RSA-PSS SPKIs.
RunTestCase(FAILURE, "rsa-pss-sha256-using-pss-key-with-params.pem");
}
TEST(VerifySignedDataTest, EcdsaPrime256v1Sha512SpkiParamsNull) {
RunTestCase(FAILURE, "ecdsa-prime256v1-sha512-spki-params-null.pem");
}
TEST(VerifySignedDataTest, RsaPkcs1Sha256UsingIdEaRsa) {
RunTestCase(FAILURE, "rsa-pkcs1-sha256-using-id-ea-rsa.pem");
}
TEST(VerifySignedDataTest, RsaPkcs1Sha256SpkiNonNullParams) {
RunTestCase(FAILURE, "rsa-pkcs1-sha256-spki-non-null-params.pem");
}
TEST(VerifySignedDataTest, EcdsaPrime256v1Sha512UnusedBitsSignature) {
RunTestCase(FAILURE, "ecdsa-prime256v1-sha512-unused-bits-signature.pem");
}
TEST(VerifySignedDataTest, Ecdsa384) {
// Using the regular policy both secp384r1 and secp256r1 should be accepted.
RunTestCase(SUCCESS, "ecdsa-secp384r1-sha256.pem");
RunTestCase(SUCCESS, "ecdsa-prime256v1-sha512.pem");
}
TEST(VerifySignedDataTestWithCache, TestVerifyCache) {
MockSignatureVerifyCache verify_cache;
// Trivially, with no cache, all stats should be 0.
RunTestCase(SUCCESS, "rsa-pss-sha256.pem", /*cache=*/nullptr);
EXPECT_EQ(verify_cache.CacheHits(), 0U);
EXPECT_EQ(verify_cache.CacheMisses(), 0U);
EXPECT_EQ(verify_cache.CacheStores(), 0U);
// Use the cache, with a successful verification should see a miss and a
// store.
RunTestCase(SUCCESS, "rsa-pss-sha256.pem", &verify_cache);
EXPECT_EQ(verify_cache.CacheHits(), 0U);
EXPECT_EQ(verify_cache.CacheMisses(), 1U);
EXPECT_EQ(verify_cache.CacheStores(), 1U);
// Repeating the previous successful verification should show cache hits.
RunTestCase(SUCCESS, "rsa-pss-sha256.pem", &verify_cache);
RunTestCase(SUCCESS, "rsa-pss-sha256.pem", &verify_cache);
RunTestCase(SUCCESS, "rsa-pss-sha256.pem", &verify_cache);
EXPECT_EQ(verify_cache.CacheHits(), 3U);
EXPECT_EQ(verify_cache.CacheMisses(), 1U);
EXPECT_EQ(verify_cache.CacheStores(), 1U);
// Failures which are not due to a failed signature check should have no
// effect as they must not be cached.
RunTestCase(FAILURE, "ecdsa-prime256v1-sha512-using-ecdh-key.pem",
&verify_cache);
EXPECT_EQ(verify_cache.CacheHits(), 3U);
EXPECT_EQ(verify_cache.CacheMisses(), 1U);
EXPECT_EQ(verify_cache.CacheStores(), 1U);
// Failures which are due to a failed signature check should see a miss and a
// store.
RunTestCase(FAILURE, "ecdsa-secp384r1-sha256-corrupted-data.pem",
&verify_cache);
EXPECT_EQ(verify_cache.CacheHits(), 3U);
EXPECT_EQ(verify_cache.CacheMisses(), 2U);
EXPECT_EQ(verify_cache.CacheStores(), 2U);
// Repeating the previous failed verification should show cache hits.
RunTestCase(FAILURE, "ecdsa-secp384r1-sha256-corrupted-data.pem",
&verify_cache);
RunTestCase(FAILURE, "ecdsa-secp384r1-sha256-corrupted-data.pem",
&verify_cache);
RunTestCase(FAILURE, "ecdsa-secp384r1-sha256-corrupted-data.pem",
&verify_cache);
EXPECT_EQ(verify_cache.CacheHits(), 6U);
EXPECT_EQ(verify_cache.CacheMisses(), 2U);
EXPECT_EQ(verify_cache.CacheStores(), 2U);
}
} // namespace
} // namespace net