Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1659 lines
68 KiB
1659 lines
68 KiB
// Copyright 2015 The Chromium Authors |
|
// Use of this source code is governed by a BSD-style license that can be |
|
// found in the LICENSE file. |
|
|
|
#include "verify_certificate_chain.h" |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
|
|
#include "cert_error_params.h" |
|
#include "cert_errors.h" |
|
#include "common_cert_errors.h" |
|
#include "extended_key_usage.h" |
|
#include "name_constraints.h" |
|
#include "parse_certificate.h" |
|
#include "signature_algorithm.h" |
|
#include "trust_store.h" |
|
#include "verify_signed_data.h" |
|
#include "input.h" |
|
#include <openssl/base.h> |
|
|
|
namespace bssl { |
|
|
|
namespace { |
|
|
|
bool IsHandledCriticalExtension(const ParsedExtension& extension, |
|
const ParsedCertificate& cert) { |
|
if (extension.oid == der::Input(kBasicConstraintsOid)) |
|
return true; |
|
// Key Usage is NOT processed for end-entity certificates (this is the |
|
// responsibility of callers), however it is considered "handled" here in |
|
// order to allow being marked as critical. |
|
if (extension.oid == der::Input(kKeyUsageOid)) |
|
return true; |
|
if (extension.oid == der::Input(kExtKeyUsageOid)) |
|
return true; |
|
if (extension.oid == der::Input(kNameConstraintsOid)) |
|
return true; |
|
if (extension.oid == der::Input(kSubjectAltNameOid)) |
|
return true; |
|
if (extension.oid == der::Input(kCertificatePoliciesOid)) { |
|
// Policy qualifiers are skipped during processing, so if the |
|
// extension is marked critical need to ensure there weren't any |
|
// qualifiers other than User Notice / CPS. |
|
// |
|
// This follows from RFC 5280 section 4.2.1.4: |
|
// |
|
// If this extension is critical, the path validation software MUST |
|
// be able to interpret this extension (including the optional |
|
// qualifier), or MUST reject the certificate. |
|
std::vector<der::Input> unused_policies; |
|
CertErrors unused_errors; |
|
return ParseCertificatePoliciesExtensionOids( |
|
extension.value, true /*fail_parsing_unknown_qualifier_oids*/, |
|
&unused_policies, &unused_errors); |
|
|
|
// TODO(eroman): Give a better error message. |
|
} |
|
if (extension.oid == der::Input(kPolicyMappingsOid)) |
|
return true; |
|
if (extension.oid == der::Input(kPolicyConstraintsOid)) |
|
return true; |
|
if (extension.oid == der::Input(kInhibitAnyPolicyOid)) |
|
return true; |
|
if (extension.oid == der::Input(kMSApplicationPoliciesOid)) { |
|
// Per https://crbug.com/1439638 and |
|
// https://learn.microsoft.com/en-us/windows/win32/seccertenroll/supported-extensions#msapplicationpolicies |
|
// The MSApplicationPolicies extension may be ignored if the |
|
// extendedKeyUsage extension is also present. |
|
return cert.has_extended_key_usage(); |
|
} |
|
|
|
return false; |
|
} |
|
|
|
// Adds errors to |errors| if the certificate contains unconsumed _critical_ |
|
// extensions. |
|
void VerifyNoUnconsumedCriticalExtensions(const ParsedCertificate& cert, |
|
CertErrors* errors) { |
|
for (const auto& it : cert.extensions()) { |
|
const ParsedExtension& extension = it.second; |
|
if (extension.critical && !IsHandledCriticalExtension(extension, cert)) { |
|
errors->AddError(cert_errors::kUnconsumedCriticalExtension, |
|
CreateCertErrorParams2Der("oid", extension.oid, "value", |
|
extension.value)); |
|
} |
|
} |
|
} |
|
|
|
// Returns true if |cert| was self-issued. The definition of self-issuance |
|
// comes from RFC 5280 section 6.1: |
|
// |
|
// A certificate is self-issued if the same DN appears in the subject |
|
// and issuer fields (the two DNs are the same if they match according |
|
// to the rules specified in Section 7.1). In general, the issuer and |
|
// subject of the certificates that make up a path are different for |
|
// each certificate. However, a CA may issue a certificate to itself to |
|
// support key rollover or changes in certificate policies. These |
|
// self-issued certificates are not counted when evaluating path length |
|
// or name constraints. |
|
[[nodiscard]] bool IsSelfIssued(const ParsedCertificate& cert) { |
|
return cert.normalized_subject() == cert.normalized_issuer(); |
|
} |
|
|
|
// Adds errors to |errors| if |cert| is not valid at time |time|. |
|
// |
|
// The certificate's validity requirements are described by RFC 5280 section |
|
// 4.1.2.5: |
|
// |
|
// The validity period for a certificate is the period of time from |
|
// notBefore through notAfter, inclusive. |
|
void VerifyTimeValidity(const ParsedCertificate& cert, |
|
const der::GeneralizedTime& time, |
|
CertErrors* errors) { |
|
if (time < cert.tbs().validity_not_before) |
|
errors->AddError(cert_errors::kValidityFailedNotBefore); |
|
|
|
if (cert.tbs().validity_not_after < time) |
|
errors->AddError(cert_errors::kValidityFailedNotAfter); |
|
} |
|
|
|
// Adds errors to |errors| if |cert| has internally inconsistent signature |
|
// algorithms. |
|
// |
|
// X.509 certificates contain two different signature algorithms: |
|
// (1) The signatureAlgorithm field of Certificate |
|
// (2) The signature field of TBSCertificate |
|
// |
|
// According to RFC 5280 section 4.1.1.2 and 4.1.2.3 these two fields must be |
|
// equal: |
|
// |
|
// This field MUST contain the same algorithm identifier as the |
|
// signature field in the sequence tbsCertificate (Section 4.1.2.3). |
|
// |
|
// The spec is not explicit about what "the same algorithm identifier" means. |
|
// Our interpretation is that the two DER-encoded fields must be byte-for-byte |
|
// identical. |
|
// |
|
// In practice however there are certificates which use different encodings for |
|
// specifying RSA with SHA1 (different OIDs). This is special-cased for |
|
// compatibility sake. |
|
bool VerifySignatureAlgorithmsMatch(const ParsedCertificate& cert, |
|
CertErrors* errors) { |
|
const der::Input& alg1_tlv = cert.signature_algorithm_tlv(); |
|
const der::Input& alg2_tlv = cert.tbs().signature_algorithm_tlv; |
|
|
|
// Ensure that the two DER-encoded signature algorithms are byte-for-byte |
|
// equal. |
|
if (alg1_tlv == alg2_tlv) |
|
return true; |
|
|
|
// But make a compatibility concession if alternate encodings are used |
|
// TODO(eroman): Turn this warning into an error. |
|
// TODO(eroman): Add a unit-test that exercises this case. |
|
std::optional<SignatureAlgorithm> alg1 = ParseSignatureAlgorithm(alg1_tlv); |
|
if (!alg1) { |
|
errors->AddError(cert_errors::kUnacceptableSignatureAlgorithm); |
|
return false; |
|
} |
|
std::optional<SignatureAlgorithm> alg2 = ParseSignatureAlgorithm(alg2_tlv); |
|
if (!alg2) { |
|
errors->AddError(cert_errors::kUnacceptableSignatureAlgorithm); |
|
return false; |
|
} |
|
|
|
if (*alg1 == *alg2) { |
|
errors->AddWarning( |
|
cert_errors::kSignatureAlgorithmsDifferentEncoding, |
|
CreateCertErrorParams2Der("Certificate.algorithm", alg1_tlv, |
|
"TBSCertificate.signature", alg2_tlv)); |
|
return true; |
|
} |
|
|
|
errors->AddError( |
|
cert_errors::kSignatureAlgorithmMismatch, |
|
CreateCertErrorParams2Der("Certificate.algorithm", alg1_tlv, |
|
"TBSCertificate.signature", alg2_tlv)); |
|
return false; |
|
} |
|
|
|
// Verify that |cert| can be used for |required_key_purpose|. |
|
void VerifyExtendedKeyUsage(const ParsedCertificate& cert, |
|
KeyPurpose required_key_purpose, |
|
CertErrors* errors, |
|
bool is_target_cert, |
|
bool is_target_cert_issuer) { |
|
// We treat a required KeyPurpose of ANY_EKU to mean "Do not check EKU" |
|
if (required_key_purpose == KeyPurpose::ANY_EKU) { |
|
return; |
|
} |
|
bool has_any_eku = false; |
|
bool has_server_auth_eku = false; |
|
bool has_client_auth_eku = false; |
|
bool has_code_signing_eku = false; |
|
bool has_time_stamping_eku = false; |
|
bool has_ocsp_signing_eku = false; |
|
bool has_nsgc = false; |
|
if (cert.has_extended_key_usage()) { |
|
for (const auto& key_purpose_oid : cert.extended_key_usage()) { |
|
if (key_purpose_oid == der::Input(kAnyEKU)) { |
|
has_any_eku = true; |
|
} |
|
if (key_purpose_oid == der::Input(kServerAuth)) { |
|
has_server_auth_eku = true; |
|
} |
|
if (key_purpose_oid == der::Input(kClientAuth)) { |
|
has_client_auth_eku = true; |
|
} |
|
if (key_purpose_oid == der::Input(kCodeSigning)) { |
|
has_code_signing_eku = true; |
|
} |
|
if (key_purpose_oid == der::Input(kTimeStamping)) { |
|
has_time_stamping_eku = true; |
|
} |
|
if (key_purpose_oid == der::Input(kOCSPSigning)) { |
|
has_ocsp_signing_eku = true; |
|
} |
|
if (key_purpose_oid == der::Input(kNetscapeServerGatedCrypto)) { |
|
has_nsgc = true; |
|
} |
|
} |
|
} |
|
|
|
auto add_error_if_strict = [&](CertErrorId id) { |
|
if (required_key_purpose == KeyPurpose::SERVER_AUTH_STRICT || |
|
required_key_purpose == KeyPurpose::CLIENT_AUTH_STRICT) { |
|
errors->AddError(id); |
|
} else { |
|
errors->AddWarning(id); |
|
} |
|
}; |
|
if (is_target_cert) { |
|
// Loosely based upon CABF BR version 1.8.4, 7.1.2.3(f). We are more |
|
// permissive in that we still allow EKU any to be present in a leaf |
|
// certificate, but we ignore it for purposes of server or client auth. We |
|
// are less permissive in that we prohibit Code Signing, OCSP Signing, and |
|
// Time Stamping which are currently only a SHOULD NOT. The BR does |
|
// explicitly allow Email authentication to be present, as this still exists |
|
// in the wild (2022), so we do not prohibit Email authentication here (and |
|
// by extension must allow it to be present in the signer, below). |
|
if (!cert.has_extended_key_usage()) { |
|
// This is added as a warning, an error will be added in STRICT modes |
|
// if we then lack client or server auth due to this not being present. |
|
errors->AddWarning(cert_errors::kEkuNotPresent); |
|
} else { |
|
if (has_code_signing_eku) { |
|
add_error_if_strict(cert_errors::kEkuHasProhibitedCodeSigning); |
|
} |
|
if (has_ocsp_signing_eku) { |
|
add_error_if_strict(cert_errors::kEkuHasProhibitedOCSPSigning); |
|
} |
|
if (has_time_stamping_eku) { |
|
add_error_if_strict(cert_errors::kEkuHasProhibitedTimeStamping); |
|
} |
|
} |
|
} else if (is_target_cert_issuer) { |
|
// Handle the decision to overload EKU as a constraint on issuers. |
|
// |
|
// CABF BR version 1.8.4, 7.1.2.2(g) pertains to the case of "Certs used to |
|
// issue TLS certificates", While the BR refers to the entire chain of |
|
// intermediates, there are a number of exceptions regarding CA ownership |
|
// and cross signing which are impossible for us to know or enforce here. |
|
// Therefore, we can only enforce at the level of the intermediate that |
|
// issued our target certificate. This means we we differ in the following |
|
// ways: |
|
// - We only enforce at the issuer of the TLS certificate. |
|
// - We allow email protection to exist in the issuer, since without |
|
// this it can not be allowed in the client (other than via EKU any)) |
|
// - As in the leaf certificate case, we allow EKU any to be present, but |
|
// we ignore it for the purposes of server or client auth. |
|
// |
|
// At this time (until at least 2023) some intermediates are lacking EKU in |
|
// the world at large from common CA's, so we allow the noEKU case to permit |
|
// everything. |
|
// TODO(bbe): enforce requiring EKU in the issuer when we can manage it. |
|
if (cert.has_extended_key_usage()) { |
|
if (has_code_signing_eku) { |
|
add_error_if_strict(cert_errors::kEkuHasProhibitedCodeSigning); |
|
} |
|
if (has_time_stamping_eku) { |
|
add_error_if_strict(cert_errors::kEkuHasProhibitedTimeStamping); |
|
} |
|
} |
|
} |
|
// Otherwise, we are a parent of an issuer of a TLS certificate. The CABF |
|
// BR version 1.8.4, 7.1.2.2(g) goes as far as permitting EKU any in certain |
|
// cases of Cross Signing and CA Ownership, having permitted cases where EKU |
|
// is permitted to not be present at all. These cases are not practical to |
|
// differentiate here and therefore we don't attempt to enforce any further |
|
// EKU "constraints" on such certificates. Unlike the above cases we also |
|
// allow the use of EKU any for client or server auth constraint purposes. |
|
|
|
switch (required_key_purpose) { |
|
case KeyPurpose::ANY_EKU: |
|
assert(0); // NOTREACHED |
|
return; |
|
case KeyPurpose::SERVER_AUTH: |
|
case KeyPurpose::SERVER_AUTH_STRICT: { |
|
bool nsgc_hack = false; |
|
if (has_any_eku && !has_server_auth_eku) { |
|
if (is_target_cert || is_target_cert_issuer) { |
|
errors->AddWarning(cert_errors::kEkuLacksServerAuthButHasAnyEKU); |
|
} else { |
|
// Accept anyEKU for server auth below target issuer. |
|
has_server_auth_eku = true; |
|
} |
|
} |
|
if (is_target_cert_issuer && !cert.has_extended_key_usage()) { |
|
// Accept noEKU for server auth in target issuer. |
|
// TODO(bbe): remove this once BR requirements catch up with CA's. |
|
has_server_auth_eku = true; |
|
} |
|
if (has_nsgc && !has_server_auth_eku) { |
|
errors->AddWarning(cert_errors::kEkuLacksServerAuthButHasGatedCrypto); |
|
|
|
// Allow NSGC for legacy RSA SHA1 intermediates, for compatibility |
|
// with platform verifiers. |
|
// |
|
// In practice the chain will be rejected with or without this |
|
// compatibility hack. The difference is whether the final error will |
|
// be ERR_CERT_WEAK_SIGNATURE_ALGORITHM (with compatibility hack) vs |
|
// ERR_CERT_INVALID (without hack). |
|
// |
|
// TODO(https://crbug.com/843735): Remove this once error-for-error |
|
// equivalence between builtin verifier and platform verifier is less |
|
// important. |
|
if ((cert.has_basic_constraints() && cert.basic_constraints().is_ca) && |
|
cert.signature_algorithm() == SignatureAlgorithm::kRsaPkcs1Sha1) { |
|
nsgc_hack = true; |
|
} |
|
} |
|
if (required_key_purpose == KeyPurpose::SERVER_AUTH) { |
|
// Legacy compatible. |
|
if (cert.has_extended_key_usage() && !has_server_auth_eku && |
|
!has_any_eku && !nsgc_hack) { |
|
errors->AddError(cert_errors::kEkuLacksServerAuth); |
|
} |
|
} else { |
|
if (!has_server_auth_eku) { |
|
errors->AddError(cert_errors::kEkuLacksServerAuth); |
|
} |
|
} |
|
break; |
|
} |
|
case KeyPurpose::CLIENT_AUTH: |
|
case KeyPurpose::CLIENT_AUTH_STRICT: { |
|
if (has_any_eku && !has_client_auth_eku) { |
|
if (is_target_cert || is_target_cert_issuer) { |
|
errors->AddWarning(cert_errors::kEkuLacksClientAuthButHasAnyEKU); |
|
} else { |
|
// accept anyEKU for client auth. |
|
has_client_auth_eku = true; |
|
} |
|
} |
|
if (required_key_purpose == KeyPurpose::CLIENT_AUTH) { |
|
// Legacy-compatible. |
|
if (cert.has_extended_key_usage() && !has_client_auth_eku && |
|
!has_any_eku) { |
|
errors->AddError(cert_errors::kEkuLacksClientAuth); |
|
} |
|
} else { |
|
if (!has_client_auth_eku) { |
|
errors->AddError(cert_errors::kEkuLacksClientAuth); |
|
} |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
|
|
// Representation of RFC 5280's "valid_policy_tree", used to keep track of the |
|
// valid policies and policy re-mappings. This structure is defined in |
|
// section 6.1.2. |
|
// |
|
// ValidPolicyGraph differs from RFC 5280's description in that: |
|
// |
|
// (1) It does not track "qualifier_set". This is not needed as it is not |
|
// output by this implementation. |
|
// |
|
// (2) It builds a directed acyclic graph, rather than a tree. When a given |
|
// policy matches multiple parents, RFC 5280 makes a separate node for |
|
// each parent. This representation condenses them into one node with |
|
// multiple parents. |
|
// |
|
// (3) It does not track "expected_policy_set" or anyPolicy nodes directly. |
|
// Rather it maintains, only for the most recent level, whether there is an |
|
// anyPolicy node and an inverted map of all "expected_policy_set" values. |
|
// |
|
// (4) Some pruning steps are deferred to when policies are evaluated, as a |
|
// reachability pass. |
|
class ValidPolicyGraph { |
|
public: |
|
ValidPolicyGraph() = default; |
|
|
|
ValidPolicyGraph(const ValidPolicyGraph&) = delete; |
|
ValidPolicyGraph& operator=(const ValidPolicyGraph&) = delete; |
|
|
|
// A Node is an entry in the policy graph. It contains information about some |
|
// policy asserted by a certificate in the chain. The policy OID itself is |
|
// omitted because it is the key in the Level map. |
|
struct Node { |
|
// The list of "valid_policy" values for all nodes which are a parent of |
|
// this node, other than anyPolicy. If empty, this node has a single parent, |
|
// anyPolicy. |
|
// |
|
// Nodes whose parent is anyPolicy are root policies, and may be returned |
|
// in the authorities-constrained-policy-set. Nodes with a concrete policy |
|
// as a parent are derived from that policy in the issuer certificate, |
|
// possibly with a policy mapping applied. |
|
// |
|
// Note it is not possible for a policy to have both anyPolicy and a |
|
// concrete policy as a parent. Section 6.1.3, step d.1.ii only runs if |
|
// there was no match in step d.1.i. |
|
std::vector<der::Input> parent_policies; |
|
|
|
// Whether this node matches a policy mapping in the certificate. If true, |
|
// its "expected_policy_set" comes from the policy mappings extension. If |
|
// false, its "expected_policy_set" is itself. |
|
bool mapped = false; |
|
|
|
// Whether this node is reachable from some valid policy in the end-entity |
|
// certificate. Computed during GetValidRootPolicySet(). |
|
bool reachable = false; |
|
}; |
|
|
|
// The policy graph is organized into "levels", each corresponding to a |
|
// certificate in the chain. We maintain a map from "valid_policy" to the |
|
// corresponding Node. This is the set of policies asserted by this |
|
// certificate. The special anyPolicy OID is handled separately below. |
|
using Level = std::map<der::Input, Node>; |
|
|
|
// Additional per-level information that only needs to be maintained for the |
|
// bottom-most level. |
|
struct LevelDetails { |
|
// Maintains the "expected_policy_set" values for nodes in a level of the |
|
// graph, but the map is inverted from RFC 5280's formulation. For a given |
|
// policy OID P, other than anyPolicy, this map gives the set of nodes where |
|
// P appears in the node's "expected_policy_set". anyPolicy is handled |
|
// separately below. |
|
std::map<der::Input, std::vector<der::Input>> expected_policy_map; |
|
|
|
// Whether there is a node at this level whose "valid_policy" is anyPolicy. |
|
// |
|
// Note anyPolicy's "expected_policy_set" always {anyPolicy}, and anyPolicy |
|
// will never appear in the "expected_policy_set" of any other policy. That |
|
// means this field also captures how anyPolicy appears in |
|
// "expected_policy_set". |
|
bool has_any_policy = false; |
|
}; |
|
|
|
// Initializes the ValidPolicyGraph. |
|
void Init() { |
|
SetNull(); |
|
StartLevel(); |
|
AddAnyPolicyNode(); |
|
} |
|
|
|
// In RFC 5280 valid_policy_tree may be set to null. That is represented here |
|
// by emptiness. |
|
bool IsNull() const { |
|
return !current_level_.has_any_policy && |
|
(levels_.empty() || levels_.back().empty()); |
|
} |
|
void SetNull() { |
|
levels_.clear(); |
|
current_level_ = LevelDetails{}; |
|
} |
|
|
|
// Completes the previous level, returning a corresponding LevelDetails |
|
// structure, and starts a new level. |
|
LevelDetails StartLevel() { |
|
// Finish building expected_policy_map for the previous level. |
|
if (!levels_.empty()) { |
|
for (const auto& [policy, node] : levels_.back()) { |
|
if (!node.mapped) { |
|
current_level_.expected_policy_map[policy].push_back(policy); |
|
} |
|
} |
|
} |
|
|
|
LevelDetails prev_level = std::move(current_level_); |
|
levels_.emplace_back(); |
|
current_level_ = LevelDetails{}; |
|
return prev_level; |
|
} |
|
|
|
// Gets the set of policies (in terms of root authority's policy domain) that |
|
// are valid at the bottom level of the policy graph, intersected with |
|
// |user_initial_policy_set|. This is what X.509 calls |
|
// "user-constrained-policy-set". |
|
// |
|
// This method may only be called once, after the policy graph is constructed. |
|
std::set<der::Input> GetUserConstrainedPolicySet( |
|
const std::set<der::Input>& user_initial_policy_set) { |
|
if (levels_.empty()) { |
|
return {}; |
|
} |
|
|
|
bool user_has_any_policy = |
|
user_initial_policy_set.count(der::Input(kAnyPolicyOid)) != 0; |
|
if (current_level_.has_any_policy) { |
|
if (user_has_any_policy) { |
|
return {der::Input(kAnyPolicyOid)}; |
|
} |
|
return user_initial_policy_set; |
|
} |
|
|
|
// The root's policy domain is determined by nodes with anyPolicy as a |
|
// parent. However, we must limit to those which are reachable from the |
|
// end-entity certificate because we defer some pruning steps. |
|
for (auto& [policy, node] : levels_.back()) { |
|
// GCC before 8.1 tracks individual unused bindings and does not support |
|
// marking them [[maybe_unused]]. |
|
(void)policy; |
|
node.reachable = true; |
|
} |
|
std::set<der::Input> policy_set; |
|
for (size_t i = levels_.size() - 1; i < levels_.size(); i--) { |
|
for (auto& [policy, node] : levels_[i]) { |
|
if (!node.reachable) { |
|
continue; |
|
} |
|
if (node.parent_policies.empty()) { |
|
// |node|'s parent is anyPolicy, so this is in the root policy domain. |
|
// Add it to the set if it is also in user's list. |
|
if (user_has_any_policy || |
|
user_initial_policy_set.count(policy) > 0) { |
|
policy_set.insert(policy); |
|
} |
|
} else if (i > 0) { |
|
// Otherwise, continue searching the previous level. |
|
for (der::Input parent : node.parent_policies) { |
|
auto iter = levels_[i - 1].find(parent); |
|
if (iter != levels_[i - 1].end()) { |
|
iter->second.reachable = true; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
return policy_set; |
|
} |
|
|
|
// Adds a node with policy anyPolicy to the current level. |
|
void AddAnyPolicyNode() { |
|
assert(!levels_.empty()); |
|
current_level_.has_any_policy = true; |
|
} |
|
|
|
// Adds a node to the current level which is a child of |parent_policies| with |
|
// the specified policy. |
|
void AddNode(der::Input policy, std::vector<der::Input> parent_policies) { |
|
assert(policy != der::Input(kAnyPolicyOid)); |
|
AddNodeReturningIterator(policy, std::move(parent_policies)); |
|
} |
|
|
|
// Adds a node to the current level which is a child of anyPolicy with the |
|
// specified policy. |
|
void AddNodeWithParentAnyPolicy(der::Input policy) { |
|
// An empty parent set represents a node parented by anyPolicy. |
|
AddNode(policy, {}); |
|
} |
|
|
|
// Maps |issuer_policy| to |subject_policy|, as in RFC 5280, section 6.1.4, |
|
// step b.1. |
|
void AddPolicyMapping(der::Input issuer_policy, der::Input subject_policy) { |
|
assert(issuer_policy != der::Input(kAnyPolicyOid)); |
|
assert(subject_policy != der::Input(kAnyPolicyOid)); |
|
if (levels_.empty()) { |
|
return; |
|
} |
|
|
|
// The mapping only applies if |issuer_policy| exists in the current level. |
|
auto issuer_policy_iter = levels_.back().find(issuer_policy); |
|
if (issuer_policy_iter == levels_.back().end()) { |
|
// If there is no match, it can instead match anyPolicy. |
|
if (!current_level_.has_any_policy) { |
|
return; |
|
} |
|
|
|
// From RFC 5280, section 6.1.4, step b.1: |
|
// |
|
// If no node of depth i in the valid_policy_tree has a |
|
// valid_policy of ID-P but there is a node of depth i with a |
|
// valid_policy of anyPolicy, then generate a child node of |
|
// the node of depth i-1 that has a valid_policy of anyPolicy |
|
// as follows: [...] |
|
// |
|
// The anyPolicy node of depth i-1 is referring to the parent of the |
|
// anyPolicy node of depth i. The parent of anyPolicy is always anyPolicy. |
|
issuer_policy_iter = AddNodeReturningIterator(issuer_policy, {}); |
|
} |
|
|
|
// Unmapped nodes have a singleton "expected_policy_set" containing their |
|
// valid_policy. Track whether nodes have been mapped so this can be filled |
|
// in at StartLevel(). |
|
issuer_policy_iter->second.mapped = true; |
|
|
|
// Add |subject_policy| to |issuer_policy|'s "expected_policy_set". |
|
current_level_.expected_policy_map[subject_policy].push_back(issuer_policy); |
|
} |
|
|
|
// Removes the node with the specified policy from the current level. |
|
void DeleteNode(der::Input policy) { |
|
if (!levels_.empty()) { |
|
levels_.back().erase(policy); |
|
} |
|
} |
|
|
|
private: |
|
Level::iterator AddNodeReturningIterator( |
|
der::Input policy, |
|
std::vector<der::Input> parent_policies) { |
|
assert(policy != der::Input(kAnyPolicyOid)); |
|
auto [iter, inserted] = levels_.back().insert( |
|
std::pair{policy, Node{std::move(parent_policies)}}); |
|
// GCC before 8.1 tracks individual unused bindings and does not support |
|
// marking them [[maybe_unused]]. |
|
(void)inserted; |
|
assert(inserted); |
|
return iter; |
|
} |
|
|
|
// The list of levels, starting from the root. |
|
std::vector<Level> levels_; |
|
// Additional information about the current level. |
|
LevelDetails current_level_; |
|
}; |
|
|
|
// Class that encapsulates the state variables used by certificate path |
|
// validation. |
|
class PathVerifier { |
|
public: |
|
// Same parameters and meaning as VerifyCertificateChain(). |
|
void Run(const ParsedCertificateList& certs, |
|
const CertificateTrust& last_cert_trust, |
|
VerifyCertificateChainDelegate* delegate, |
|
const der::GeneralizedTime& time, |
|
KeyPurpose required_key_purpose, |
|
InitialExplicitPolicy initial_explicit_policy, |
|
const std::set<der::Input>& user_initial_policy_set, |
|
InitialPolicyMappingInhibit initial_policy_mapping_inhibit, |
|
InitialAnyPolicyInhibit initial_any_policy_inhibit, |
|
std::set<der::Input>* user_constrained_policy_set, |
|
CertPathErrors* errors); |
|
|
|
private: |
|
// Verifies and updates the valid policies. This corresponds with RFC 5280 |
|
// section 6.1.3 steps d-f. |
|
void VerifyPolicies(const ParsedCertificate& cert, |
|
bool is_target_cert, |
|
CertErrors* errors); |
|
|
|
// Applies the policy mappings. This corresponds with RFC 5280 section 6.1.4 |
|
// steps a-b. |
|
void VerifyPolicyMappings(const ParsedCertificate& cert, CertErrors* errors); |
|
|
|
// Applies policyConstraints and inhibitAnyPolicy. This corresponds with RFC |
|
// 5280 section 6.1.4 steps i-j. |
|
void ApplyPolicyConstraints(const ParsedCertificate& cert); |
|
|
|
// This function corresponds to RFC 5280 section 6.1.3's "Basic Certificate |
|
// Processing" procedure. |
|
void BasicCertificateProcessing(const ParsedCertificate& cert, |
|
bool is_target_cert, |
|
bool is_target_cert_issuer, |
|
const der::GeneralizedTime& time, |
|
KeyPurpose required_key_purpose, |
|
CertErrors* errors, |
|
bool* shortcircuit_chain_validation); |
|
|
|
// This function corresponds to RFC 5280 section 6.1.4's "Preparation for |
|
// Certificate i+1" procedure. |cert| is expected to be an intermediate. |
|
void PrepareForNextCertificate(const ParsedCertificate& cert, |
|
CertErrors* errors); |
|
|
|
// This function corresponds with RFC 5280 section 6.1.5's "Wrap-Up |
|
// Procedure". It does processing for the final certificate (the target cert). |
|
void WrapUp(const ParsedCertificate& cert, |
|
KeyPurpose required_key_purpose, |
|
const std::set<der::Input>& user_initial_policy_set, |
|
CertErrors* errors); |
|
|
|
// Enforces trust anchor constraints compatibile with RFC 5937. |
|
// |
|
// Note that the anchor constraints are encoded via the attached certificate |
|
// itself. |
|
void ApplyTrustAnchorConstraints(const ParsedCertificate& cert, |
|
KeyPurpose required_key_purpose, |
|
CertErrors* errors); |
|
|
|
// Initializes the path validation algorithm given anchor constraints. This |
|
// follows the description in RFC 5937 |
|
void ProcessRootCertificate(const ParsedCertificate& cert, |
|
const CertificateTrust& trust, |
|
const der::GeneralizedTime& time, |
|
KeyPurpose required_key_purpose, |
|
CertErrors* errors, |
|
bool* shortcircuit_chain_validation); |
|
|
|
// Processes verification when the input is a single certificate. This is not |
|
// defined by any standard. We attempt to match the de-facto behaviour of |
|
// Operating System verifiers. |
|
void ProcessSingleCertChain(const ParsedCertificate& cert, |
|
const CertificateTrust& trust, |
|
const der::GeneralizedTime& time, |
|
KeyPurpose required_key_purpose, |
|
CertErrors* errors); |
|
|
|
// Parses |spki| to an EVP_PKEY and checks whether the public key is accepted |
|
// by |delegate_|. On failure parsing returns nullptr. If either parsing the |
|
// key or key policy failed, adds a high-severity error to |errors|. |
|
bssl::UniquePtr<EVP_PKEY> ParseAndCheckPublicKey(const der::Input& spki, |
|
CertErrors* errors); |
|
|
|
ValidPolicyGraph valid_policy_graph_; |
|
|
|
std::set<der::Input> user_constrained_policy_set_; |
|
|
|
// Will contain a NameConstraints for each previous cert in the chain which |
|
// had nameConstraints. This corresponds to the permitted_subtrees and |
|
// excluded_subtrees state variables from RFC 5280. |
|
std::vector<const NameConstraints*> name_constraints_list_; |
|
|
|
// |explicit_policy_| corresponds with the same named variable from RFC 5280 |
|
// section 6.1.2: |
|
// |
|
// explicit_policy: an integer that indicates if a non-NULL |
|
// valid_policy_tree is required. The integer indicates the |
|
// number of non-self-issued certificates to be processed before |
|
// this requirement is imposed. Once set, this variable may be |
|
// decreased, but may not be increased. That is, if a certificate in the |
|
// path requires a non-NULL valid_policy_tree, a later certificate cannot |
|
// remove this requirement. If initial-explicit-policy is set, then the |
|
// initial value is 0, otherwise the initial value is n+1. |
|
size_t explicit_policy_; |
|
|
|
// |inhibit_any_policy_| corresponds with the same named variable from RFC |
|
// 5280 section 6.1.2: |
|
// |
|
// inhibit_anyPolicy: an integer that indicates whether the |
|
// anyPolicy policy identifier is considered a match. The |
|
// integer indicates the number of non-self-issued certificates |
|
// to be processed before the anyPolicy OID, if asserted in a |
|
// certificate other than an intermediate self-issued |
|
// certificate, is ignored. Once set, this variable may be |
|
// decreased, but may not be increased. That is, if a |
|
// certificate in the path inhibits processing of anyPolicy, a |
|
// later certificate cannot permit it. If initial-any-policy- |
|
// inhibit is set, then the initial value is 0, otherwise the |
|
// initial value is n+1. |
|
size_t inhibit_any_policy_; |
|
|
|
// |policy_mapping_| corresponds with the same named variable from RFC 5280 |
|
// section 6.1.2: |
|
// |
|
// policy_mapping: an integer that indicates if policy mapping |
|
// is permitted. The integer indicates the number of non-self- |
|
// issued certificates to be processed before policy mapping is |
|
// inhibited. Once set, this variable may be decreased, but may |
|
// not be increased. That is, if a certificate in the path |
|
// specifies that policy mapping is not permitted, it cannot be |
|
// overridden by a later certificate. If initial-policy- |
|
// mapping-inhibit is set, then the initial value is 0, |
|
// otherwise the initial value is n+1. |
|
size_t policy_mapping_; |
|
|
|
// |working_public_key_| is an amalgamation of 3 separate variables from RFC |
|
// 5280: |
|
// * working_public_key |
|
// * working_public_key_algorithm |
|
// * working_public_key_parameters |
|
// |
|
// They are combined for simplicity since the signature verification takes an |
|
// EVP_PKEY, and the parameter inheritence is not applicable for the supported |
|
// key types. |working_public_key_| may be null if parsing failed. |
|
// |
|
// An approximate explanation of |working_public_key_| is this description |
|
// from RFC 5280 section 6.1.2: |
|
// |
|
// working_public_key: the public key used to verify the |
|
// signature of a certificate. |
|
bssl::UniquePtr<EVP_PKEY> working_public_key_; |
|
|
|
// |working_normalized_issuer_name_| is the normalized value of the |
|
// working_issuer_name variable in RFC 5280 section 6.1.2: |
|
// |
|
// working_issuer_name: the issuer distinguished name expected |
|
// in the next certificate in the chain. |
|
der::Input working_normalized_issuer_name_; |
|
|
|
// |max_path_length_| corresponds with the same named variable in RFC 5280 |
|
// section 6.1.2. |
|
// |
|
// max_path_length: this integer is initialized to n, is |
|
// decremented for each non-self-issued certificate in the path, |
|
// and may be reduced to the value in the path length constraint |
|
// field within the basic constraints extension of a CA |
|
// certificate. |
|
size_t max_path_length_; |
|
|
|
VerifyCertificateChainDelegate* delegate_; |
|
}; |
|
|
|
void PathVerifier::VerifyPolicies(const ParsedCertificate& cert, |
|
bool is_target_cert, |
|
CertErrors* errors) { |
|
// From RFC 5280 section 6.1.3: |
|
// |
|
// (d) If the certificate policies extension is present in the |
|
// certificate and the valid_policy_tree is not NULL, process |
|
// the policy information by performing the following steps in |
|
// order: |
|
if (cert.has_policy_oids() && !valid_policy_graph_.IsNull()) { |
|
ValidPolicyGraph::LevelDetails previous_level = |
|
valid_policy_graph_.StartLevel(); |
|
|
|
// (1) For each policy P not equal to anyPolicy in the |
|
// certificate policies extension, let P-OID denote the OID |
|
// for policy P and P-Q denote the qualifier set for policy |
|
// P. Perform the following steps in order: |
|
bool cert_has_any_policy = false; |
|
for (const der::Input& p_oid : cert.policy_oids()) { |
|
if (p_oid == der::Input(kAnyPolicyOid)) { |
|
cert_has_any_policy = true; |
|
continue; |
|
} |
|
|
|
// (i) For each node of depth i-1 in the valid_policy_tree |
|
// where P-OID is in the expected_policy_set, create a |
|
// child node as follows: set the valid_policy to P-OID, |
|
// set the qualifier_set to P-Q, and set the |
|
// expected_policy_set to {P-OID}. |
|
auto iter = previous_level.expected_policy_map.find(p_oid); |
|
if (iter != previous_level.expected_policy_map.end()) { |
|
valid_policy_graph_.AddNode( |
|
p_oid, /*parent_policies=*/std::move(iter->second)); |
|
previous_level.expected_policy_map.erase(iter); |
|
} else if (previous_level.has_any_policy) { |
|
// (ii) If there was no match in step (i) and the |
|
// valid_policy_tree includes a node of depth i-1 with |
|
// the valid_policy anyPolicy, generate a child node with |
|
// the following values: set the valid_policy to P-OID, |
|
// set the qualifier_set to P-Q, and set the |
|
// expected_policy_set to {P-OID}. |
|
valid_policy_graph_.AddNodeWithParentAnyPolicy(p_oid); |
|
} |
|
} |
|
|
|
// (2) If the certificate policies extension includes the policy |
|
// anyPolicy with the qualifier set AP-Q and either (a) |
|
// inhibit_anyPolicy is greater than 0 or (b) i<n and the |
|
// certificate is self-issued, then: |
|
// |
|
// For each node in the valid_policy_tree of depth i-1, for |
|
// each value in the expected_policy_set (including |
|
// anyPolicy) that does not appear in a child node, create a |
|
// child node with the following values: set the valid_policy |
|
// to the value from the expected_policy_set in the parent |
|
// node, set the qualifier_set to AP-Q, and set the |
|
// expected_policy_set to the value in the valid_policy from |
|
// this node. |
|
if (cert_has_any_policy && ((inhibit_any_policy_ > 0) || |
|
(!is_target_cert && IsSelfIssued(cert)))) { |
|
for (auto& [p_oid, parent_policies] : |
|
previous_level.expected_policy_map) { |
|
valid_policy_graph_.AddNode(p_oid, std::move(parent_policies)); |
|
} |
|
if (previous_level.has_any_policy) { |
|
valid_policy_graph_.AddAnyPolicyNode(); |
|
} |
|
} |
|
|
|
// (3) If there is a node in the valid_policy_tree of depth i-1 |
|
// or less without any child nodes, delete that node. Repeat |
|
// this step until there are no nodes of depth i-1 or less |
|
// without children. |
|
// |
|
// This implementation does this as part of GetUserConstrainedPolicySet(). |
|
// Only the current level needs to be pruned to compute the policy graph. |
|
} |
|
|
|
// (e) If the certificate policies extension is not present, set the |
|
// valid_policy_tree to NULL. |
|
if (!cert.has_policy_oids()) |
|
valid_policy_graph_.SetNull(); |
|
|
|
// (f) Verify that either explicit_policy is greater than 0 or the |
|
// valid_policy_tree is not equal to NULL; |
|
if (!((explicit_policy_ > 0) || !valid_policy_graph_.IsNull())) |
|
errors->AddError(cert_errors::kNoValidPolicy); |
|
} |
|
|
|
void PathVerifier::VerifyPolicyMappings(const ParsedCertificate& cert, |
|
CertErrors* errors) { |
|
if (!cert.has_policy_mappings()) |
|
return; |
|
|
|
// From RFC 5280 section 6.1.4: |
|
// |
|
// (a) If a policy mappings extension is present, verify that the |
|
// special value anyPolicy does not appear as an |
|
// issuerDomainPolicy or a subjectDomainPolicy. |
|
for (const ParsedPolicyMapping& mapping : cert.policy_mappings()) { |
|
if (mapping.issuer_domain_policy == der::Input(kAnyPolicyOid) || |
|
mapping.subject_domain_policy == der::Input(kAnyPolicyOid)) { |
|
// Because this implementation continues processing certificates after |
|
// this error, clear the valid policy graph to ensure the |
|
// "user_constrained_policy_set" output upon failure is empty. |
|
valid_policy_graph_.SetNull(); |
|
errors->AddError(cert_errors::kPolicyMappingAnyPolicy); |
|
return; |
|
} |
|
} |
|
|
|
// (b) If a policy mappings extension is present, then for each |
|
// issuerDomainPolicy ID-P in the policy mappings extension: |
|
// |
|
// (1) If the policy_mapping variable is greater than 0, for each |
|
// node in the valid_policy_tree of depth i where ID-P is the |
|
// valid_policy, set expected_policy_set to the set of |
|
// subjectDomainPolicy values that are specified as |
|
// equivalent to ID-P by the policy mappings extension. |
|
// |
|
// If no node of depth i in the valid_policy_tree has a |
|
// valid_policy of ID-P but there is a node of depth i with a |
|
// valid_policy of anyPolicy, then generate a child node of |
|
// the node of depth i-1 that has a valid_policy of anyPolicy |
|
// as follows: |
|
// |
|
// (i) set the valid_policy to ID-P; |
|
// |
|
// (ii) set the qualifier_set to the qualifier set of the |
|
// policy anyPolicy in the certificate policies |
|
// extension of certificate i; and |
|
// |
|
// (iii) set the expected_policy_set to the set of |
|
// subjectDomainPolicy values that are specified as |
|
// equivalent to ID-P by the policy mappings extension. |
|
// |
|
if (policy_mapping_ > 0) { |
|
for (const ParsedPolicyMapping& mapping : cert.policy_mappings()) { |
|
valid_policy_graph_.AddPolicyMapping(mapping.issuer_domain_policy, |
|
mapping.subject_domain_policy); |
|
} |
|
} |
|
|
|
// (b) If a policy mappings extension is present, then for each |
|
// issuerDomainPolicy ID-P in the policy mappings extension: |
|
// |
|
// ... |
|
// |
|
// (2) If the policy_mapping variable is equal to 0: |
|
// |
|
// (i) delete each node of depth i in the valid_policy_tree |
|
// where ID-P is the valid_policy. |
|
// |
|
// (ii) If there is a node in the valid_policy_tree of depth |
|
// i-1 or less without any child nodes, delete that |
|
// node. Repeat this step until there are no nodes of |
|
// depth i-1 or less without children. |
|
// |
|
// Step (ii) is deferred to part of GetUserConstrainedPolicySet(). |
|
if (policy_mapping_ == 0) { |
|
for (const ParsedPolicyMapping& mapping : cert.policy_mappings()) { |
|
valid_policy_graph_.DeleteNode(mapping.issuer_domain_policy); |
|
} |
|
} |
|
} |
|
|
|
void PathVerifier::ApplyPolicyConstraints(const ParsedCertificate& cert) { |
|
// RFC 5280 section 6.1.4 step i-j: |
|
// (i) If a policy constraints extension is included in the |
|
// certificate, modify the explicit_policy and policy_mapping |
|
// state variables as follows: |
|
if (cert.has_policy_constraints()) { |
|
// (1) If requireExplicitPolicy is present and is less than |
|
// explicit_policy, set explicit_policy to the value of |
|
// requireExplicitPolicy. |
|
if (cert.policy_constraints().require_explicit_policy && |
|
cert.policy_constraints().require_explicit_policy.value() < |
|
explicit_policy_) { |
|
explicit_policy_ = |
|
cert.policy_constraints().require_explicit_policy.value(); |
|
} |
|
|
|
// (2) If inhibitPolicyMapping is present and is less than |
|
// policy_mapping, set policy_mapping to the value of |
|
// inhibitPolicyMapping. |
|
if (cert.policy_constraints().inhibit_policy_mapping && |
|
cert.policy_constraints().inhibit_policy_mapping.value() < |
|
policy_mapping_) { |
|
policy_mapping_ = |
|
cert.policy_constraints().inhibit_policy_mapping.value(); |
|
} |
|
} |
|
|
|
// (j) If the inhibitAnyPolicy extension is included in the |
|
// certificate and is less than inhibit_anyPolicy, set |
|
// inhibit_anyPolicy to the value of inhibitAnyPolicy. |
|
if (cert.inhibit_any_policy() && |
|
cert.inhibit_any_policy().value() < inhibit_any_policy_) { |
|
inhibit_any_policy_ = cert.inhibit_any_policy().value(); |
|
} |
|
} |
|
|
|
void PathVerifier::BasicCertificateProcessing( |
|
const ParsedCertificate& cert, |
|
bool is_target_cert, |
|
bool is_target_cert_issuer, |
|
const der::GeneralizedTime& time, |
|
KeyPurpose required_key_purpose, |
|
CertErrors* errors, |
|
bool* shortcircuit_chain_validation) { |
|
*shortcircuit_chain_validation = false; |
|
// Check that the signature algorithms in Certificate vs TBSCertificate |
|
// match. This isn't part of RFC 5280 section 6.1.3, but is mandated by |
|
// sections 4.1.1.2 and 4.1.2.3. |
|
if (!VerifySignatureAlgorithmsMatch(cert, errors)) { |
|
BSSL_CHECK(errors->ContainsAnyErrorWithSeverity(CertError::SEVERITY_HIGH)); |
|
*shortcircuit_chain_validation = true; |
|
} |
|
|
|
// Check whether this signature algorithm is allowed. |
|
if (!cert.signature_algorithm().has_value() || |
|
!delegate_->IsSignatureAlgorithmAcceptable(*cert.signature_algorithm(), |
|
errors)) { |
|
*shortcircuit_chain_validation = true; |
|
errors->AddError(cert_errors::kUnacceptableSignatureAlgorithm); |
|
return; |
|
} |
|
|
|
if (working_public_key_) { |
|
// Verify the digital signature using the previous certificate's key (RFC |
|
// 5280 section 6.1.3 step a.1). |
|
if (!VerifySignedData(*cert.signature_algorithm(), |
|
cert.tbs_certificate_tlv(), cert.signature_value(), |
|
working_public_key_.get(), |
|
delegate_->GetVerifyCache())) { |
|
*shortcircuit_chain_validation = true; |
|
errors->AddError(cert_errors::kVerifySignedDataFailed); |
|
} |
|
} |
|
if (*shortcircuit_chain_validation) |
|
return; |
|
|
|
// Check the time range for the certificate's validity, ensuring it is valid |
|
// at |time|. |
|
// (RFC 5280 section 6.1.3 step a.2) |
|
VerifyTimeValidity(cert, time, errors); |
|
|
|
// RFC 5280 section 6.1.3 step a.3 calls for checking the certificate's |
|
// revocation status here. In this implementation revocation checking is |
|
// implemented separately from path validation. |
|
|
|
// Verify the certificate's issuer name matches the issuing certificate's |
|
// subject name. (RFC 5280 section 6.1.3 step a.4) |
|
if (cert.normalized_issuer() != working_normalized_issuer_name_) |
|
errors->AddError(cert_errors::kSubjectDoesNotMatchIssuer); |
|
|
|
// Name constraints (RFC 5280 section 6.1.3 step b & c) |
|
// If certificate i is self-issued and it is not the final certificate in the |
|
// path, skip this step for certificate i. |
|
if (!name_constraints_list_.empty() && |
|
(!IsSelfIssued(cert) || is_target_cert)) { |
|
for (const NameConstraints* nc : name_constraints_list_) { |
|
nc->IsPermittedCert(cert.normalized_subject(), cert.subject_alt_names(), |
|
errors); |
|
} |
|
} |
|
|
|
// RFC 5280 section 6.1.3 step d - f. |
|
VerifyPolicies(cert, is_target_cert, errors); |
|
|
|
// The key purpose is checked not just for the end-entity certificate, but |
|
// also interpreted as a constraint when it appears in intermediates. This |
|
// goes beyond what RFC 5280 describes, but is the de-facto standard. See |
|
// https://wiki.mozilla.org/CA:CertificatePolicyV2.1#Frequently_Asked_Questions |
|
VerifyExtendedKeyUsage(cert, required_key_purpose, errors, is_target_cert, |
|
is_target_cert_issuer); |
|
} |
|
|
|
void PathVerifier::PrepareForNextCertificate(const ParsedCertificate& cert, |
|
CertErrors* errors) { |
|
// RFC 5280 section 6.1.4 step a-b |
|
VerifyPolicyMappings(cert, errors); |
|
|
|
// From RFC 5280 section 6.1.4 step c: |
|
// |
|
// Assign the certificate subject name to working_normalized_issuer_name. |
|
working_normalized_issuer_name_ = cert.normalized_subject(); |
|
|
|
// From RFC 5280 section 6.1.4 step d: |
|
// |
|
// Assign the certificate subjectPublicKey to working_public_key. |
|
working_public_key_ = ParseAndCheckPublicKey(cert.tbs().spki_tlv, errors); |
|
|
|
// Note that steps e and f are omitted as they are handled by |
|
// the assignment to |working_spki| above. See the definition |
|
// of |working_spki|. |
|
|
|
// From RFC 5280 section 6.1.4 step g: |
|
if (cert.has_name_constraints()) |
|
name_constraints_list_.push_back(&cert.name_constraints()); |
|
|
|
// (h) If certificate i is not self-issued: |
|
if (!IsSelfIssued(cert)) { |
|
// (1) If explicit_policy is not 0, decrement explicit_policy by |
|
// 1. |
|
if (explicit_policy_ > 0) |
|
explicit_policy_ -= 1; |
|
|
|
// (2) If policy_mapping is not 0, decrement policy_mapping by 1. |
|
if (policy_mapping_ > 0) |
|
policy_mapping_ -= 1; |
|
|
|
// (3) If inhibit_anyPolicy is not 0, decrement inhibit_anyPolicy |
|
// by 1. |
|
if (inhibit_any_policy_ > 0) |
|
inhibit_any_policy_ -= 1; |
|
} |
|
|
|
// RFC 5280 section 6.1.4 step i-j: |
|
ApplyPolicyConstraints(cert); |
|
|
|
// From RFC 5280 section 6.1.4 step k: |
|
// |
|
// If certificate i is a version 3 certificate, verify that the |
|
// basicConstraints extension is present and that cA is set to |
|
// TRUE. (If certificate i is a version 1 or version 2 |
|
// certificate, then the application MUST either verify that |
|
// certificate i is a CA certificate through out-of-band means |
|
// or reject the certificate. Conforming implementations may |
|
// choose to reject all version 1 and version 2 intermediate |
|
// certificates.) |
|
// |
|
// This code implicitly rejects non version 3 intermediates, since they |
|
// can't contain a BasicConstraints extension. |
|
if (!cert.has_basic_constraints()) { |
|
errors->AddError(cert_errors::kMissingBasicConstraints); |
|
} else if (!cert.basic_constraints().is_ca) { |
|
errors->AddError(cert_errors::kBasicConstraintsIndicatesNotCa); |
|
} |
|
|
|
// From RFC 5280 section 6.1.4 step l: |
|
// |
|
// If the certificate was not self-issued, verify that |
|
// max_path_length is greater than zero and decrement |
|
// max_path_length by 1. |
|
if (!IsSelfIssued(cert)) { |
|
if (max_path_length_ == 0) { |
|
errors->AddError(cert_errors::kMaxPathLengthViolated); |
|
} else { |
|
--max_path_length_; |
|
} |
|
} |
|
|
|
// From RFC 5280 section 6.1.4 step m: |
|
// |
|
// If pathLenConstraint is present in the certificate and is |
|
// less than max_path_length, set max_path_length to the value |
|
// of pathLenConstraint. |
|
if (cert.has_basic_constraints() && cert.basic_constraints().has_path_len && |
|
cert.basic_constraints().path_len < max_path_length_) { |
|
max_path_length_ = cert.basic_constraints().path_len; |
|
} |
|
|
|
// From RFC 5280 section 6.1.4 step n: |
|
// |
|
// If a key usage extension is present, verify that the |
|
// keyCertSign bit is set. |
|
if (cert.has_key_usage() && |
|
!cert.key_usage().AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN)) { |
|
errors->AddError(cert_errors::kKeyCertSignBitNotSet); |
|
} |
|
|
|
// From RFC 5280 section 6.1.4 step o: |
|
// |
|
// Recognize and process any other critical extension present in |
|
// the certificate. Process any other recognized non-critical |
|
// extension present in the certificate that is relevant to path |
|
// processing. |
|
VerifyNoUnconsumedCriticalExtensions(cert, errors); |
|
} |
|
|
|
// Checks if the target certificate has the CA bit set. If it does, add |
|
// the appropriate error or warning to |errors|. |
|
void VerifyTargetCertIsNotCA(const ParsedCertificate& cert, |
|
KeyPurpose required_key_purpose, |
|
CertErrors* errors) { |
|
if (cert.has_basic_constraints() && cert.basic_constraints().is_ca) { |
|
// In spite of RFC 5280 4.2.1.9 which says the CA properties MAY exist in |
|
// an end entity certificate, the CABF Baseline Requirements version |
|
// 1.8.4, 7.1.2.3(d) prohibit the CA bit being set in an end entity |
|
// certificate. |
|
switch (required_key_purpose) { |
|
case KeyPurpose::ANY_EKU: |
|
break; |
|
case KeyPurpose::SERVER_AUTH: |
|
case KeyPurpose::CLIENT_AUTH: |
|
errors->AddWarning(cert_errors::kTargetCertShouldNotBeCa); |
|
break; |
|
case KeyPurpose::SERVER_AUTH_STRICT: |
|
case KeyPurpose::CLIENT_AUTH_STRICT: |
|
errors->AddError(cert_errors::kTargetCertShouldNotBeCa); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
void PathVerifier::WrapUp(const ParsedCertificate& cert, |
|
KeyPurpose required_key_purpose, |
|
const std::set<der::Input>& user_initial_policy_set, |
|
CertErrors* errors) { |
|
// From RFC 5280 section 6.1.5: |
|
// (a) If explicit_policy is not 0, decrement explicit_policy by 1. |
|
if (explicit_policy_ > 0) |
|
explicit_policy_ -= 1; |
|
|
|
// (b) If a policy constraints extension is included in the |
|
// certificate and requireExplicitPolicy is present and has a |
|
// value of 0, set the explicit_policy state variable to 0. |
|
if (cert.has_policy_constraints() && |
|
cert.policy_constraints().require_explicit_policy.has_value() && |
|
cert.policy_constraints().require_explicit_policy == 0) { |
|
explicit_policy_ = 0; |
|
} |
|
|
|
// Note step c-e are omitted as the verification function does |
|
// not output the working public key. |
|
|
|
// From RFC 5280 section 6.1.5 step f: |
|
// |
|
// Recognize and process any other critical extension present in |
|
// the certificate n. Process any other recognized non-critical |
|
// extension present in certificate n that is relevant to path |
|
// processing. |
|
// |
|
// Note that this is duplicated by PrepareForNextCertificate() so as to |
|
// directly match the procedures in RFC 5280's section 6.1. |
|
VerifyNoUnconsumedCriticalExtensions(cert, errors); |
|
|
|
// This calculates the intersection from RFC 5280 section 6.1.5 step g, as |
|
// well as applying the deferred recursive node that were skipped earlier in |
|
// the process. |
|
user_constrained_policy_set_ = |
|
valid_policy_graph_.GetUserConstrainedPolicySet(user_initial_policy_set); |
|
|
|
// From RFC 5280 section 6.1.5 step g: |
|
// |
|
// If either (1) the value of explicit_policy variable is greater than |
|
// zero or (2) the valid_policy_tree is not NULL, then path processing |
|
// has succeeded. |
|
if (explicit_policy_ == 0 && user_constrained_policy_set_.empty()) { |
|
errors->AddError(cert_errors::kNoValidPolicy); |
|
} |
|
|
|
// The following check is NOT part of RFC 5280 6.1.5's "Wrap-Up Procedure", |
|
// however is implied by RFC 5280 section 4.2.1.9, as well as CABF Base |
|
// Requirements. |
|
VerifyTargetCertIsNotCA(cert, required_key_purpose, errors); |
|
|
|
// Check the public key for the target certificate. The public key for the |
|
// other certificates is already checked by PrepareForNextCertificate(). |
|
// Note that this step is not part of RFC 5280 6.1.5. |
|
ParseAndCheckPublicKey(cert.tbs().spki_tlv, errors); |
|
} |
|
|
|
void PathVerifier::ApplyTrustAnchorConstraints(const ParsedCertificate& cert, |
|
KeyPurpose required_key_purpose, |
|
CertErrors* errors) { |
|
// If certificatePolicies is present, process the policies. This matches the |
|
// handling for intermediates from RFC 5280 section 6.1.3.d (except that for |
|
// intermediates it is non-optional). It intentionally deviates from RFC 5937 |
|
// section 3.2 which says to intersect with user-initial-policy-set, since |
|
// processing as part of user-initial-policy-set has subtly different |
|
// semantics from being handled as part of the chain processing (see |
|
// https://crbug.com/1403258). |
|
if (cert.has_policy_oids()) { |
|
VerifyPolicies(cert, /*is_target_cert=*/false, errors); |
|
} |
|
|
|
// Process policyMappings, if present. This matches the handling for |
|
// intermediates from RFC 5280 section 6.1.4 step a-b. |
|
VerifyPolicyMappings(cert, errors); |
|
|
|
// Process policyConstraints and inhibitAnyPolicy. This matches the |
|
// handling for intermediates from RFC 5280 section 6.1.4 step i-j. |
|
// This intentionally deviates from RFC 5937 section 3.2 which says to |
|
// initialize the initial-any-policy-inhibit, initial-explicit-policy, and/or |
|
// initial-policy-mapping-inhibit inputs to verification. Those are all |
|
// bools, so they cannot properly represent the constraints encoded in the |
|
// policyConstraints and inhibitAnyPolicy extensions. |
|
ApplyPolicyConstraints(cert); |
|
|
|
// If keyUsage is present, verify that |cert| has correct keyUsage bits for a |
|
// CA. This matches the handling for intermediates from RFC 5280 section |
|
// 6.1.4 step n. |
|
if (cert.has_key_usage() && |
|
!cert.key_usage().AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN)) { |
|
errors->AddError(cert_errors::kKeyCertSignBitNotSet); |
|
} |
|
|
|
// This is not part of RFC 5937 nor RFC 5280, but matches the EKU handling |
|
// done for intermediates (described in Web PKI's Baseline Requirements). |
|
VerifyExtendedKeyUsage(cert, required_key_purpose, errors, |
|
/*is_target_cert=*/false, |
|
/*is_target_cert_issuer=*/false); |
|
|
|
// The following enforcements follow from RFC 5937 (primarily section 3.2): |
|
|
|
// Initialize name constraints initial-permitted/excluded-subtrees. |
|
if (cert.has_name_constraints()) |
|
name_constraints_list_.push_back(&cert.name_constraints()); |
|
|
|
if (cert.has_basic_constraints()) { |
|
// Enforce CA=true if basicConstraints is present. This matches behavior of |
|
// other verifiers, and seems like a good thing to do to avoid a |
|
// certificate being used in the wrong context if it was specifically |
|
// marked as not being a CA. |
|
if (!cert.basic_constraints().is_ca) { |
|
errors->AddError(cert_errors::kBasicConstraintsIndicatesNotCa); |
|
} |
|
// From RFC 5937 section 3.2: |
|
// |
|
// If a basic constraints extension is associated with the trust |
|
// anchor and contains a pathLenConstraint value, set the |
|
// max_path_length state variable equal to the pathLenConstraint |
|
// value from the basic constraints extension. |
|
// |
|
if (cert.basic_constraints().has_path_len) { |
|
max_path_length_ = cert.basic_constraints().path_len; |
|
} |
|
} |
|
|
|
// From RFC 5937 section 2: |
|
// |
|
// Extensions may be marked critical or not critical. When trust anchor |
|
// constraints are enforced, clients MUST reject certification paths |
|
// containing a trust anchor with unrecognized critical extensions. |
|
VerifyNoUnconsumedCriticalExtensions(cert, errors); |
|
} |
|
|
|
void PathVerifier::ProcessRootCertificate(const ParsedCertificate& cert, |
|
const CertificateTrust& trust, |
|
const der::GeneralizedTime& time, |
|
KeyPurpose required_key_purpose, |
|
CertErrors* errors, |
|
bool* shortcircuit_chain_validation) { |
|
*shortcircuit_chain_validation = false; |
|
switch (trust.type) { |
|
case CertificateTrustType::UNSPECIFIED: |
|
case CertificateTrustType::TRUSTED_LEAF: |
|
// Doesn't chain to a trust anchor - implicitly distrusted |
|
errors->AddError(cert_errors::kCertIsNotTrustAnchor); |
|
*shortcircuit_chain_validation = true; |
|
break; |
|
case CertificateTrustType::DISTRUSTED: |
|
// Chains to an actively distrusted certificate. |
|
errors->AddError(cert_errors::kDistrustedByTrustStore); |
|
*shortcircuit_chain_validation = true; |
|
break; |
|
case CertificateTrustType::TRUSTED_ANCHOR: |
|
case CertificateTrustType::TRUSTED_ANCHOR_OR_LEAF: |
|
break; |
|
} |
|
if (*shortcircuit_chain_validation) |
|
return; |
|
|
|
if (trust.enforce_anchor_expiry) { |
|
VerifyTimeValidity(cert, time, errors); |
|
} |
|
if (trust.enforce_anchor_constraints) { |
|
if (trust.require_anchor_basic_constraints && |
|
!cert.has_basic_constraints()) { |
|
switch (cert.tbs().version) { |
|
case CertificateVersion::V1: |
|
case CertificateVersion::V2: |
|
break; |
|
case CertificateVersion::V3: |
|
errors->AddError(cert_errors::kMissingBasicConstraints); |
|
break; |
|
} |
|
} |
|
ApplyTrustAnchorConstraints(cert, required_key_purpose, errors); |
|
} |
|
|
|
// Use the certificate's SPKI and subject when verifying the next certificate. |
|
working_public_key_ = ParseAndCheckPublicKey(cert.tbs().spki_tlv, errors); |
|
working_normalized_issuer_name_ = cert.normalized_subject(); |
|
} |
|
|
|
void PathVerifier::ProcessSingleCertChain(const ParsedCertificate& cert, |
|
const CertificateTrust& trust, |
|
const der::GeneralizedTime& time, |
|
KeyPurpose required_key_purpose, |
|
CertErrors* errors) { |
|
switch (trust.type) { |
|
case CertificateTrustType::UNSPECIFIED: |
|
case CertificateTrustType::TRUSTED_ANCHOR: |
|
// Target doesn't have a chain and isn't a directly trusted leaf - |
|
// implicitly distrusted. |
|
errors->AddError(cert_errors::kCertIsNotTrustAnchor); |
|
return; |
|
case CertificateTrustType::DISTRUSTED: |
|
// Target is directly distrusted. |
|
errors->AddError(cert_errors::kDistrustedByTrustStore); |
|
return; |
|
case CertificateTrustType::TRUSTED_LEAF: |
|
case CertificateTrustType::TRUSTED_ANCHOR_OR_LEAF: |
|
break; |
|
} |
|
|
|
// Check the public key for the target certificate regardless of whether |
|
// `require_leaf_selfsigned` is true. This matches the check in WrapUp and |
|
// fulfills the documented behavior of the IsPublicKeyAcceptable delegate. |
|
ParseAndCheckPublicKey(cert.tbs().spki_tlv, errors); |
|
|
|
if (trust.require_leaf_selfsigned) { |
|
if (!VerifyCertificateIsSelfSigned(cert, delegate_->GetVerifyCache(), |
|
errors)) { |
|
// VerifyCertificateIsSelfSigned should have added an error, but just |
|
// double check to be safe. |
|
if (!errors->ContainsAnyErrorWithSeverity(CertError::SEVERITY_HIGH)) { |
|
errors->AddError(cert_errors::kInternalError); |
|
} |
|
return; |
|
} |
|
} |
|
|
|
// There is no standard for what it means to verify a directly trusted leaf |
|
// certificate, so this is basically just checking common sense things that |
|
// also mirror what we observed to be enforced with the Operating System |
|
// native verifiers. |
|
VerifyTimeValidity(cert, time, errors); |
|
VerifyExtendedKeyUsage(cert, required_key_purpose, errors, |
|
/*is_target_cert=*/true, |
|
/*is_target_cert_issuer=*/false); |
|
|
|
// Checking for unknown critical extensions matches Windows, but is stricter |
|
// than the Mac verifier. |
|
VerifyNoUnconsumedCriticalExtensions(cert, errors); |
|
} |
|
|
|
bssl::UniquePtr<EVP_PKEY> PathVerifier::ParseAndCheckPublicKey( |
|
const der::Input& spki, |
|
CertErrors* errors) { |
|
// Parse the public key. |
|
bssl::UniquePtr<EVP_PKEY> pkey; |
|
if (!ParsePublicKey(spki, &pkey)) { |
|
errors->AddError(cert_errors::kFailedParsingSpki); |
|
return nullptr; |
|
} |
|
|
|
// Check if the key is acceptable by the delegate. |
|
if (!delegate_->IsPublicKeyAcceptable(pkey.get(), errors)) |
|
errors->AddError(cert_errors::kUnacceptablePublicKey); |
|
|
|
return pkey; |
|
} |
|
|
|
void PathVerifier::Run( |
|
const ParsedCertificateList& certs, |
|
const CertificateTrust& last_cert_trust, |
|
VerifyCertificateChainDelegate* delegate, |
|
const der::GeneralizedTime& time, |
|
KeyPurpose required_key_purpose, |
|
InitialExplicitPolicy initial_explicit_policy, |
|
const std::set<der::Input>& user_initial_policy_set, |
|
InitialPolicyMappingInhibit initial_policy_mapping_inhibit, |
|
InitialAnyPolicyInhibit initial_any_policy_inhibit, |
|
std::set<der::Input>* user_constrained_policy_set, |
|
CertPathErrors* errors) { |
|
// This implementation is structured to mimic the description of certificate |
|
// path verification given by RFC 5280 section 6.1. |
|
BSSL_CHECK(delegate); |
|
BSSL_CHECK(errors); |
|
|
|
delegate_ = delegate; |
|
|
|
// An empty chain is necessarily invalid. |
|
if (certs.empty()) { |
|
errors->GetOtherErrors()->AddError(cert_errors::kChainIsEmpty); |
|
return; |
|
} |
|
|
|
// Verifying a trusted leaf certificate isn't a well-specified operation, so |
|
// it's handled separately from the RFC 5280 defined verification process. |
|
if (certs.size() == 1) { |
|
ProcessSingleCertChain(*certs.front(), last_cert_trust, time, |
|
required_key_purpose, errors->GetErrorsForCert(0)); |
|
return; |
|
} |
|
|
|
// RFC 5280's "n" variable is the length of the path, which does not count |
|
// the trust anchor. (Although in practice it doesn't really change behaviors |
|
// if n is used in place of n+1). |
|
const size_t n = certs.size() - 1; |
|
|
|
valid_policy_graph_.Init(); |
|
|
|
// RFC 5280 section section 6.1.2: |
|
// |
|
// If initial-explicit-policy is set, then the initial value |
|
// [of explicit_policy] is 0, otherwise the initial value is n+1. |
|
explicit_policy_ = |
|
initial_explicit_policy == InitialExplicitPolicy::kTrue ? 0 : n + 1; |
|
|
|
// RFC 5280 section section 6.1.2: |
|
// |
|
// If initial-any-policy-inhibit is set, then the initial value |
|
// [of inhibit_anyPolicy] is 0, otherwise the initial value is n+1. |
|
inhibit_any_policy_ = |
|
initial_any_policy_inhibit == InitialAnyPolicyInhibit::kTrue ? 0 : n + 1; |
|
|
|
// RFC 5280 section section 6.1.2: |
|
// |
|
// If initial-policy-mapping-inhibit is set, then the initial value |
|
// [of policy_mapping] is 0, otherwise the initial value is n+1. |
|
policy_mapping_ = |
|
initial_policy_mapping_inhibit == InitialPolicyMappingInhibit::kTrue |
|
? 0 |
|
: n + 1; |
|
|
|
// RFC 5280 section section 6.1.2: |
|
// |
|
// max_path_length: this integer is initialized to n, ... |
|
max_path_length_ = n; |
|
|
|
// Iterate over all the certificates in the reverse direction: starting from |
|
// the root certificate and progressing towards the target certificate. |
|
// |
|
// * i=0 : Root certificate (i.e. trust anchor) |
|
// * i=1 : Certificate issued by root |
|
// * i=x : Certificate i=x is issued by certificate i=x-1 |
|
// * i=n : Target certificate. |
|
for (size_t i = 0; i < certs.size(); ++i) { |
|
const size_t index_into_certs = certs.size() - i - 1; |
|
|
|
// |is_target_cert| is true if the current certificate is the target |
|
// certificate being verified. The target certificate isn't necessarily an |
|
// end-entity certificate. |
|
const bool is_target_cert = index_into_certs == 0; |
|
const bool is_target_cert_issuer = index_into_certs == 1; |
|
const bool is_root_cert = i == 0; |
|
|
|
const ParsedCertificate& cert = *certs[index_into_certs]; |
|
|
|
// Output errors for the current certificate into an error bucket that is |
|
// associated with that certificate. |
|
CertErrors* cert_errors = errors->GetErrorsForCert(index_into_certs); |
|
|
|
if (is_root_cert) { |
|
bool shortcircuit_chain_validation = false; |
|
ProcessRootCertificate(cert, last_cert_trust, time, required_key_purpose, |
|
cert_errors, &shortcircuit_chain_validation); |
|
if (shortcircuit_chain_validation) { |
|
// Chains that don't start from a trusted root should short-circuit the |
|
// rest of the verification, as accumulating more errors from untrusted |
|
// certificates would not be meaningful. |
|
BSSL_CHECK(cert_errors->ContainsAnyErrorWithSeverity( |
|
CertError::SEVERITY_HIGH)); |
|
return; |
|
} |
|
|
|
// Don't do any other checks for root certificates. |
|
continue; |
|
} |
|
|
|
bool shortcircuit_chain_validation = false; |
|
// Per RFC 5280 section 6.1: |
|
// * Do basic processing for each certificate |
|
// * If it is the last certificate in the path (target certificate) |
|
// - Then run "Wrap up" |
|
// - Otherwise run "Prepare for Next cert" |
|
BasicCertificateProcessing(cert, is_target_cert, is_target_cert_issuer, |
|
time, required_key_purpose, cert_errors, |
|
&shortcircuit_chain_validation); |
|
if (shortcircuit_chain_validation) { |
|
// Signature errors should short-circuit the rest of the verification, as |
|
// accumulating more errors from untrusted certificates would not be |
|
// meaningful. |
|
BSSL_CHECK( |
|
cert_errors->ContainsAnyErrorWithSeverity(CertError::SEVERITY_HIGH)); |
|
return; |
|
} |
|
if (!is_target_cert) { |
|
PrepareForNextCertificate(cert, cert_errors); |
|
} else { |
|
WrapUp(cert, required_key_purpose, user_initial_policy_set, cert_errors); |
|
} |
|
} |
|
|
|
if (user_constrained_policy_set) { |
|
*user_constrained_policy_set = user_constrained_policy_set_; |
|
} |
|
|
|
// TODO(eroman): RFC 5280 forbids duplicate certificates per section 6.1: |
|
// |
|
// A certificate MUST NOT appear more than once in a prospective |
|
// certification path. |
|
} |
|
|
|
} // namespace |
|
|
|
VerifyCertificateChainDelegate::~VerifyCertificateChainDelegate() = default; |
|
|
|
void VerifyCertificateChain( |
|
const ParsedCertificateList& certs, |
|
const CertificateTrust& last_cert_trust, |
|
VerifyCertificateChainDelegate* delegate, |
|
const der::GeneralizedTime& time, |
|
KeyPurpose required_key_purpose, |
|
InitialExplicitPolicy initial_explicit_policy, |
|
const std::set<der::Input>& user_initial_policy_set, |
|
InitialPolicyMappingInhibit initial_policy_mapping_inhibit, |
|
InitialAnyPolicyInhibit initial_any_policy_inhibit, |
|
std::set<der::Input>* user_constrained_policy_set, |
|
CertPathErrors* errors) { |
|
PathVerifier verifier; |
|
verifier.Run(certs, last_cert_trust, delegate, time, required_key_purpose, |
|
initial_explicit_policy, user_initial_policy_set, |
|
initial_policy_mapping_inhibit, initial_any_policy_inhibit, |
|
user_constrained_policy_set, errors); |
|
} |
|
|
|
bool VerifyCertificateIsSelfSigned(const ParsedCertificate& cert, |
|
SignatureVerifyCache* cache, |
|
CertErrors* errors) { |
|
if (cert.normalized_subject() != cert.normalized_issuer()) { |
|
if (errors) { |
|
errors->AddError(cert_errors::kSubjectDoesNotMatchIssuer); |
|
} |
|
return false; |
|
} |
|
|
|
// Note that we do not restrict the available algorithms when determining if |
|
// something is a self-signed cert. The signature isn't very important on a |
|
// self-signed cert so just allow any supported algorithm here, to avoid |
|
// breakage. |
|
if (!cert.signature_algorithm().has_value()) { |
|
if (errors) { |
|
errors->AddError(cert_errors::kUnacceptableSignatureAlgorithm); |
|
} |
|
return false; |
|
} |
|
|
|
if (!VerifySignedData(*cert.signature_algorithm(), cert.tbs_certificate_tlv(), |
|
cert.signature_value(), cert.tbs().spki_tlv, cache)) { |
|
if (errors) { |
|
errors->AddError(cert_errors::kVerifySignedDataFailed); |
|
} |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
} // namespace net
|
|
|