Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2463 lines
93 KiB
2463 lines
93 KiB
// Copyright 2016 The Chromium Authors |
|
// Use of this source code is governed by a BSD-style license that can be |
|
// found in the LICENSE file. |
|
|
|
#include "path_builder.h" |
|
|
|
#include <algorithm> |
|
|
|
#include "fillins/path_service.h" |
|
#include "fillins/file_util.h" |
|
|
|
#include "cert_error_params.h" |
|
#include "cert_issuer_source_static.h" |
|
#include "common_cert_errors.h" |
|
#include "mock_signature_verify_cache.h" |
|
#include "parsed_certificate.h" |
|
#include "simple_path_builder_delegate.h" |
|
#include "test_helpers.h" |
|
#include "trust_store_collection.h" |
|
#include "trust_store_in_memory.h" |
|
#include "verify_certificate_chain.h" |
|
#include "input.h" |
|
|
|
#include "testdata/test_certificate_data.h" |
|
#include <gmock/gmock.h> |
|
#include <gtest/gtest.h> |
|
#include <openssl/pool.h> |
|
|
|
namespace bssl { |
|
|
|
// TODO(crbug.com/634443): Assert the errors for each ResultPath. |
|
|
|
namespace { |
|
|
|
using ::testing::_; |
|
using ::testing::ElementsAre; |
|
using ::testing::Exactly; |
|
using ::testing::Invoke; |
|
using ::testing::NiceMock; |
|
using ::testing::Return; |
|
using ::testing::SaveArg; |
|
using ::testing::SetArgPointee; |
|
using ::testing::StrictMock; |
|
|
|
class TestPathBuilderDelegate : public SimplePathBuilderDelegate { |
|
public: |
|
TestPathBuilderDelegate(size_t min_rsa_modulus_length_bits, |
|
DigestPolicy digest_policy) |
|
: SimplePathBuilderDelegate(min_rsa_modulus_length_bits, digest_policy) {} |
|
|
|
bool IsDeadlineExpired() override { return deadline_is_expired_; } |
|
|
|
void SetDeadlineExpiredForTesting(bool deadline_is_expired) { |
|
deadline_is_expired_ = deadline_is_expired; |
|
} |
|
|
|
SignatureVerifyCache* GetVerifyCache() override { |
|
return use_signature_cache_ ? &cache_ : nullptr; |
|
} |
|
|
|
void ActivateCache() { use_signature_cache_ = true; } |
|
|
|
void DeActivateCache() { use_signature_cache_ = false; } |
|
|
|
MockSignatureVerifyCache* GetMockVerifyCache() { return &cache_; } |
|
|
|
private: |
|
bool deadline_is_expired_ = false; |
|
bool use_signature_cache_ = false; |
|
MockSignatureVerifyCache cache_; |
|
}; |
|
|
|
// AsyncCertIssuerSourceStatic always returns its certs asynchronously. |
|
class AsyncCertIssuerSourceStatic : public CertIssuerSource { |
|
public: |
|
class StaticAsyncRequest : public Request { |
|
public: |
|
explicit StaticAsyncRequest(ParsedCertificateList&& issuers) { |
|
issuers_.swap(issuers); |
|
issuers_iter_ = issuers_.begin(); |
|
} |
|
|
|
StaticAsyncRequest(const StaticAsyncRequest&) = delete; |
|
StaticAsyncRequest& operator=(const StaticAsyncRequest&) = delete; |
|
|
|
~StaticAsyncRequest() override = default; |
|
|
|
void GetNext(ParsedCertificateList* out_certs) override { |
|
if (issuers_iter_ != issuers_.end()) |
|
out_certs->push_back(std::move(*issuers_iter_++)); |
|
} |
|
|
|
ParsedCertificateList issuers_; |
|
ParsedCertificateList::iterator issuers_iter_; |
|
}; |
|
|
|
~AsyncCertIssuerSourceStatic() override = default; |
|
|
|
void SetAsyncGetCallback(std::function<void()> closure) { |
|
async_get_callback_ = std::move(closure); |
|
} |
|
|
|
void AddCert(std::shared_ptr<const ParsedCertificate> cert) { |
|
static_cert_issuer_source_.AddCert(std::move(cert)); |
|
} |
|
|
|
void SyncGetIssuersOf(const ParsedCertificate* cert, |
|
ParsedCertificateList* issuers) override {} |
|
void AsyncGetIssuersOf(const ParsedCertificate* cert, |
|
std::unique_ptr<Request>* out_req) override { |
|
num_async_gets_++; |
|
ParsedCertificateList issuers; |
|
static_cert_issuer_source_.SyncGetIssuersOf(cert, &issuers); |
|
auto req = std::make_unique<StaticAsyncRequest>(std::move(issuers)); |
|
*out_req = std::move(req); |
|
if (async_get_callback_) { |
|
async_get_callback_(); |
|
} |
|
} |
|
int num_async_gets() const { return num_async_gets_; } |
|
|
|
private: |
|
CertIssuerSourceStatic static_cert_issuer_source_; |
|
|
|
int num_async_gets_ = 0; |
|
std::function<void()> async_get_callback_ = nullptr; |
|
}; |
|
|
|
::testing::AssertionResult ReadTestPem(const std::string& file_name, |
|
const std::string& block_name, |
|
std::string* result) { |
|
const PemBlockMapping mappings[] = { |
|
{block_name.c_str(), result}, |
|
}; |
|
|
|
return ReadTestDataFromPemFile(file_name, mappings); |
|
} |
|
|
|
::testing::AssertionResult ReadTestCert( |
|
const std::string& file_name, |
|
std::shared_ptr<const ParsedCertificate>* result) { |
|
std::string der; |
|
::testing::AssertionResult r = ReadTestPem( |
|
"testdata/ssl/certificates/" + file_name, "CERTIFICATE", &der); |
|
if (!r) |
|
return r; |
|
CertErrors errors; |
|
*result = ParsedCertificate::Create( |
|
bssl::UniquePtr<CRYPTO_BUFFER>(CRYPTO_BUFFER_new( |
|
reinterpret_cast<const uint8_t*>(der.data()), der.size(), nullptr)), |
|
{}, &errors); |
|
if (!*result) { |
|
return ::testing::AssertionFailure() |
|
<< "ParseCertificate::Create() failed:\n" |
|
<< errors.ToDebugString(); |
|
} |
|
return ::testing::AssertionSuccess(); |
|
} |
|
|
|
class PathBuilderMultiRootTest : public ::testing::Test { |
|
public: |
|
PathBuilderMultiRootTest() |
|
: delegate_(1024, TestPathBuilderDelegate::DigestPolicy::kWeakAllowSha1) { |
|
} |
|
|
|
void SetUp() override { |
|
ASSERT_TRUE(ReadTestCert("multi-root-A-by-B.pem", &a_by_b_)); |
|
ASSERT_TRUE(ReadTestCert("multi-root-B-by-C.pem", &b_by_c_)); |
|
ASSERT_TRUE(ReadTestCert("multi-root-B-by-F.pem", &b_by_f_)); |
|
ASSERT_TRUE(ReadTestCert("multi-root-C-by-D.pem", &c_by_d_)); |
|
ASSERT_TRUE(ReadTestCert("multi-root-C-by-E.pem", &c_by_e_)); |
|
ASSERT_TRUE(ReadTestCert("multi-root-D-by-D.pem", &d_by_d_)); |
|
ASSERT_TRUE(ReadTestCert("multi-root-E-by-E.pem", &e_by_e_)); |
|
ASSERT_TRUE(ReadTestCert("multi-root-F-by-E.pem", &f_by_e_)); |
|
} |
|
|
|
protected: |
|
std::shared_ptr<const ParsedCertificate> a_by_b_, b_by_c_, b_by_f_, c_by_d_, |
|
c_by_e_, d_by_d_, e_by_e_, f_by_e_; |
|
|
|
TestPathBuilderDelegate delegate_; |
|
der::GeneralizedTime time_ = {2017, 3, 1, 0, 0, 0}; |
|
|
|
const InitialExplicitPolicy initial_explicit_policy_ = |
|
InitialExplicitPolicy::kFalse; |
|
const std::set<der::Input> user_initial_policy_set_ = { |
|
der::Input(kAnyPolicyOid)}; |
|
const InitialPolicyMappingInhibit initial_policy_mapping_inhibit_ = |
|
InitialPolicyMappingInhibit::kFalse; |
|
const InitialAnyPolicyInhibit initial_any_policy_inhibit_ = |
|
InitialAnyPolicyInhibit::kFalse; |
|
}; |
|
|
|
// Tests when the target cert has the same name and key as a trust anchor, |
|
// however is signed by a different trust anchor. This should successfully build |
|
// a path, however the trust anchor will be the signer of this cert. |
|
// |
|
// (This test is very similar to TestEndEntityHasSameNameAndSpkiAsTrustAnchor |
|
// but with different data; also in this test the target cert itself is in the |
|
// trust store). |
|
TEST_F(PathBuilderMultiRootTest, TargetHasNameAndSpkiOfTrustAnchor) { |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(a_by_b_); |
|
trust_store.AddTrustAnchor(b_by_f_); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
ASSERT_TRUE(result.HasValidPath()); |
|
const auto& path = *result.GetBestValidPath(); |
|
ASSERT_EQ(2U, path.certs.size()); |
|
EXPECT_EQ(a_by_b_, path.certs[0]); |
|
EXPECT_EQ(b_by_f_, path.certs[1]); |
|
} |
|
|
|
// If the target cert is has the same name and key as a trust anchor, however |
|
// is NOT itself signed by a trust anchor, it fails. Although the provided SPKI |
|
// is trusted, the certificate contents cannot be verified. |
|
TEST_F(PathBuilderMultiRootTest, TargetWithSameNameAsTrustAnchorFails) { |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(a_by_b_); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_FALSE(result.HasValidPath()); |
|
EXPECT_EQ(1U, result.max_depth_seen); |
|
} |
|
|
|
// Test a failed path building when the trust anchor is provided as a |
|
// supplemental certificate. Conceptually the following paths could be built: |
|
// |
|
// B(C) <- C(D) <- [Trust anchor D] |
|
// B(C) <- C(D) <- D(D) <- [Trust anchor D] |
|
// |
|
// However the second one is extraneous given the shorter path. |
|
TEST_F(PathBuilderMultiRootTest, SelfSignedTrustAnchorSupplementalCert) { |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(d_by_d_); |
|
|
|
// The (extraneous) trust anchor D(D) is supplied as a certificate, as is the |
|
// intermediate needed for path building C(D). |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(d_by_d_); |
|
sync_certs.AddCert(c_by_d_); |
|
|
|
// C(D) is not valid at this time, so path building will fail. |
|
der::GeneralizedTime expired_time = {2016, 1, 1, 0, 0, 0}; |
|
|
|
CertPathBuilder path_builder( |
|
b_by_c_, &trust_store, &delegate_, expired_time, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_FALSE(result.HasValidPath()); |
|
ASSERT_EQ(1U, result.paths.size()); |
|
|
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
const auto& path0 = *result.paths[0]; |
|
ASSERT_EQ(3U, path0.certs.size()); |
|
EXPECT_EQ(b_by_c_, path0.certs[0]); |
|
EXPECT_EQ(c_by_d_, path0.certs[1]); |
|
EXPECT_EQ(d_by_d_, path0.certs[2]); |
|
} |
|
|
|
// Test verifying a certificate that is a trust anchor. |
|
TEST_F(PathBuilderMultiRootTest, TargetIsSelfSignedTrustAnchor) { |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(e_by_e_); |
|
// This is not necessary for the test, just an extra... |
|
trust_store.AddTrustAnchor(f_by_e_); |
|
|
|
CertPathBuilder path_builder( |
|
e_by_e_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
ASSERT_TRUE(result.HasValidPath()); |
|
|
|
// Verifying a trusted leaf certificate is not permitted, however this |
|
// certificate is self-signed, and can chain to itself. |
|
const auto& path = *result.GetBestValidPath(); |
|
ASSERT_EQ(2U, path.certs.size()); |
|
EXPECT_EQ(e_by_e_, path.certs[0]); |
|
EXPECT_EQ(e_by_e_, path.certs[1]); |
|
} |
|
|
|
// If the target cert is directly issued by a trust anchor, it should verify |
|
// without any intermediate certs being provided. |
|
TEST_F(PathBuilderMultiRootTest, TargetDirectlySignedByTrustAnchor) { |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(b_by_f_); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
ASSERT_TRUE(result.HasValidPath()); |
|
const auto& path = *result.GetBestValidPath(); |
|
ASSERT_EQ(2U, path.certs.size()); |
|
EXPECT_EQ(a_by_b_, path.certs[0]); |
|
EXPECT_EQ(b_by_f_, path.certs[1]); |
|
} |
|
|
|
// Test that async cert queries are not made if the path can be successfully |
|
// built with synchronously available certs. |
|
TEST_F(PathBuilderMultiRootTest, TriesSyncFirst) { |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(e_by_e_); |
|
|
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(b_by_f_); |
|
sync_certs.AddCert(f_by_e_); |
|
|
|
AsyncCertIssuerSourceStatic async_certs; |
|
async_certs.AddCert(b_by_c_); |
|
async_certs.AddCert(c_by_e_); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&async_certs); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_TRUE(result.HasValidPath()); |
|
EXPECT_EQ(0, async_certs.num_async_gets()); |
|
} |
|
|
|
// If async queries are needed, all async sources will be queried |
|
// simultaneously. |
|
TEST_F(PathBuilderMultiRootTest, TestAsyncSimultaneous) { |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(e_by_e_); |
|
|
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(b_by_c_); |
|
sync_certs.AddCert(b_by_f_); |
|
|
|
AsyncCertIssuerSourceStatic async_certs1; |
|
async_certs1.AddCert(c_by_e_); |
|
|
|
AsyncCertIssuerSourceStatic async_certs2; |
|
async_certs2.AddCert(f_by_e_); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&async_certs1); |
|
path_builder.AddCertIssuerSource(&async_certs2); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_TRUE(result.HasValidPath()); |
|
EXPECT_EQ(1, async_certs1.num_async_gets()); |
|
EXPECT_EQ(1, async_certs2.num_async_gets()); |
|
} |
|
|
|
// Test that PathBuilder does not generate longer paths than necessary if one of |
|
// the supplied certs is itself a trust anchor. |
|
TEST_F(PathBuilderMultiRootTest, TestLongChain) { |
|
// Both D(D) and C(D) are trusted roots. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(d_by_d_); |
|
trust_store.AddTrustAnchor(c_by_d_); |
|
|
|
// Certs B(C), and C(D) are all supplied. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(b_by_c_); |
|
sync_certs.AddCert(c_by_d_); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
ASSERT_TRUE(result.HasValidPath()); |
|
|
|
// The result path should be A(B) <- B(C) <- C(D) |
|
// not the longer but also valid A(B) <- B(C) <- C(D) <- D(D) |
|
EXPECT_EQ(3U, result.GetBestValidPath()->certs.size()); |
|
} |
|
|
|
// Test that PathBuilder will backtrack and try a different path if the first |
|
// one doesn't work out. |
|
TEST_F(PathBuilderMultiRootTest, TestBacktracking) { |
|
// Only D(D) is a trusted root. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(d_by_d_); |
|
|
|
// Certs B(F) and F(E) are supplied synchronously, thus the path |
|
// A(B) <- B(F) <- F(E) should be built first, though it won't verify. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(b_by_f_); |
|
sync_certs.AddCert(f_by_e_); |
|
|
|
// Certs B(C), and C(D) are supplied asynchronously, so the path |
|
// A(B) <- B(C) <- C(D) <- D(D) should be tried second. |
|
AsyncCertIssuerSourceStatic async_certs; |
|
async_certs.AddCert(b_by_c_); |
|
async_certs.AddCert(c_by_d_); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
path_builder.AddCertIssuerSource(&async_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
ASSERT_TRUE(result.HasValidPath()); |
|
|
|
// The partial path should be returned even though it didn't reach a trust |
|
// anchor. |
|
ASSERT_EQ(2U, result.paths.size()); |
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[0]->certs.size()); |
|
EXPECT_EQ(a_by_b_, result.paths[0]->certs[0]); |
|
EXPECT_EQ(b_by_f_, result.paths[0]->certs[1]); |
|
EXPECT_EQ(f_by_e_, result.paths[0]->certs[2]); |
|
|
|
// The result path should be A(B) <- B(C) <- C(D) <- D(D) |
|
EXPECT_EQ(1U, result.best_result_index); |
|
EXPECT_TRUE(result.paths[1]->IsValid()); |
|
const auto& path = *result.GetBestValidPath(); |
|
ASSERT_EQ(4U, path.certs.size()); |
|
EXPECT_EQ(a_by_b_, path.certs[0]); |
|
EXPECT_EQ(b_by_c_, path.certs[1]); |
|
EXPECT_EQ(c_by_d_, path.certs[2]); |
|
EXPECT_EQ(d_by_d_, path.certs[3]); |
|
} |
|
|
|
// Test that if no path to a trust anchor was found, the partial path is |
|
// returned. |
|
TEST_F(PathBuilderMultiRootTest, TestOnlyPartialPathResult) { |
|
TrustStoreInMemory trust_store; |
|
|
|
// Certs B(F) and F(E) are supplied synchronously, thus the path |
|
// A(B) <- B(F) <- F(E) should be built first, though it won't verify. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(b_by_f_); |
|
sync_certs.AddCert(f_by_e_); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_FALSE(result.HasValidPath()); |
|
|
|
// The partial path should be returned even though it didn't reach a trust |
|
// anchor. |
|
ASSERT_EQ(1U, result.paths.size()); |
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[0]->certs.size()); |
|
EXPECT_EQ(a_by_b_, result.paths[0]->certs[0]); |
|
EXPECT_EQ(b_by_f_, result.paths[0]->certs[1]); |
|
EXPECT_EQ(f_by_e_, result.paths[0]->certs[2]); |
|
} |
|
|
|
// Test that if two partial paths are returned, the first is marked as the best |
|
// path. |
|
TEST_F(PathBuilderMultiRootTest, TestTwoPartialPathResults) { |
|
TrustStoreInMemory trust_store; |
|
|
|
// Certs B(F) and F(E) are supplied synchronously, thus the path |
|
// A(B) <- B(F) <- F(E) should be built first, though it won't verify. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(b_by_f_); |
|
sync_certs.AddCert(f_by_e_); |
|
|
|
// Certs B(C), and C(D) are supplied asynchronously, so the path |
|
// A(B) <- B(C) <- C(D) <- D(D) should be tried second. |
|
AsyncCertIssuerSourceStatic async_certs; |
|
async_certs.AddCert(b_by_c_); |
|
async_certs.AddCert(c_by_d_); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
path_builder.AddCertIssuerSource(&async_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_FALSE(result.HasValidPath()); |
|
|
|
// First partial path found should be marked as the best one. |
|
EXPECT_EQ(0U, result.best_result_index); |
|
|
|
ASSERT_EQ(2U, result.paths.size()); |
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[0]->certs.size()); |
|
EXPECT_EQ(a_by_b_, result.paths[0]->certs[0]); |
|
EXPECT_EQ(b_by_f_, result.paths[0]->certs[1]); |
|
EXPECT_EQ(f_by_e_, result.paths[0]->certs[2]); |
|
|
|
EXPECT_FALSE(result.paths[1]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[1]->certs.size()); |
|
EXPECT_EQ(a_by_b_, result.paths[1]->certs[0]); |
|
EXPECT_EQ(b_by_c_, result.paths[1]->certs[1]); |
|
EXPECT_EQ(c_by_d_, result.paths[1]->certs[2]); |
|
} |
|
|
|
// Test that if no valid path is found, and the first invalid path is a partial |
|
// path, but the 2nd invalid path ends with a cert with a trust record, the 2nd |
|
// path should be preferred. |
|
TEST_F(PathBuilderMultiRootTest, TestDistrustedPathPreferredOverPartialPath) { |
|
// Only D(D) has a trust record, but it is distrusted. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddDistrustedCertificateForTest(d_by_d_); |
|
|
|
// Certs B(F) and F(E) are supplied synchronously, thus the path |
|
// A(B) <- B(F) <- F(E) should be built first, though it won't verify. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(b_by_f_); |
|
sync_certs.AddCert(f_by_e_); |
|
|
|
// Certs B(C), and C(D) are supplied asynchronously, so the path |
|
// A(B) <- B(C) <- C(D) <- D(D) should be tried second. |
|
AsyncCertIssuerSourceStatic async_certs; |
|
async_certs.AddCert(b_by_c_); |
|
async_certs.AddCert(c_by_d_); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
path_builder.AddCertIssuerSource(&async_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_FALSE(result.HasValidPath()); |
|
|
|
// The partial path should be returned even though it didn't reach a trust |
|
// anchor. |
|
ASSERT_EQ(2U, result.paths.size()); |
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[0]->certs.size()); |
|
EXPECT_EQ(a_by_b_, result.paths[0]->certs[0]); |
|
EXPECT_EQ(b_by_f_, result.paths[0]->certs[1]); |
|
EXPECT_EQ(f_by_e_, result.paths[0]->certs[2]); |
|
|
|
// The result path should be A(B) <- B(C) <- C(D) <- D(D) |
|
EXPECT_EQ(1U, result.best_result_index); |
|
EXPECT_FALSE(result.paths[1]->IsValid()); |
|
const auto& path = *result.GetBestPathPossiblyInvalid(); |
|
ASSERT_EQ(4U, path.certs.size()); |
|
EXPECT_EQ(a_by_b_, path.certs[0]); |
|
EXPECT_EQ(b_by_c_, path.certs[1]); |
|
EXPECT_EQ(c_by_d_, path.certs[2]); |
|
EXPECT_EQ(d_by_d_, path.certs[3]); |
|
} |
|
|
|
// Test that whichever order CertIssuerSource returns the issuers, the path |
|
// building still succeeds. |
|
TEST_F(PathBuilderMultiRootTest, TestCertIssuerOrdering) { |
|
// Only D(D) is a trusted root. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(d_by_d_); |
|
|
|
for (bool reverse_order : {false, true}) { |
|
SCOPED_TRACE(reverse_order); |
|
std::vector<std::shared_ptr<const ParsedCertificate>> certs = { |
|
b_by_c_, b_by_f_, f_by_e_, c_by_d_, c_by_e_}; |
|
CertIssuerSourceStatic sync_certs; |
|
if (reverse_order) { |
|
for (auto it = certs.rbegin(); it != certs.rend(); ++it) |
|
sync_certs.AddCert(*it); |
|
} else { |
|
for (const auto& cert : certs) |
|
sync_certs.AddCert(cert); |
|
} |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
ASSERT_TRUE(result.HasValidPath()); |
|
|
|
// The result path should be A(B) <- B(C) <- C(D) <- D(D) |
|
const auto& path = *result.GetBestValidPath(); |
|
ASSERT_EQ(4U, path.certs.size()); |
|
EXPECT_EQ(a_by_b_, path.certs[0]); |
|
EXPECT_EQ(b_by_c_, path.certs[1]); |
|
EXPECT_EQ(c_by_d_, path.certs[2]); |
|
EXPECT_EQ(d_by_d_, path.certs[3]); |
|
} |
|
} |
|
|
|
TEST_F(PathBuilderMultiRootTest, TestIterationLimit) { |
|
// D(D) is the trust root. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(d_by_d_); |
|
|
|
// Certs B(C) and C(D) are supplied. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(b_by_c_); |
|
sync_certs.AddCert(c_by_d_); |
|
|
|
for (const bool insufficient_limit : {true, false}) { |
|
SCOPED_TRACE(insufficient_limit); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
if (insufficient_limit) { |
|
// A limit of one is insufficient to build a path in this case. Therefore |
|
// building is expected to fail in this case. |
|
path_builder.SetIterationLimit(1); |
|
} else { |
|
// The other tests in this file exercise the case that |SetIterationLimit| |
|
// isn't called. Therefore set a sufficient limit for the path to be |
|
// found. |
|
path_builder.SetIterationLimit(5); |
|
} |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_EQ(!insufficient_limit, result.HasValidPath()); |
|
EXPECT_EQ(insufficient_limit, result.exceeded_iteration_limit); |
|
|
|
if (insufficient_limit) { |
|
EXPECT_EQ(2U, result.iteration_count); |
|
} else { |
|
EXPECT_EQ(3U, result.iteration_count); |
|
} |
|
} |
|
} |
|
|
|
TEST_F(PathBuilderMultiRootTest, TestTrivialDeadline) { |
|
// C(D) is the trust root. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(c_by_d_); |
|
|
|
// Cert B(C) is supplied. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(b_by_c_); |
|
|
|
for (const bool insufficient_limit : {true, false}) { |
|
SCOPED_TRACE(insufficient_limit); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
// Make the deadline either expired or not. |
|
delegate_.SetDeadlineExpiredForTesting(insufficient_limit); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_EQ(!insufficient_limit, result.HasValidPath()); |
|
EXPECT_EQ(insufficient_limit, result.exceeded_deadline); |
|
EXPECT_EQ(delegate_.IsDeadlineExpired(), insufficient_limit); |
|
|
|
if (insufficient_limit) { |
|
ASSERT_EQ(1U, result.paths.size()); |
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(1U, result.paths[0]->certs.size()); |
|
EXPECT_EQ(a_by_b_, result.paths[0]->certs[0]); |
|
EXPECT_TRUE(result.paths[0]->errors.ContainsError( |
|
cert_errors::kDeadlineExceeded)); |
|
} else { |
|
ASSERT_EQ(1U, result.paths.size()); |
|
EXPECT_TRUE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[0]->certs.size()); |
|
EXPECT_EQ(a_by_b_, result.paths[0]->certs[0]); |
|
EXPECT_EQ(b_by_c_, result.paths[0]->certs[1]); |
|
EXPECT_EQ(c_by_d_, result.paths[0]->certs[2]); |
|
} |
|
} |
|
} |
|
|
|
TEST_F(PathBuilderMultiRootTest, TestVerifyCache) { |
|
// C(D) is the trust root. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(c_by_d_); |
|
|
|
// Cert B(C) is supplied. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(b_by_c_); |
|
|
|
// Test Activation / DeActivation of the cache. |
|
EXPECT_FALSE(delegate_.GetVerifyCache()); |
|
delegate_.ActivateCache(); |
|
EXPECT_TRUE(delegate_.GetVerifyCache()); |
|
delegate_.DeActivateCache(); |
|
EXPECT_FALSE(delegate_.GetVerifyCache()); |
|
delegate_.ActivateCache(); |
|
EXPECT_TRUE(delegate_.GetVerifyCache()); |
|
for (size_t i = 0; i < 3; i++) { |
|
SCOPED_TRACE(i); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
ASSERT_EQ(1U, result.paths.size()); |
|
EXPECT_TRUE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[0]->certs.size()); |
|
EXPECT_EQ(a_by_b_, result.paths[0]->certs[0]); |
|
EXPECT_EQ(b_by_c_, result.paths[0]->certs[1]); |
|
EXPECT_EQ(c_by_d_, result.paths[0]->certs[2]); |
|
|
|
// The path is 3 certificates long, so requires 2 distinct signature |
|
// verifications. The first time through the loop will cause 2 cache misses |
|
// and stores, subsequent iterations will repeat the same verifications, |
|
// causing 2 cache hits. |
|
EXPECT_EQ(delegate_.GetMockVerifyCache()->CacheHits(), i * 2); |
|
EXPECT_EQ(delegate_.GetMockVerifyCache()->CacheMisses(), 2U); |
|
EXPECT_EQ(delegate_.GetMockVerifyCache()->CacheStores(), 2U); |
|
} |
|
} |
|
|
|
TEST_F(PathBuilderMultiRootTest, TestDeadline) { |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(d_by_d_); |
|
|
|
// Cert B(C) is supplied statically. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(b_by_c_); |
|
|
|
// Cert C(D) is supplied asynchronously and will expire the deadline before |
|
// returning the async result. |
|
AsyncCertIssuerSourceStatic async_certs; |
|
async_certs.AddCert(c_by_d_); |
|
async_certs.SetAsyncGetCallback( |
|
[&] { delegate_.SetDeadlineExpiredForTesting(true); }); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
path_builder.AddCertIssuerSource(&async_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_FALSE(result.HasValidPath()); |
|
EXPECT_TRUE(result.exceeded_deadline); |
|
EXPECT_TRUE(delegate_.IsDeadlineExpired()); |
|
|
|
// The chain returned should end in c_by_d_, since the deadline would only be |
|
// checked again after the async results had been checked (since |
|
// AsyncCertIssuerSourceStatic makes the async results available immediately.) |
|
ASSERT_EQ(1U, result.paths.size()); |
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[0]->certs.size()); |
|
EXPECT_EQ(a_by_b_, result.paths[0]->certs[0]); |
|
EXPECT_EQ(b_by_c_, result.paths[0]->certs[1]); |
|
EXPECT_EQ(c_by_d_, result.paths[0]->certs[2]); |
|
EXPECT_TRUE( |
|
result.paths[0]->errors.ContainsError(cert_errors::kDeadlineExceeded)); |
|
} |
|
|
|
TEST_F(PathBuilderMultiRootTest, TestDepthLimit) { |
|
// D(D) is the trust root. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(d_by_d_); |
|
|
|
// Certs B(C) and C(D) are supplied. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(b_by_c_); |
|
sync_certs.AddCert(c_by_d_); |
|
|
|
for (const bool insufficient_limit : {true, false}) { |
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
if (insufficient_limit) { |
|
// A limit of depth equal to 2 is insufficient to build the path. |
|
// Therefore, building is expected to fail. |
|
path_builder.SetDepthLimit(2); |
|
} else { |
|
// The other tests in this file exercise the case that |SetDepthLimit| |
|
// isn't called. Therefore, set a sufficient limit for the path to be |
|
// found. |
|
path_builder.SetDepthLimit(5); |
|
} |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_EQ(!insufficient_limit, result.HasValidPath()); |
|
EXPECT_EQ(insufficient_limit, |
|
result.AnyPathContainsError(cert_errors::kDepthLimitExceeded)); |
|
if (insufficient_limit) { |
|
EXPECT_EQ(2U, result.max_depth_seen); |
|
} else { |
|
EXPECT_EQ(4U, result.max_depth_seen); |
|
} |
|
} |
|
} |
|
|
|
TEST_F(PathBuilderMultiRootTest, TestDepthLimitMultiplePaths) { |
|
// This case tests path building backracking due to reaching the path depth |
|
// limit. Given the root and issuer certificates below, there can be two paths |
|
// from between the leaf to a trusted root, one has length of 3 and the other |
|
// has length of 4. These certificates are specifically chosen because path |
|
// building will first explore the 4-certificate long path then the |
|
// 3-certificate long path. So with a depth limit of 3, we can test the |
|
// backtracking code path. |
|
|
|
// E(E) and C(D) are the trust roots. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(e_by_e_); |
|
trust_store.AddTrustAnchor(c_by_d_); |
|
|
|
// Certs B(C). B(F) and F(E) are supplied. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(b_by_c_); |
|
sync_certs.AddCert(b_by_f_); |
|
sync_certs.AddCert(f_by_e_); |
|
|
|
CertPathBuilder path_builder( |
|
a_by_b_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
path_builder.SetDepthLimit(3); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_TRUE(result.HasValidPath()); |
|
EXPECT_TRUE(result.AnyPathContainsError(cert_errors::kDepthLimitExceeded)); |
|
|
|
ASSERT_EQ(result.paths.size(), 2u); |
|
|
|
const CertPathBuilderResultPath* truncated_path = result.paths[0].get(); |
|
EXPECT_FALSE(truncated_path->IsValid()); |
|
EXPECT_TRUE( |
|
truncated_path->errors.ContainsError(cert_errors::kDepthLimitExceeded)); |
|
ASSERT_EQ(truncated_path->certs.size(), 3u); |
|
EXPECT_EQ(a_by_b_, truncated_path->certs[0]); |
|
EXPECT_EQ(b_by_f_, truncated_path->certs[1]); |
|
EXPECT_EQ(f_by_e_, truncated_path->certs[2]); |
|
|
|
const CertPathBuilderResultPath* valid_path = result.paths[1].get(); |
|
EXPECT_TRUE(valid_path->IsValid()); |
|
EXPECT_FALSE( |
|
valid_path->errors.ContainsError(cert_errors::kDepthLimitExceeded)); |
|
ASSERT_EQ(valid_path->certs.size(), 3u); |
|
EXPECT_EQ(a_by_b_, valid_path->certs[0]); |
|
EXPECT_EQ(b_by_c_, valid_path->certs[1]); |
|
EXPECT_EQ(c_by_d_, valid_path->certs[2]); |
|
} |
|
|
|
class PathBuilderKeyRolloverTest : public ::testing::Test { |
|
public: |
|
PathBuilderKeyRolloverTest() |
|
: delegate_(1024, |
|
SimplePathBuilderDelegate::DigestPolicy::kWeakAllowSha1) {} |
|
|
|
void SetUp() override { |
|
ParsedCertificateList path; |
|
|
|
VerifyCertChainTest test; |
|
ASSERT_TRUE(ReadVerifyCertChainTestFromFile( |
|
"testdata/verify_certificate_chain_unittest/key-rollover/oldchain.test", |
|
&test)); |
|
path = test.chain; |
|
ASSERT_EQ(3U, path.size()); |
|
target_ = path[0]; |
|
oldintermediate_ = path[1]; |
|
oldroot_ = path[2]; |
|
time_ = test.time; |
|
|
|
ASSERT_TRUE(target_); |
|
ASSERT_TRUE(oldintermediate_); |
|
|
|
ASSERT_TRUE(ReadVerifyCertChainTestFromFile( |
|
"testdata/verify_certificate_chain_unittest/" |
|
"key-rollover/longrolloverchain.test", |
|
&test)); |
|
path = test.chain; |
|
|
|
ASSERT_EQ(5U, path.size()); |
|
newintermediate_ = path[1]; |
|
newroot_ = path[2]; |
|
newrootrollover_ = path[3]; |
|
ASSERT_TRUE(newintermediate_); |
|
ASSERT_TRUE(newroot_); |
|
ASSERT_TRUE(newrootrollover_); |
|
} |
|
|
|
protected: |
|
// oldroot-------->newrootrollover newroot |
|
// | | | |
|
// v v v |
|
// oldintermediate newintermediate |
|
// | | |
|
// +------------+-------------+ |
|
// | |
|
// v |
|
// target |
|
std::shared_ptr<const ParsedCertificate> target_; |
|
std::shared_ptr<const ParsedCertificate> oldintermediate_; |
|
std::shared_ptr<const ParsedCertificate> newintermediate_; |
|
std::shared_ptr<const ParsedCertificate> oldroot_; |
|
std::shared_ptr<const ParsedCertificate> newroot_; |
|
std::shared_ptr<const ParsedCertificate> newrootrollover_; |
|
|
|
SimplePathBuilderDelegate delegate_; |
|
der::GeneralizedTime time_; |
|
|
|
const InitialExplicitPolicy initial_explicit_policy_ = |
|
InitialExplicitPolicy::kFalse; |
|
const std::set<der::Input> user_initial_policy_set_ = { |
|
der::Input(kAnyPolicyOid)}; |
|
const InitialPolicyMappingInhibit initial_policy_mapping_inhibit_ = |
|
InitialPolicyMappingInhibit::kFalse; |
|
const InitialAnyPolicyInhibit initial_any_policy_inhibit_ = |
|
InitialAnyPolicyInhibit::kFalse; |
|
}; |
|
|
|
// Tests that if only the old root cert is trusted, the path builder can build a |
|
// path through the new intermediate and rollover cert to the old root. |
|
TEST_F(PathBuilderKeyRolloverTest, TestRolloverOnlyOldRootTrusted) { |
|
// Only oldroot is trusted. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(oldroot_); |
|
|
|
// Old intermediate cert is not provided, so the pathbuilder will need to go |
|
// through the rollover cert. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(newintermediate_); |
|
sync_certs.AddCert(newrootrollover_); |
|
|
|
CertPathBuilder path_builder( |
|
target_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_TRUE(result.HasValidPath()); |
|
|
|
// Due to authorityKeyIdentifier prioritization, path builder will first |
|
// attempt: target <- newintermediate <- newrootrollover <- oldroot |
|
// which will succeed. |
|
ASSERT_EQ(1U, result.paths.size()); |
|
const auto& path0 = *result.paths[0]; |
|
EXPECT_EQ(0U, result.best_result_index); |
|
EXPECT_TRUE(path0.IsValid()); |
|
ASSERT_EQ(4U, path0.certs.size()); |
|
EXPECT_EQ(target_, path0.certs[0]); |
|
EXPECT_EQ(newintermediate_, path0.certs[1]); |
|
EXPECT_EQ(newrootrollover_, path0.certs[2]); |
|
EXPECT_EQ(oldroot_, path0.certs[3]); |
|
} |
|
|
|
// Tests that if both old and new roots are trusted it builds a path through |
|
// the new intermediate. |
|
TEST_F(PathBuilderKeyRolloverTest, TestRolloverBothRootsTrusted) { |
|
// Both oldroot and newroot are trusted. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(oldroot_); |
|
trust_store.AddTrustAnchor(newroot_); |
|
|
|
// Both old and new intermediates + rollover cert are provided. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(oldintermediate_); |
|
sync_certs.AddCert(newintermediate_); |
|
sync_certs.AddCert(newrootrollover_); |
|
|
|
CertPathBuilder path_builder( |
|
target_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_TRUE(result.HasValidPath()); |
|
|
|
ASSERT_EQ(1U, result.paths.size()); |
|
const auto& path = *result.paths[0]; |
|
EXPECT_TRUE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(3U, path.certs.size()); |
|
EXPECT_EQ(target_, path.certs[0]); |
|
// The newer intermediate should be used as newer certs are prioritized in |
|
// path building. |
|
EXPECT_EQ(newintermediate_, path.certs[1]); |
|
EXPECT_EQ(newroot_, path.certs[2]); |
|
} |
|
|
|
// If trust anchor query returned no results, and there are no issuer |
|
// sources, path building should fail at that point. |
|
TEST_F(PathBuilderKeyRolloverTest, TestAnchorsNoMatchAndNoIssuerSources) { |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(newroot_); |
|
|
|
CertPathBuilder path_builder( |
|
target_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_FALSE(result.HasValidPath()); |
|
|
|
ASSERT_EQ(1U, result.paths.size()); |
|
const auto& path = *result.paths[0]; |
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(1U, path.certs.size()); |
|
EXPECT_EQ(target_, path.certs[0]); |
|
} |
|
|
|
// If a path to a trust anchor could not be found, and the last issuer(s) in |
|
// the chain were culled by the loop checker, the partial path up to that point |
|
// should be returned. |
|
TEST_F(PathBuilderKeyRolloverTest, TestReturnsPartialPathEndedByLoopChecker) { |
|
TrustStoreInMemory trust_store; |
|
|
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(newintermediate_); |
|
sync_certs.AddCert(newroot_); |
|
|
|
CertIssuerSourceStatic rollover_certs; |
|
rollover_certs.AddCert(newrootrollover_); |
|
|
|
CertPathBuilder path_builder( |
|
target_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
// The rollover root is added as a second issuer source to ensure we get paths |
|
// back in a deterministic order, otherwise newroot and newrootrollover do not |
|
// differ in any way that the path builder would use for prioritizing which |
|
// path comes back first. |
|
path_builder.AddCertIssuerSource(&rollover_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_FALSE(result.HasValidPath()); |
|
ASSERT_EQ(2U, result.paths.size()); |
|
|
|
// Since none of the certs are trusted, the path builder should build 4 |
|
// candidate paths, all of which are disallowed due to the loop checker: |
|
// target->newintermediate->newroot->newroot |
|
// target->newintermediate->newroot->newrootrollover |
|
// target->newintermediate->newrootrollover->newroot |
|
// target->newintermediate->newrootrollover->newrootrollover |
|
// This should end up returning the 2 partial paths which are the longest |
|
// paths for which no acceptable issuers could be found: |
|
// target->newintermediate->newroot |
|
// target->newintermediate->newrootrollover |
|
|
|
{ |
|
const auto& path = *result.paths[0]; |
|
EXPECT_FALSE(path.IsValid()); |
|
ASSERT_EQ(3U, path.certs.size()); |
|
EXPECT_EQ(target_, path.certs[0]); |
|
EXPECT_EQ(newintermediate_, path.certs[1]); |
|
EXPECT_EQ(newroot_, path.certs[2]); |
|
EXPECT_TRUE(path.errors.ContainsError(cert_errors::kNoIssuersFound)); |
|
} |
|
|
|
{ |
|
const auto& path = *result.paths[1]; |
|
EXPECT_FALSE(path.IsValid()); |
|
ASSERT_EQ(3U, path.certs.size()); |
|
EXPECT_EQ(target_, path.certs[0]); |
|
EXPECT_EQ(newintermediate_, path.certs[1]); |
|
EXPECT_EQ(newrootrollover_, path.certs[2]); |
|
EXPECT_TRUE(path.errors.ContainsError(cert_errors::kNoIssuersFound)); |
|
} |
|
} |
|
|
|
// Tests that multiple trust root matches on a single path will be considered. |
|
// Both roots have the same subject but different keys. Only one of them will |
|
// verify. |
|
TEST_F(PathBuilderKeyRolloverTest, TestMultipleRootMatchesOnlyOneWorks) { |
|
TrustStoreCollection trust_store_collection; |
|
TrustStoreInMemory trust_store1; |
|
TrustStoreInMemory trust_store2; |
|
trust_store_collection.AddTrustStore(&trust_store1); |
|
trust_store_collection.AddTrustStore(&trust_store2); |
|
// Add two trust anchors (newroot_ and oldroot_). Path building will attempt |
|
// them in this same order, as trust_store1 was added to |
|
// trust_store_collection first. |
|
trust_store1.AddTrustAnchor(newroot_); |
|
trust_store2.AddTrustAnchor(oldroot_); |
|
|
|
// Only oldintermediate is supplied, so the path with newroot should fail, |
|
// oldroot should succeed. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(oldintermediate_); |
|
|
|
CertPathBuilder path_builder( |
|
target_, &trust_store_collection, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_TRUE(result.HasValidPath()); |
|
ASSERT_EQ(1U, result.paths.size()); |
|
|
|
// Due to authorityKeyIdentifier prioritization, path builder will first |
|
// attempt: target <- old intermediate <- oldroot |
|
// which should succeed. |
|
EXPECT_TRUE(result.paths[result.best_result_index]->IsValid()); |
|
const auto& path = *result.paths[result.best_result_index]; |
|
ASSERT_EQ(3U, path.certs.size()); |
|
EXPECT_EQ(target_, path.certs[0]); |
|
EXPECT_EQ(oldintermediate_, path.certs[1]); |
|
EXPECT_EQ(oldroot_, path.certs[2]); |
|
} |
|
|
|
// Tests that the path builder doesn't build longer than necessary paths, |
|
// by skipping certs where the same Name+SAN+SPKI is already in the current |
|
// path. |
|
TEST_F(PathBuilderKeyRolloverTest, TestRolloverLongChain) { |
|
// Only oldroot is trusted. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(oldroot_); |
|
|
|
// New intermediate and new root are provided synchronously. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(newintermediate_); |
|
sync_certs.AddCert(newroot_); |
|
|
|
// Rollover cert is only provided asynchronously. This will force the |
|
// pathbuilder to first try building a longer than necessary path. |
|
AsyncCertIssuerSourceStatic async_certs; |
|
async_certs.AddCert(newrootrollover_); |
|
|
|
CertPathBuilder path_builder( |
|
target_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
path_builder.AddCertIssuerSource(&async_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_TRUE(result.HasValidPath()); |
|
ASSERT_EQ(3U, result.paths.size()); |
|
|
|
// Path builder will first attempt: |
|
// target <- newintermediate <- newroot <- oldroot |
|
// but it will fail since newroot is self-signed. |
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
const auto& path0 = *result.paths[0]; |
|
ASSERT_EQ(4U, path0.certs.size()); |
|
EXPECT_EQ(target_, path0.certs[0]); |
|
EXPECT_EQ(newintermediate_, path0.certs[1]); |
|
EXPECT_EQ(newroot_, path0.certs[2]); |
|
EXPECT_EQ(oldroot_, path0.certs[3]); |
|
|
|
// Path builder will next attempt: target <- newintermediate <- oldroot |
|
// but it will fail since newintermediate is signed by newroot. |
|
EXPECT_FALSE(result.paths[1]->IsValid()); |
|
const auto& path1 = *result.paths[1]; |
|
ASSERT_EQ(3U, path1.certs.size()); |
|
EXPECT_EQ(target_, path1.certs[0]); |
|
EXPECT_EQ(newintermediate_, path1.certs[1]); |
|
EXPECT_EQ(oldroot_, path1.certs[2]); |
|
|
|
// Path builder will skip: |
|
// target <- newintermediate <- newroot <- newrootrollover <- ... |
|
// Since newroot and newrootrollover have the same Name+SAN+SPKI. |
|
|
|
// Finally path builder will use: |
|
// target <- newintermediate <- newrootrollover <- oldroot |
|
EXPECT_EQ(2U, result.best_result_index); |
|
EXPECT_TRUE(result.paths[2]->IsValid()); |
|
const auto& path2 = *result.paths[2]; |
|
ASSERT_EQ(4U, path2.certs.size()); |
|
EXPECT_EQ(target_, path2.certs[0]); |
|
EXPECT_EQ(newintermediate_, path2.certs[1]); |
|
EXPECT_EQ(newrootrollover_, path2.certs[2]); |
|
EXPECT_EQ(oldroot_, path2.certs[3]); |
|
} |
|
|
|
// Tests that when SetExploreAllPaths is combined with SetIterationLimit the |
|
// path builder will return all the paths that were able to be built before the |
|
// iteration limit was reached. |
|
TEST_F(PathBuilderKeyRolloverTest, ExploreAllPathsWithIterationLimit) { |
|
struct Expectation { |
|
int iteration_limit; |
|
size_t expected_num_paths; |
|
std::vector<std::shared_ptr<const ParsedCertificate>> partial_path; |
|
} kExpectations[] = { |
|
// No iteration limit. All possible paths should be built. |
|
{0, 4, {}}, |
|
// Limit 1 is only enough to reach the intermediate, no complete path |
|
// should be built. |
|
{1, 0, {target_, newintermediate_}}, |
|
// Limit 2 allows reaching the root on the first path. |
|
{2, 1, {target_, newintermediate_}}, |
|
// Next iteration uses oldroot instead of newroot. |
|
{3, 2, {target_, newintermediate_}}, |
|
// Backtracking to the target cert. |
|
{4, 2, {target_}}, |
|
// Adding oldintermediate. |
|
{5, 2, {target_, oldintermediate_}}, |
|
// Trying oldroot. |
|
{6, 3, {target_, oldintermediate_}}, |
|
// Trying newroot. |
|
{7, 4, {target_, oldintermediate_}}, |
|
}; |
|
|
|
// Trust both old and new roots. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(oldroot_); |
|
trust_store.AddTrustAnchor(newroot_); |
|
|
|
// Intermediates and root rollover are all provided synchronously. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(oldintermediate_); |
|
sync_certs.AddCert(newintermediate_); |
|
|
|
for (const auto& expectation : kExpectations) { |
|
SCOPED_TRACE(expectation.iteration_limit); |
|
|
|
CertPathBuilder path_builder( |
|
target_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
// Explore all paths, rather than stopping at the first valid path. |
|
path_builder.SetExploreAllPaths(true); |
|
|
|
// Limit the number of iterations. |
|
path_builder.SetIterationLimit(expectation.iteration_limit); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_EQ(expectation.expected_num_paths > 0, result.HasValidPath()); |
|
if (expectation.partial_path.empty()) { |
|
ASSERT_EQ(expectation.expected_num_paths, result.paths.size()); |
|
} else { |
|
ASSERT_EQ(1 + expectation.expected_num_paths, result.paths.size()); |
|
const auto& path = *result.paths[result.paths.size() - 1]; |
|
EXPECT_FALSE(path.IsValid()); |
|
EXPECT_EQ(expectation.partial_path, path.certs); |
|
EXPECT_TRUE( |
|
path.errors.ContainsError(cert_errors::kIterationLimitExceeded)); |
|
} |
|
|
|
if (expectation.expected_num_paths > 0) { |
|
// Path builder will first build path: target <- newintermediate <- |
|
// newroot |
|
const auto& path0 = *result.paths[0]; |
|
EXPECT_TRUE(path0.IsValid()); |
|
ASSERT_EQ(3U, path0.certs.size()); |
|
EXPECT_EQ(target_, path0.certs[0]); |
|
EXPECT_EQ(newintermediate_, path0.certs[1]); |
|
EXPECT_EQ(newroot_, path0.certs[2]); |
|
EXPECT_EQ(3U, result.max_depth_seen); |
|
} |
|
|
|
if (expectation.expected_num_paths > 1) { |
|
// Next path: target <- newintermediate <- oldroot |
|
const auto& path1 = *result.paths[1]; |
|
EXPECT_FALSE(path1.IsValid()); |
|
ASSERT_EQ(3U, path1.certs.size()); |
|
EXPECT_EQ(target_, path1.certs[0]); |
|
EXPECT_EQ(newintermediate_, path1.certs[1]); |
|
EXPECT_EQ(oldroot_, path1.certs[2]); |
|
EXPECT_EQ(3U, result.max_depth_seen); |
|
} |
|
|
|
if (expectation.expected_num_paths > 2) { |
|
// Next path: target <- oldintermediate <- oldroot |
|
const auto& path2 = *result.paths[2]; |
|
EXPECT_TRUE(path2.IsValid()); |
|
ASSERT_EQ(3U, path2.certs.size()); |
|
EXPECT_EQ(target_, path2.certs[0]); |
|
EXPECT_EQ(oldintermediate_, path2.certs[1]); |
|
EXPECT_EQ(oldroot_, path2.certs[2]); |
|
EXPECT_EQ(3U, result.max_depth_seen); |
|
} |
|
|
|
if (expectation.expected_num_paths > 3) { |
|
// Final path: target <- oldintermediate <- newroot |
|
const auto& path3 = *result.paths[3]; |
|
EXPECT_FALSE(path3.IsValid()); |
|
ASSERT_EQ(3U, path3.certs.size()); |
|
EXPECT_EQ(target_, path3.certs[0]); |
|
EXPECT_EQ(oldintermediate_, path3.certs[1]); |
|
EXPECT_EQ(newroot_, path3.certs[2]); |
|
EXPECT_EQ(3U, result.max_depth_seen); |
|
} |
|
} |
|
} |
|
|
|
// If the target cert is a trust anchor, however is not itself *signed* by a |
|
// trust anchor, then it is not considered valid (the SPKI and name of the |
|
// trust anchor matches the SPKI and subject of the targe certificate, but the |
|
// rest of the certificate cannot be verified). |
|
TEST_F(PathBuilderKeyRolloverTest, TestEndEntityIsTrustRoot) { |
|
// Trust newintermediate. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(newintermediate_); |
|
|
|
// Newintermediate is also the target cert. |
|
CertPathBuilder path_builder( |
|
newintermediate_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_FALSE(result.HasValidPath()); |
|
} |
|
|
|
// If target has same Name+SAN+SPKI as a necessary intermediate, test if a path |
|
// can still be built. |
|
// Since LoopChecker will prevent the intermediate from being included, this |
|
// currently does NOT verify. This case shouldn't occur in the web PKI. |
|
TEST_F(PathBuilderKeyRolloverTest, |
|
TestEndEntityHasSameNameAndSpkiAsIntermediate) { |
|
// Trust oldroot. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(oldroot_); |
|
|
|
// New root rollover is provided synchronously. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(newrootrollover_); |
|
|
|
// Newroot is the target cert. |
|
CertPathBuilder path_builder( |
|
newroot_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
// This could actually be OK, but CertPathBuilder does not build the |
|
// newroot <- newrootrollover <- oldroot path. |
|
EXPECT_FALSE(result.HasValidPath()); |
|
} |
|
|
|
// If target has same Name+SAN+SPKI as the trust root, test that a (trivial) |
|
// path can still be built. |
|
TEST_F(PathBuilderKeyRolloverTest, |
|
TestEndEntityHasSameNameAndSpkiAsTrustAnchor) { |
|
// Trust newrootrollover. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(newrootrollover_); |
|
|
|
// Newroot is the target cert. |
|
CertPathBuilder path_builder( |
|
newroot_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
ASSERT_TRUE(result.HasValidPath()); |
|
|
|
const CertPathBuilderResultPath* best_result = result.GetBestValidPath(); |
|
|
|
// Newroot has same name+SPKI as newrootrollover, thus the path is valid and |
|
// only contains newroot. |
|
EXPECT_TRUE(best_result->IsValid()); |
|
ASSERT_EQ(2U, best_result->certs.size()); |
|
EXPECT_EQ(newroot_, best_result->certs[0]); |
|
EXPECT_EQ(newrootrollover_, best_result->certs[1]); |
|
} |
|
|
|
// Test that PathBuilder will not try the same path twice if multiple |
|
// CertIssuerSources provide the same certificate. |
|
TEST_F(PathBuilderKeyRolloverTest, TestDuplicateIntermediates) { |
|
// Create a separate copy of oldintermediate. |
|
std::shared_ptr<const ParsedCertificate> oldintermediate_dupe( |
|
ParsedCertificate::Create( |
|
bssl::UniquePtr<CRYPTO_BUFFER>(CRYPTO_BUFFER_new( |
|
oldintermediate_->der_cert().UnsafeData(), |
|
oldintermediate_->der_cert().Length(), nullptr)), |
|
{}, nullptr)); |
|
|
|
// Only newroot is a trusted root. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(newroot_); |
|
|
|
// The oldintermediate is supplied synchronously by |sync_certs1| and |
|
// another copy of oldintermediate is supplied synchronously by |sync_certs2|. |
|
// The path target <- oldintermediate <- newroot should be built first, |
|
// though it won't verify. It should not be attempted again even though |
|
// oldintermediate was supplied twice. |
|
CertIssuerSourceStatic sync_certs1; |
|
sync_certs1.AddCert(oldintermediate_); |
|
CertIssuerSourceStatic sync_certs2; |
|
sync_certs2.AddCert(oldintermediate_dupe); |
|
|
|
// The newintermediate is supplied asynchronously, so the path |
|
// target <- newintermediate <- newroot should be tried second. |
|
AsyncCertIssuerSourceStatic async_certs; |
|
async_certs.AddCert(newintermediate_); |
|
|
|
CertPathBuilder path_builder( |
|
target_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs1); |
|
path_builder.AddCertIssuerSource(&sync_certs2); |
|
path_builder.AddCertIssuerSource(&async_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_TRUE(result.HasValidPath()); |
|
ASSERT_EQ(2U, result.paths.size()); |
|
|
|
// Path builder will first attempt: target <- oldintermediate <- newroot |
|
// but it will fail since oldintermediate is signed by oldroot. |
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
const auto& path0 = *result.paths[0]; |
|
|
|
ASSERT_EQ(3U, path0.certs.size()); |
|
EXPECT_EQ(target_, path0.certs[0]); |
|
// Compare the DER instead of ParsedCertificate pointer, don't care which copy |
|
// of oldintermediate was used in the path. |
|
EXPECT_EQ(oldintermediate_->der_cert(), path0.certs[1]->der_cert()); |
|
EXPECT_EQ(newroot_, path0.certs[2]); |
|
|
|
// Path builder will next attempt: target <- newintermediate <- newroot |
|
// which will succeed. |
|
EXPECT_EQ(1U, result.best_result_index); |
|
EXPECT_TRUE(result.paths[1]->IsValid()); |
|
const auto& path1 = *result.paths[1]; |
|
ASSERT_EQ(3U, path1.certs.size()); |
|
EXPECT_EQ(target_, path1.certs[0]); |
|
EXPECT_EQ(newintermediate_, path1.certs[1]); |
|
EXPECT_EQ(newroot_, path1.certs[2]); |
|
} |
|
|
|
// Test when PathBuilder is given a cert via CertIssuerSources that has the same |
|
// SPKI as a trust anchor. |
|
TEST_F(PathBuilderKeyRolloverTest, TestDuplicateIntermediateAndRoot) { |
|
// Create a separate copy of newroot. |
|
std::shared_ptr<const ParsedCertificate> newroot_dupe( |
|
ParsedCertificate::Create( |
|
bssl::UniquePtr<CRYPTO_BUFFER>( |
|
CRYPTO_BUFFER_new(newroot_->der_cert().UnsafeData(), |
|
newroot_->der_cert().Length(), nullptr)), |
|
{}, nullptr)); |
|
|
|
// Only newroot is a trusted root. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(newroot_); |
|
|
|
// The oldintermediate and newroot are supplied synchronously by |sync_certs|. |
|
CertIssuerSourceStatic sync_certs; |
|
sync_certs.AddCert(oldintermediate_); |
|
sync_certs.AddCert(newroot_dupe); |
|
|
|
CertPathBuilder path_builder( |
|
target_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&sync_certs); |
|
|
|
auto result = path_builder.Run(); |
|
|
|
EXPECT_FALSE(result.HasValidPath()); |
|
ASSERT_EQ(1U, result.paths.size()); |
|
|
|
// Path builder attempt: target <- oldintermediate <- newroot |
|
// but it will fail since oldintermediate is signed by oldroot. |
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
const auto& path = *result.paths[0]; |
|
ASSERT_EQ(3U, path.certs.size()); |
|
EXPECT_EQ(target_, path.certs[0]); |
|
EXPECT_EQ(oldintermediate_, path.certs[1]); |
|
// Compare the DER instead of ParsedCertificate pointer, don't care which copy |
|
// of newroot was used in the path. |
|
EXPECT_EQ(newroot_->der_cert(), path.certs[2]->der_cert()); |
|
} |
|
|
|
class MockCertIssuerSourceRequest : public CertIssuerSource::Request { |
|
public: |
|
MOCK_METHOD1(GetNext, void(ParsedCertificateList*)); |
|
}; |
|
|
|
class MockCertIssuerSource : public CertIssuerSource { |
|
public: |
|
MOCK_METHOD2(SyncGetIssuersOf, |
|
void(const ParsedCertificate*, ParsedCertificateList*)); |
|
MOCK_METHOD2(AsyncGetIssuersOf, |
|
void(const ParsedCertificate*, std::unique_ptr<Request>*)); |
|
}; |
|
|
|
// Helper class to pass the Request to the PathBuilder when it calls |
|
// AsyncGetIssuersOf. (GoogleMock has a ByMove helper, but it apparently can |
|
// only be used with Return, not SetArgPointee.) |
|
class CertIssuerSourceRequestMover { |
|
public: |
|
explicit CertIssuerSourceRequestMover( |
|
std::unique_ptr<CertIssuerSource::Request> req) |
|
: request_(std::move(req)) {} |
|
void MoveIt(const ParsedCertificate* cert, |
|
std::unique_ptr<CertIssuerSource::Request>* out_req) { |
|
*out_req = std::move(request_); |
|
} |
|
|
|
private: |
|
std::unique_ptr<CertIssuerSource::Request> request_; |
|
}; |
|
|
|
// Functor that when called with a ParsedCertificateList* will append the |
|
// specified certificate. |
|
class AppendCertToList { |
|
public: |
|
explicit AppendCertToList( |
|
const std::shared_ptr<const ParsedCertificate>& cert) |
|
: cert_(cert) {} |
|
|
|
void operator()(ParsedCertificateList* out) { out->push_back(cert_); } |
|
|
|
private: |
|
std::shared_ptr<const ParsedCertificate> cert_; |
|
}; |
|
|
|
// Test that a single CertIssuerSource returning multiple async batches of |
|
// issuers is handled correctly. Due to the StrictMocks, it also tests that path |
|
// builder does not request issuers of certs that it shouldn't. |
|
TEST_F(PathBuilderKeyRolloverTest, TestMultipleAsyncIssuersFromSingleSource) { |
|
StrictMock<MockCertIssuerSource> cert_issuer_source; |
|
|
|
// Only newroot is a trusted root. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(newroot_); |
|
|
|
CertPathBuilder path_builder( |
|
target_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&cert_issuer_source); |
|
|
|
// Create the mock CertIssuerSource::Request... |
|
auto target_issuers_req_owner = |
|
std::make_unique<StrictMock<MockCertIssuerSourceRequest>>(); |
|
// Keep a raw pointer to the Request... |
|
StrictMock<MockCertIssuerSourceRequest>* target_issuers_req = |
|
target_issuers_req_owner.get(); |
|
// Setup helper class to pass ownership of the Request to the PathBuilder when |
|
// it calls AsyncGetIssuersOf. |
|
CertIssuerSourceRequestMover req_mover(std::move(target_issuers_req_owner)); |
|
{ |
|
::testing::InSequence s; |
|
EXPECT_CALL(cert_issuer_source, SyncGetIssuersOf(target_.get(), _)); |
|
EXPECT_CALL(cert_issuer_source, AsyncGetIssuersOf(target_.get(), _)) |
|
.WillOnce(Invoke(&req_mover, &CertIssuerSourceRequestMover::MoveIt)); |
|
} |
|
|
|
EXPECT_CALL(*target_issuers_req, GetNext(_)) |
|
// First async batch: return oldintermediate_. |
|
.WillOnce(Invoke(AppendCertToList(oldintermediate_))) |
|
// Second async batch: return newintermediate_. |
|
.WillOnce(Invoke(AppendCertToList(newintermediate_))); |
|
{ |
|
::testing::InSequence s; |
|
// oldintermediate_ does not create a valid path, so both sync and async |
|
// lookups are expected. |
|
EXPECT_CALL(cert_issuer_source, |
|
SyncGetIssuersOf(oldintermediate_.get(), _)); |
|
EXPECT_CALL(cert_issuer_source, |
|
AsyncGetIssuersOf(oldintermediate_.get(), _)); |
|
} |
|
|
|
// newroot_ is in the trust store, so this path will be completed |
|
// synchronously. AsyncGetIssuersOf will not be called on newintermediate_. |
|
EXPECT_CALL(cert_issuer_source, SyncGetIssuersOf(newintermediate_.get(), _)); |
|
|
|
// Ensure pathbuilder finished and filled result. |
|
auto result = path_builder.Run(); |
|
|
|
// Note that VerifyAndClearExpectations(target_issuers_req) is not called |
|
// here. PathBuilder could have destroyed it already, so just let the |
|
// expectations get checked by the destructor. |
|
::testing::Mock::VerifyAndClearExpectations(&cert_issuer_source); |
|
|
|
EXPECT_TRUE(result.HasValidPath()); |
|
ASSERT_EQ(2U, result.paths.size()); |
|
|
|
// Path builder first attempts: target <- oldintermediate <- newroot |
|
// but it will fail since oldintermediate is signed by oldroot. |
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
const auto& path0 = *result.paths[0]; |
|
ASSERT_EQ(3U, path0.certs.size()); |
|
EXPECT_EQ(target_, path0.certs[0]); |
|
EXPECT_EQ(oldintermediate_, path0.certs[1]); |
|
EXPECT_EQ(newroot_, path0.certs[2]); |
|
|
|
// After the second batch of async results, path builder will attempt: |
|
// target <- newintermediate <- newroot which will succeed. |
|
EXPECT_TRUE(result.paths[1]->IsValid()); |
|
const auto& path1 = *result.paths[1]; |
|
ASSERT_EQ(3U, path1.certs.size()); |
|
EXPECT_EQ(target_, path1.certs[0]); |
|
EXPECT_EQ(newintermediate_, path1.certs[1]); |
|
EXPECT_EQ(newroot_, path1.certs[2]); |
|
} |
|
|
|
// Test that PathBuilder will not try the same path twice if CertIssuerSources |
|
// asynchronously provide the same certificate multiple times. |
|
TEST_F(PathBuilderKeyRolloverTest, TestDuplicateAsyncIntermediates) { |
|
StrictMock<MockCertIssuerSource> cert_issuer_source; |
|
|
|
// Only newroot is a trusted root. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(newroot_); |
|
|
|
CertPathBuilder path_builder( |
|
target_, &trust_store, &delegate_, time_, KeyPurpose::ANY_EKU, |
|
initial_explicit_policy_, user_initial_policy_set_, |
|
initial_policy_mapping_inhibit_, initial_any_policy_inhibit_); |
|
path_builder.AddCertIssuerSource(&cert_issuer_source); |
|
|
|
// Create the mock CertIssuerSource::Request... |
|
auto target_issuers_req_owner = |
|
std::make_unique<StrictMock<MockCertIssuerSourceRequest>>(); |
|
// Keep a raw pointer to the Request... |
|
StrictMock<MockCertIssuerSourceRequest>* target_issuers_req = |
|
target_issuers_req_owner.get(); |
|
// Setup helper class to pass ownership of the Request to the PathBuilder when |
|
// it calls AsyncGetIssuersOf. |
|
CertIssuerSourceRequestMover req_mover(std::move(target_issuers_req_owner)); |
|
{ |
|
::testing::InSequence s; |
|
EXPECT_CALL(cert_issuer_source, SyncGetIssuersOf(target_.get(), _)); |
|
EXPECT_CALL(cert_issuer_source, AsyncGetIssuersOf(target_.get(), _)) |
|
.WillOnce(Invoke(&req_mover, &CertIssuerSourceRequestMover::MoveIt)); |
|
} |
|
|
|
std::shared_ptr<const ParsedCertificate> oldintermediate_dupe( |
|
ParsedCertificate::Create( |
|
bssl::UniquePtr<CRYPTO_BUFFER>(CRYPTO_BUFFER_new( |
|
oldintermediate_->der_cert().UnsafeData(), |
|
oldintermediate_->der_cert().Length(), nullptr)), |
|
{}, nullptr)); |
|
|
|
EXPECT_CALL(*target_issuers_req, GetNext(_)) |
|
// First async batch: return oldintermediate_. |
|
.WillOnce(Invoke(AppendCertToList(oldintermediate_))) |
|
// Second async batch: return a different copy of oldintermediate_ again. |
|
.WillOnce(Invoke(AppendCertToList(oldintermediate_dupe))) |
|
// Third async batch: return newintermediate_. |
|
.WillOnce(Invoke(AppendCertToList(newintermediate_))); |
|
|
|
{ |
|
::testing::InSequence s; |
|
// oldintermediate_ does not create a valid path, so both sync and async |
|
// lookups are expected. |
|
EXPECT_CALL(cert_issuer_source, |
|
SyncGetIssuersOf(oldintermediate_.get(), _)); |
|
EXPECT_CALL(cert_issuer_source, |
|
AsyncGetIssuersOf(oldintermediate_.get(), _)); |
|
} |
|
|
|
// newroot_ is in the trust store, so this path will be completed |
|
// synchronously. AsyncGetIssuersOf will not be called on newintermediate_. |
|
EXPECT_CALL(cert_issuer_source, SyncGetIssuersOf(newintermediate_.get(), _)); |
|
|
|
// Ensure pathbuilder finished and filled result. |
|
auto result = path_builder.Run(); |
|
|
|
::testing::Mock::VerifyAndClearExpectations(&cert_issuer_source); |
|
|
|
EXPECT_TRUE(result.HasValidPath()); |
|
ASSERT_EQ(2U, result.paths.size()); |
|
|
|
// Path builder first attempts: target <- oldintermediate <- newroot |
|
// but it will fail since oldintermediate is signed by oldroot. |
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
const auto& path0 = *result.paths[0]; |
|
ASSERT_EQ(3U, path0.certs.size()); |
|
EXPECT_EQ(target_, path0.certs[0]); |
|
EXPECT_EQ(oldintermediate_, path0.certs[1]); |
|
EXPECT_EQ(newroot_, path0.certs[2]); |
|
|
|
// The second async result does not generate any path. |
|
|
|
// After the third batch of async results, path builder will attempt: |
|
// target <- newintermediate <- newroot which will succeed. |
|
EXPECT_TRUE(result.paths[1]->IsValid()); |
|
const auto& path1 = *result.paths[1]; |
|
ASSERT_EQ(3U, path1.certs.size()); |
|
EXPECT_EQ(target_, path1.certs[0]); |
|
EXPECT_EQ(newintermediate_, path1.certs[1]); |
|
EXPECT_EQ(newroot_, path1.certs[2]); |
|
} |
|
|
|
class PathBuilderSimpleChainTest : public ::testing::Test { |
|
public: |
|
PathBuilderSimpleChainTest() = default; |
|
|
|
protected: |
|
void SetUp() override { |
|
// Read a simple test chain comprised of a target, intermediate, and root. |
|
ASSERT_TRUE(ReadVerifyCertChainTestFromFile( |
|
"testdata/verify_certificate_chain_unittest/target-and-intermediate/" |
|
"main.test", |
|
&test_)); |
|
ASSERT_EQ(3u, test_.chain.size()); |
|
} |
|
|
|
// Runs the path builder for the target certificate while |distrusted_cert| is |
|
// blocked, and |delegate| if non-null. |
|
CertPathBuilder::Result RunPathBuilder( |
|
const std::shared_ptr<const ParsedCertificate>& distrusted_cert, |
|
CertPathBuilderDelegate* optional_delegate) { |
|
// Set up the trust store such that |distrusted_cert| is blocked, and |
|
// the root is trusted (except if it was |distrusted_cert|). |
|
TrustStoreInMemory trust_store; |
|
if (distrusted_cert != test_.chain.back()) |
|
trust_store.AddTrustAnchor(test_.chain.back()); |
|
if (distrusted_cert) |
|
trust_store.AddDistrustedCertificateForTest(distrusted_cert); |
|
|
|
// Add the single intermediate. |
|
CertIssuerSourceStatic intermediates; |
|
intermediates.AddCert(test_.chain[1]); |
|
|
|
SimplePathBuilderDelegate default_delegate( |
|
1024, SimplePathBuilderDelegate::DigestPolicy::kWeakAllowSha1); |
|
CertPathBuilderDelegate* delegate = |
|
optional_delegate ? optional_delegate : &default_delegate; |
|
|
|
const InitialExplicitPolicy initial_explicit_policy = |
|
InitialExplicitPolicy::kFalse; |
|
const std::set<der::Input> user_initial_policy_set = { |
|
der::Input(kAnyPolicyOid)}; |
|
const InitialPolicyMappingInhibit initial_policy_mapping_inhibit = |
|
InitialPolicyMappingInhibit::kFalse; |
|
const InitialAnyPolicyInhibit initial_any_policy_inhibit = |
|
InitialAnyPolicyInhibit::kFalse; |
|
|
|
CertPathBuilder path_builder( |
|
test_.chain.front(), &trust_store, delegate, test_.time, |
|
KeyPurpose::ANY_EKU, initial_explicit_policy, user_initial_policy_set, |
|
initial_policy_mapping_inhibit, initial_any_policy_inhibit); |
|
path_builder.AddCertIssuerSource(&intermediates); |
|
return path_builder.Run(); |
|
} |
|
|
|
protected: |
|
VerifyCertChainTest test_; |
|
}; |
|
|
|
// Test fixture for running the path builder over a simple chain, while varying |
|
// the trustedness of certain certificates. |
|
class PathBuilderDistrustTest : public PathBuilderSimpleChainTest { |
|
public: |
|
PathBuilderDistrustTest() = default; |
|
|
|
protected: |
|
// Runs the path builder for the target certificate while |distrusted_cert| is |
|
// blocked. |
|
CertPathBuilder::Result RunPathBuilderWithDistrustedCert( |
|
const std::shared_ptr<const ParsedCertificate>& distrusted_cert) { |
|
return RunPathBuilder(distrusted_cert, nullptr); |
|
} |
|
}; |
|
|
|
// Tests that path building fails when the target, intermediate, or root are |
|
// distrusted (but the path is otherwise valid). |
|
TEST_F(PathBuilderDistrustTest, TargetIntermediateRoot) { |
|
// First do a control test -- path building without any blocked |
|
// certificates should work. |
|
CertPathBuilder::Result result = RunPathBuilderWithDistrustedCert(nullptr); |
|
{ |
|
ASSERT_TRUE(result.HasValidPath()); |
|
// The built path should be identical the the one read from disk. |
|
const auto& path = *result.GetBestValidPath(); |
|
ASSERT_EQ(test_.chain.size(), path.certs.size()); |
|
for (size_t i = 0; i < test_.chain.size(); ++i) |
|
EXPECT_EQ(test_.chain[i], path.certs[i]); |
|
} |
|
|
|
// Try path building when only the target is blocked - should fail. |
|
result = RunPathBuilderWithDistrustedCert(test_.chain[0]); |
|
{ |
|
EXPECT_FALSE(result.HasValidPath()); |
|
ASSERT_LT(result.best_result_index, result.paths.size()); |
|
const auto& best_path = result.paths[result.best_result_index]; |
|
|
|
// The built chain has length 1 since path building stopped once |
|
// it encountered the blocked certificate (target). |
|
ASSERT_EQ(1u, best_path->certs.size()); |
|
EXPECT_EQ(best_path->certs[0], test_.chain[0]); |
|
EXPECT_TRUE(best_path->errors.ContainsHighSeverityErrors()); |
|
best_path->errors.ContainsError(cert_errors::kDistrustedByTrustStore); |
|
} |
|
|
|
// Try path building when only the intermediate is blocked - should fail. |
|
result = RunPathBuilderWithDistrustedCert(test_.chain[1]); |
|
{ |
|
EXPECT_FALSE(result.HasValidPath()); |
|
ASSERT_LT(result.best_result_index, result.paths.size()); |
|
const auto& best_path = result.paths[result.best_result_index]; |
|
|
|
// The built chain has length 2 since path building stopped once |
|
// it encountered the blocked certificate (intermediate). |
|
ASSERT_EQ(2u, best_path->certs.size()); |
|
EXPECT_EQ(best_path->certs[0], test_.chain[0]); |
|
EXPECT_EQ(best_path->certs[1], test_.chain[1]); |
|
EXPECT_TRUE(best_path->errors.ContainsHighSeverityErrors()); |
|
best_path->errors.ContainsError(cert_errors::kDistrustedByTrustStore); |
|
} |
|
|
|
// Try path building when only the root is blocked - should fail. |
|
result = RunPathBuilderWithDistrustedCert(test_.chain[2]); |
|
{ |
|
EXPECT_FALSE(result.HasValidPath()); |
|
ASSERT_LT(result.best_result_index, result.paths.size()); |
|
const auto& best_path = result.paths[result.best_result_index]; |
|
|
|
// The built chain has length 3 since path building stopped once |
|
// it encountered the blocked certificate (root). |
|
ASSERT_EQ(3u, best_path->certs.size()); |
|
EXPECT_EQ(best_path->certs[0], test_.chain[0]); |
|
EXPECT_EQ(best_path->certs[1], test_.chain[1]); |
|
EXPECT_EQ(best_path->certs[2], test_.chain[2]); |
|
EXPECT_TRUE(best_path->errors.ContainsHighSeverityErrors()); |
|
best_path->errors.ContainsError(cert_errors::kDistrustedByTrustStore); |
|
} |
|
} |
|
|
|
// Test fixture for running the path builder over a simple chain, while varying |
|
// what CheckPathAfterVerification() does. |
|
class PathBuilderCheckPathAfterVerificationTest |
|
: public PathBuilderSimpleChainTest {}; |
|
|
|
class CertPathBuilderDelegateBase : public SimplePathBuilderDelegate { |
|
public: |
|
CertPathBuilderDelegateBase() |
|
: SimplePathBuilderDelegate( |
|
1024, |
|
SimplePathBuilderDelegate::DigestPolicy::kWeakAllowSha1) {} |
|
void CheckPathAfterVerification(const CertPathBuilder& path_builder, |
|
CertPathBuilderResultPath* path) override { |
|
ADD_FAILURE() << "Tests must override this"; |
|
} |
|
}; |
|
|
|
class MockPathBuilderDelegate : public CertPathBuilderDelegateBase { |
|
public: |
|
MOCK_METHOD2(CheckPathAfterVerification, |
|
void(const CertPathBuilder& path_builder, |
|
CertPathBuilderResultPath* path)); |
|
}; |
|
|
|
TEST_F(PathBuilderCheckPathAfterVerificationTest, NoOpToValidPath) { |
|
StrictMock<MockPathBuilderDelegate> delegate; |
|
// Just verify that the hook is called. |
|
EXPECT_CALL(delegate, CheckPathAfterVerification(_, _)); |
|
|
|
CertPathBuilder::Result result = RunPathBuilder(nullptr, &delegate); |
|
EXPECT_TRUE(result.HasValidPath()); |
|
} |
|
|
|
DEFINE_CERT_ERROR_ID(kWarningFromDelegate, "Warning from delegate"); |
|
|
|
class AddWarningPathBuilderDelegate : public CertPathBuilderDelegateBase { |
|
public: |
|
void CheckPathAfterVerification(const CertPathBuilder& path_builder, |
|
CertPathBuilderResultPath* path) override { |
|
path->errors.GetErrorsForCert(1)->AddWarning(kWarningFromDelegate, nullptr); |
|
} |
|
}; |
|
|
|
TEST_F(PathBuilderCheckPathAfterVerificationTest, AddsWarningToValidPath) { |
|
AddWarningPathBuilderDelegate delegate; |
|
CertPathBuilder::Result result = RunPathBuilder(nullptr, &delegate); |
|
ASSERT_TRUE(result.HasValidPath()); |
|
|
|
// A warning should have been added to certificate at index 1 in the path. |
|
const CertErrors* cert1_errors = |
|
result.GetBestValidPath()->errors.GetErrorsForCert(1); |
|
ASSERT_TRUE(cert1_errors); |
|
EXPECT_TRUE(cert1_errors->ContainsError(kWarningFromDelegate)); |
|
} |
|
|
|
DEFINE_CERT_ERROR_ID(kErrorFromDelegate, "Error from delegate"); |
|
|
|
class AddErrorPathBuilderDelegate : public CertPathBuilderDelegateBase { |
|
public: |
|
void CheckPathAfterVerification(const CertPathBuilder& path_builder, |
|
CertPathBuilderResultPath* path) override { |
|
path->errors.GetErrorsForCert(2)->AddError(kErrorFromDelegate, nullptr); |
|
} |
|
}; |
|
|
|
TEST_F(PathBuilderCheckPathAfterVerificationTest, AddsErrorToValidPath) { |
|
AddErrorPathBuilderDelegate delegate; |
|
CertPathBuilder::Result result = RunPathBuilder(nullptr, &delegate); |
|
|
|
// Verification failed. |
|
ASSERT_FALSE(result.HasValidPath()); |
|
|
|
ASSERT_LT(result.best_result_index, result.paths.size()); |
|
const CertPathBuilderResultPath* failed_path = |
|
result.paths[result.best_result_index].get(); |
|
ASSERT_TRUE(failed_path); |
|
|
|
// An error should have been added to certificate at index 2 in the path. |
|
const CertErrors* cert2_errors = failed_path->errors.GetErrorsForCert(2); |
|
ASSERT_TRUE(cert2_errors); |
|
EXPECT_TRUE(cert2_errors->ContainsError(kErrorFromDelegate)); |
|
} |
|
|
|
TEST_F(PathBuilderCheckPathAfterVerificationTest, NoopToAlreadyInvalidPath) { |
|
StrictMock<MockPathBuilderDelegate> delegate; |
|
// Just verify that the hook is called (on an invalid path). |
|
EXPECT_CALL(delegate, CheckPathAfterVerification(_, _)); |
|
|
|
// Run the pathbuilder with certificate at index 1 actively distrusted. |
|
CertPathBuilder::Result result = RunPathBuilder(test_.chain[1], &delegate); |
|
EXPECT_FALSE(result.HasValidPath()); |
|
} |
|
|
|
struct DelegateData : public CertPathBuilderDelegateData { |
|
int value = 0xB33F; |
|
}; |
|
|
|
class SetsDelegateDataPathBuilderDelegate : public CertPathBuilderDelegateBase { |
|
public: |
|
void CheckPathAfterVerification(const CertPathBuilder& path_builder, |
|
CertPathBuilderResultPath* path) override { |
|
path->delegate_data = std::make_unique<DelegateData>(); |
|
} |
|
}; |
|
|
|
TEST_F(PathBuilderCheckPathAfterVerificationTest, SetsDelegateData) { |
|
SetsDelegateDataPathBuilderDelegate delegate; |
|
CertPathBuilder::Result result = RunPathBuilder(nullptr, &delegate); |
|
ASSERT_TRUE(result.HasValidPath()); |
|
|
|
DelegateData* data = reinterpret_cast<DelegateData*>( |
|
result.GetBestValidPath()->delegate_data.get()); |
|
|
|
EXPECT_EQ(0xB33F, data->value); |
|
} |
|
|
|
TEST(PathBuilderPrioritizationTest, DatePrioritization) { |
|
std::string test_dir = |
|
"testdata/path_builder_unittest/validity_date_prioritization/"; |
|
std::shared_ptr<const ParsedCertificate> root = |
|
ReadCertFromFile(test_dir + "root.pem"); |
|
ASSERT_TRUE(root); |
|
std::shared_ptr<const ParsedCertificate> int_ac = |
|
ReadCertFromFile(test_dir + "int_ac.pem"); |
|
ASSERT_TRUE(int_ac); |
|
std::shared_ptr<const ParsedCertificate> int_ad = |
|
ReadCertFromFile(test_dir + "int_ad.pem"); |
|
ASSERT_TRUE(int_ad); |
|
std::shared_ptr<const ParsedCertificate> int_bc = |
|
ReadCertFromFile(test_dir + "int_bc.pem"); |
|
ASSERT_TRUE(int_bc); |
|
std::shared_ptr<const ParsedCertificate> int_bd = |
|
ReadCertFromFile(test_dir + "int_bd.pem"); |
|
ASSERT_TRUE(int_bd); |
|
std::shared_ptr<const ParsedCertificate> target = |
|
ReadCertFromFile(test_dir + "target.pem"); |
|
ASSERT_TRUE(target); |
|
|
|
SimplePathBuilderDelegate delegate( |
|
1024, SimplePathBuilderDelegate::DigestPolicy::kWeakAllowSha1); |
|
der::GeneralizedTime verify_time = {2017, 3, 1, 0, 0, 0}; |
|
|
|
// Distrust the root certificate. This will force the path builder to attempt |
|
// all possible paths. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddDistrustedCertificateForTest(root); |
|
|
|
for (bool reverse_input_order : {false, true}) { |
|
SCOPED_TRACE(reverse_input_order); |
|
|
|
CertIssuerSourceStatic intermediates; |
|
// Test with the intermediates supplied in two different orders to ensure |
|
// the results don't depend on input ordering. |
|
if (reverse_input_order) { |
|
intermediates.AddCert(int_bd); |
|
intermediates.AddCert(int_bc); |
|
intermediates.AddCert(int_ad); |
|
intermediates.AddCert(int_ac); |
|
} else { |
|
intermediates.AddCert(int_ac); |
|
intermediates.AddCert(int_ad); |
|
intermediates.AddCert(int_bc); |
|
intermediates.AddCert(int_bd); |
|
} |
|
|
|
CertPathBuilder path_builder( |
|
target, &trust_store, &delegate, verify_time, KeyPurpose::ANY_EKU, |
|
InitialExplicitPolicy::kFalse, {der::Input(kAnyPolicyOid)}, |
|
InitialPolicyMappingInhibit::kFalse, InitialAnyPolicyInhibit::kFalse); |
|
path_builder.AddCertIssuerSource(&intermediates); |
|
|
|
CertPathBuilder::Result result = path_builder.Run(); |
|
EXPECT_FALSE(result.HasValidPath()); |
|
ASSERT_EQ(4U, result.paths.size()); |
|
|
|
// Path builder should have attempted paths using the intermediates in |
|
// order: bd, bc, ad, ac |
|
|
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[0]->certs.size()); |
|
EXPECT_EQ(target, result.paths[0]->certs[0]); |
|
EXPECT_EQ(int_bd, result.paths[0]->certs[1]); |
|
EXPECT_EQ(root, result.paths[0]->certs[2]); |
|
|
|
EXPECT_FALSE(result.paths[1]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[1]->certs.size()); |
|
EXPECT_EQ(target, result.paths[1]->certs[0]); |
|
EXPECT_EQ(int_bc, result.paths[1]->certs[1]); |
|
EXPECT_EQ(root, result.paths[1]->certs[2]); |
|
|
|
EXPECT_FALSE(result.paths[2]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[2]->certs.size()); |
|
EXPECT_EQ(target, result.paths[2]->certs[0]); |
|
EXPECT_EQ(int_ad, result.paths[2]->certs[1]); |
|
EXPECT_EQ(root, result.paths[2]->certs[2]); |
|
|
|
EXPECT_FALSE(result.paths[3]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[3]->certs.size()); |
|
EXPECT_EQ(target, result.paths[3]->certs[0]); |
|
EXPECT_EQ(int_ac, result.paths[3]->certs[1]); |
|
EXPECT_EQ(root, result.paths[3]->certs[2]); |
|
} |
|
} |
|
|
|
TEST(PathBuilderPrioritizationTest, KeyIdPrioritization) { |
|
std::string test_dir = |
|
"testdata/path_builder_unittest/key_id_prioritization/"; |
|
std::shared_ptr<const ParsedCertificate> root = |
|
ReadCertFromFile(test_dir + "root.pem"); |
|
ASSERT_TRUE(root); |
|
std::shared_ptr<const ParsedCertificate> int_matching_ski_a = |
|
ReadCertFromFile(test_dir + "int_matching_ski_a.pem"); |
|
ASSERT_TRUE(int_matching_ski_a); |
|
std::shared_ptr<const ParsedCertificate> int_matching_ski_b = |
|
ReadCertFromFile(test_dir + "int_matching_ski_b.pem"); |
|
ASSERT_TRUE(int_matching_ski_b); |
|
std::shared_ptr<const ParsedCertificate> int_no_ski_a = |
|
ReadCertFromFile(test_dir + "int_no_ski_a.pem"); |
|
ASSERT_TRUE(int_no_ski_a); |
|
std::shared_ptr<const ParsedCertificate> int_no_ski_b = |
|
ReadCertFromFile(test_dir + "int_no_ski_b.pem"); |
|
ASSERT_TRUE(int_no_ski_b); |
|
std::shared_ptr<const ParsedCertificate> int_different_ski_a = |
|
ReadCertFromFile(test_dir + "int_different_ski_a.pem"); |
|
ASSERT_TRUE(int_different_ski_a); |
|
std::shared_ptr<const ParsedCertificate> int_different_ski_b = |
|
ReadCertFromFile(test_dir + "int_different_ski_b.pem"); |
|
ASSERT_TRUE(int_different_ski_b); |
|
std::shared_ptr<const ParsedCertificate> target = |
|
ReadCertFromFile(test_dir + "target.pem"); |
|
ASSERT_TRUE(target); |
|
|
|
SimplePathBuilderDelegate delegate( |
|
1024, SimplePathBuilderDelegate::DigestPolicy::kWeakAllowSha1); |
|
der::GeneralizedTime verify_time = {2017, 3, 1, 0, 0, 0}; |
|
|
|
// Distrust the root certificate. This will force the path builder to attempt |
|
// all possible paths. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddDistrustedCertificateForTest(root); |
|
|
|
for (bool reverse_input_order : {false, true}) { |
|
SCOPED_TRACE(reverse_input_order); |
|
|
|
CertIssuerSourceStatic intermediates; |
|
// Test with the intermediates supplied in two different orders to ensure |
|
// the results don't depend on input ordering. |
|
if (reverse_input_order) { |
|
intermediates.AddCert(int_different_ski_b); |
|
intermediates.AddCert(int_different_ski_a); |
|
intermediates.AddCert(int_no_ski_b); |
|
intermediates.AddCert(int_no_ski_a); |
|
intermediates.AddCert(int_matching_ski_b); |
|
intermediates.AddCert(int_matching_ski_a); |
|
} else { |
|
intermediates.AddCert(int_matching_ski_a); |
|
intermediates.AddCert(int_matching_ski_b); |
|
intermediates.AddCert(int_no_ski_a); |
|
intermediates.AddCert(int_no_ski_b); |
|
intermediates.AddCert(int_different_ski_a); |
|
intermediates.AddCert(int_different_ski_b); |
|
} |
|
|
|
CertPathBuilder path_builder( |
|
target, &trust_store, &delegate, verify_time, KeyPurpose::ANY_EKU, |
|
InitialExplicitPolicy::kFalse, {der::Input(kAnyPolicyOid)}, |
|
InitialPolicyMappingInhibit::kFalse, InitialAnyPolicyInhibit::kFalse); |
|
path_builder.AddCertIssuerSource(&intermediates); |
|
|
|
CertPathBuilder::Result result = path_builder.Run(); |
|
EXPECT_FALSE(result.HasValidPath()); |
|
ASSERT_EQ(6U, result.paths.size()); |
|
|
|
// Path builder should have attempted paths using the intermediates in |
|
// order: matching_ski_b, matching_ski_a, no_ski_b, no_ski_a, |
|
// different_ski_b, different_ski_a |
|
|
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[0]->certs.size()); |
|
EXPECT_EQ(target, result.paths[0]->certs[0]); |
|
EXPECT_EQ(int_matching_ski_b, result.paths[0]->certs[1]); |
|
EXPECT_EQ(root, result.paths[0]->certs[2]); |
|
|
|
EXPECT_FALSE(result.paths[1]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[1]->certs.size()); |
|
EXPECT_EQ(target, result.paths[1]->certs[0]); |
|
EXPECT_EQ(int_matching_ski_a, result.paths[1]->certs[1]); |
|
EXPECT_EQ(root, result.paths[1]->certs[2]); |
|
|
|
EXPECT_FALSE(result.paths[2]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[2]->certs.size()); |
|
EXPECT_EQ(target, result.paths[2]->certs[0]); |
|
EXPECT_EQ(int_no_ski_b, result.paths[2]->certs[1]); |
|
EXPECT_EQ(root, result.paths[2]->certs[2]); |
|
|
|
EXPECT_FALSE(result.paths[3]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[3]->certs.size()); |
|
EXPECT_EQ(target, result.paths[3]->certs[0]); |
|
EXPECT_EQ(int_no_ski_a, result.paths[3]->certs[1]); |
|
EXPECT_EQ(root, result.paths[3]->certs[2]); |
|
|
|
EXPECT_FALSE(result.paths[4]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[4]->certs.size()); |
|
EXPECT_EQ(target, result.paths[4]->certs[0]); |
|
EXPECT_EQ(int_different_ski_b, result.paths[4]->certs[1]); |
|
EXPECT_EQ(root, result.paths[4]->certs[2]); |
|
|
|
EXPECT_FALSE(result.paths[5]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[5]->certs.size()); |
|
EXPECT_EQ(target, result.paths[5]->certs[0]); |
|
EXPECT_EQ(int_different_ski_a, result.paths[5]->certs[1]); |
|
EXPECT_EQ(root, result.paths[5]->certs[2]); |
|
} |
|
} |
|
|
|
TEST(PathBuilderPrioritizationTest, TrustAndKeyIdPrioritization) { |
|
std::string test_dir = |
|
"testdata/path_builder_unittest/key_id_prioritization/"; |
|
std::shared_ptr<const ParsedCertificate> root = |
|
ReadCertFromFile(test_dir + "root.pem"); |
|
ASSERT_TRUE(root); |
|
std::shared_ptr<const ParsedCertificate> trusted_and_matching = |
|
ReadCertFromFile(test_dir + "int_matching_ski_a.pem"); |
|
ASSERT_TRUE(trusted_and_matching); |
|
std::shared_ptr<const ParsedCertificate> matching = |
|
ReadCertFromFile(test_dir + "int_matching_ski_b.pem"); |
|
ASSERT_TRUE(matching); |
|
std::shared_ptr<const ParsedCertificate> distrusted_and_matching = |
|
ReadCertFromFile(test_dir + "int_matching_ski_c.pem"); |
|
ASSERT_TRUE(distrusted_and_matching); |
|
std::shared_ptr<const ParsedCertificate> trusted_and_no_match_data = |
|
ReadCertFromFile(test_dir + "int_no_ski_a.pem"); |
|
ASSERT_TRUE(trusted_and_no_match_data); |
|
std::shared_ptr<const ParsedCertificate> no_match_data = |
|
ReadCertFromFile(test_dir + "int_no_ski_b.pem"); |
|
ASSERT_TRUE(no_match_data); |
|
std::shared_ptr<const ParsedCertificate> distrusted_and_no_match_data = |
|
ReadCertFromFile(test_dir + "int_no_ski_c.pem"); |
|
ASSERT_TRUE(distrusted_and_no_match_data); |
|
std::shared_ptr<const ParsedCertificate> trusted_and_mismatch = |
|
ReadCertFromFile(test_dir + "int_different_ski_a.pem"); |
|
ASSERT_TRUE(trusted_and_mismatch); |
|
std::shared_ptr<const ParsedCertificate> mismatch = |
|
ReadCertFromFile(test_dir + "int_different_ski_b.pem"); |
|
ASSERT_TRUE(mismatch); |
|
std::shared_ptr<const ParsedCertificate> distrusted_and_mismatch = |
|
ReadCertFromFile(test_dir + "int_different_ski_c.pem"); |
|
ASSERT_TRUE(distrusted_and_mismatch); |
|
std::shared_ptr<const ParsedCertificate> target = |
|
ReadCertFromFile(test_dir + "target.pem"); |
|
ASSERT_TRUE(target); |
|
|
|
SimplePathBuilderDelegate delegate( |
|
1024, SimplePathBuilderDelegate::DigestPolicy::kWeakAllowSha1); |
|
der::GeneralizedTime verify_time = {2017, 3, 1, 0, 0, 0}; |
|
|
|
for (bool reverse_input_order : {false, true}) { |
|
SCOPED_TRACE(reverse_input_order); |
|
|
|
TrustStoreInMemory trust_store; |
|
// Test with the intermediates supplied in two different orders to ensure |
|
// the results don't depend on input ordering. |
|
if (reverse_input_order) { |
|
trust_store.AddTrustAnchor(trusted_and_matching); |
|
trust_store.AddCertificateWithUnspecifiedTrust(matching); |
|
trust_store.AddDistrustedCertificateForTest(distrusted_and_matching); |
|
trust_store.AddTrustAnchor(trusted_and_no_match_data); |
|
trust_store.AddCertificateWithUnspecifiedTrust(no_match_data); |
|
trust_store.AddDistrustedCertificateForTest(distrusted_and_no_match_data); |
|
trust_store.AddTrustAnchor(trusted_and_mismatch); |
|
trust_store.AddCertificateWithUnspecifiedTrust(mismatch); |
|
trust_store.AddDistrustedCertificateForTest(distrusted_and_mismatch); |
|
} else { |
|
trust_store.AddDistrustedCertificateForTest(distrusted_and_matching); |
|
trust_store.AddCertificateWithUnspecifiedTrust(no_match_data); |
|
trust_store.AddTrustAnchor(trusted_and_no_match_data); |
|
trust_store.AddTrustAnchor(trusted_and_matching); |
|
trust_store.AddCertificateWithUnspecifiedTrust(matching); |
|
trust_store.AddCertificateWithUnspecifiedTrust(mismatch); |
|
trust_store.AddDistrustedCertificateForTest(distrusted_and_no_match_data); |
|
trust_store.AddTrustAnchor(trusted_and_mismatch); |
|
trust_store.AddDistrustedCertificateForTest(distrusted_and_mismatch); |
|
} |
|
// Also distrust the root certificate. This will force the path builder to |
|
// report paths that included an unspecified trust intermediate. |
|
trust_store.AddDistrustedCertificateForTest(root); |
|
|
|
CertPathBuilder path_builder( |
|
target, &trust_store, &delegate, verify_time, KeyPurpose::ANY_EKU, |
|
InitialExplicitPolicy::kFalse, {der::Input(kAnyPolicyOid)}, |
|
InitialPolicyMappingInhibit::kFalse, InitialAnyPolicyInhibit::kFalse); |
|
path_builder.SetExploreAllPaths(true); |
|
|
|
CertPathBuilder::Result result = path_builder.Run(); |
|
EXPECT_TRUE(result.HasValidPath()); |
|
ASSERT_EQ(9U, result.paths.size()); |
|
|
|
// Path builder should have attempted paths using the intermediates in |
|
// order: trusted_and_matching, trusted_and_no_match_data, matching, |
|
// no_match_data, trusted_and_mismatch, mismatch, distrusted_and_matching, |
|
// distrusted_and_no_match_data, distrusted_and_mismatch. |
|
|
|
EXPECT_TRUE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(2U, result.paths[0]->certs.size()); |
|
EXPECT_EQ(target, result.paths[0]->certs[0]); |
|
EXPECT_EQ(trusted_and_matching, result.paths[0]->certs[1]); |
|
|
|
EXPECT_TRUE(result.paths[1]->IsValid()); |
|
ASSERT_EQ(2U, result.paths[1]->certs.size()); |
|
EXPECT_EQ(target, result.paths[1]->certs[0]); |
|
EXPECT_EQ(trusted_and_no_match_data, result.paths[1]->certs[1]); |
|
|
|
EXPECT_FALSE(result.paths[2]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[2]->certs.size()); |
|
EXPECT_EQ(target, result.paths[2]->certs[0]); |
|
EXPECT_EQ(matching, result.paths[2]->certs[1]); |
|
EXPECT_EQ(root, result.paths[2]->certs[2]); |
|
|
|
EXPECT_FALSE(result.paths[3]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[3]->certs.size()); |
|
EXPECT_EQ(target, result.paths[3]->certs[0]); |
|
EXPECT_EQ(no_match_data, result.paths[3]->certs[1]); |
|
EXPECT_EQ(root, result.paths[3]->certs[2]); |
|
|
|
// Although this intermediate is trusted, it has the wrong key, so |
|
// the path should not be valid. |
|
EXPECT_FALSE(result.paths[4]->IsValid()); |
|
ASSERT_EQ(2U, result.paths[4]->certs.size()); |
|
EXPECT_EQ(target, result.paths[4]->certs[0]); |
|
EXPECT_EQ(trusted_and_mismatch, result.paths[4]->certs[1]); |
|
|
|
EXPECT_FALSE(result.paths[5]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[5]->certs.size()); |
|
EXPECT_EQ(target, result.paths[5]->certs[0]); |
|
EXPECT_EQ(mismatch, result.paths[5]->certs[1]); |
|
EXPECT_EQ(root, result.paths[5]->certs[2]); |
|
|
|
EXPECT_FALSE(result.paths[6]->IsValid()); |
|
ASSERT_EQ(2U, result.paths[6]->certs.size()); |
|
EXPECT_EQ(target, result.paths[6]->certs[0]); |
|
EXPECT_EQ(distrusted_and_matching, result.paths[6]->certs[1]); |
|
|
|
EXPECT_FALSE(result.paths[7]->IsValid()); |
|
ASSERT_EQ(2U, result.paths[7]->certs.size()); |
|
EXPECT_EQ(target, result.paths[7]->certs[0]); |
|
EXPECT_EQ(distrusted_and_no_match_data, result.paths[7]->certs[1]); |
|
|
|
EXPECT_FALSE(result.paths[8]->IsValid()); |
|
ASSERT_EQ(2U, result.paths[8]->certs.size()); |
|
EXPECT_EQ(target, result.paths[8]->certs[0]); |
|
EXPECT_EQ(distrusted_and_mismatch, result.paths[8]->certs[1]); |
|
} |
|
} |
|
|
|
// PathBuilder does not support prioritization based on the issuer name & |
|
// serial in authorityKeyIdentifier, so this test just ensures that it does not |
|
// affect prioritization order and that it is generally just ignored |
|
// completely. |
|
TEST(PathBuilderPrioritizationTest, KeyIdNameAndSerialPrioritization) { |
|
std::string test_dir = |
|
"testdata/path_builder_unittest/key_id_name_and_serial_prioritization/"; |
|
std::shared_ptr<const ParsedCertificate> root = |
|
ReadCertFromFile(test_dir + "root.pem"); |
|
ASSERT_TRUE(root); |
|
std::shared_ptr<const ParsedCertificate> root2 = |
|
ReadCertFromFile(test_dir + "root2.pem"); |
|
ASSERT_TRUE(root2); |
|
std::shared_ptr<const ParsedCertificate> int_matching = |
|
ReadCertFromFile(test_dir + "int_matching.pem"); |
|
ASSERT_TRUE(int_matching); |
|
std::shared_ptr<const ParsedCertificate> int_match_name_only = |
|
ReadCertFromFile(test_dir + "int_match_name_only.pem"); |
|
ASSERT_TRUE(int_match_name_only); |
|
std::shared_ptr<const ParsedCertificate> int_mismatch = |
|
ReadCertFromFile(test_dir + "int_mismatch.pem"); |
|
ASSERT_TRUE(int_mismatch); |
|
std::shared_ptr<const ParsedCertificate> target = |
|
ReadCertFromFile(test_dir + "target.pem"); |
|
ASSERT_TRUE(target); |
|
|
|
SimplePathBuilderDelegate delegate( |
|
1024, SimplePathBuilderDelegate::DigestPolicy::kWeakAllowSha1); |
|
der::GeneralizedTime verify_time = {2017, 3, 1, 0, 0, 0}; |
|
|
|
// Distrust the root certificates. This will force the path builder to attempt |
|
// all possible paths. |
|
TrustStoreInMemory trust_store; |
|
trust_store.AddDistrustedCertificateForTest(root); |
|
trust_store.AddDistrustedCertificateForTest(root2); |
|
|
|
for (bool reverse_input_order : {false, true}) { |
|
SCOPED_TRACE(reverse_input_order); |
|
|
|
CertIssuerSourceStatic intermediates; |
|
// Test with the intermediates supplied in two different orders to ensure |
|
// the results don't depend on input ordering. |
|
if (reverse_input_order) { |
|
intermediates.AddCert(int_mismatch); |
|
intermediates.AddCert(int_match_name_only); |
|
intermediates.AddCert(int_matching); |
|
} else { |
|
intermediates.AddCert(int_matching); |
|
intermediates.AddCert(int_match_name_only); |
|
intermediates.AddCert(int_mismatch); |
|
} |
|
|
|
CertPathBuilder path_builder( |
|
target, &trust_store, &delegate, verify_time, KeyPurpose::ANY_EKU, |
|
InitialExplicitPolicy::kFalse, {der::Input(kAnyPolicyOid)}, |
|
InitialPolicyMappingInhibit::kFalse, InitialAnyPolicyInhibit::kFalse); |
|
path_builder.AddCertIssuerSource(&intermediates); |
|
|
|
CertPathBuilder::Result result = path_builder.Run(); |
|
EXPECT_FALSE(result.HasValidPath()); |
|
ASSERT_EQ(3U, result.paths.size()); |
|
|
|
// The serial & issuer method is not used in prioritization, so the certs |
|
// should have been prioritized based on dates. The test certs have the |
|
// date priority order in the reverse of what authorityKeyIdentifier |
|
// prioritization would have done if it were supported. |
|
// Path builder should have attempted paths using the intermediates in |
|
// order: mismatch, match_name_only, matching |
|
|
|
EXPECT_FALSE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[0]->certs.size()); |
|
EXPECT_EQ(target, result.paths[0]->certs[0]); |
|
EXPECT_EQ(int_mismatch, result.paths[0]->certs[1]); |
|
EXPECT_EQ(root2, result.paths[0]->certs[2]); |
|
|
|
EXPECT_FALSE(result.paths[1]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[1]->certs.size()); |
|
EXPECT_EQ(target, result.paths[1]->certs[0]); |
|
EXPECT_EQ(int_match_name_only, result.paths[1]->certs[1]); |
|
EXPECT_EQ(root, result.paths[1]->certs[2]); |
|
|
|
EXPECT_FALSE(result.paths[2]->IsValid()); |
|
ASSERT_EQ(3U, result.paths[2]->certs.size()); |
|
EXPECT_EQ(target, result.paths[2]->certs[0]); |
|
EXPECT_EQ(int_matching, result.paths[2]->certs[1]); |
|
EXPECT_EQ(root, result.paths[2]->certs[2]); |
|
} |
|
} |
|
|
|
TEST(PathBuilderPrioritizationTest, SelfIssuedPrioritization) { |
|
std::string test_dir = |
|
"testdata/path_builder_unittest/self_issued_prioritization/"; |
|
std::shared_ptr<const ParsedCertificate> root1 = |
|
ReadCertFromFile(test_dir + "root1.pem"); |
|
ASSERT_TRUE(root1); |
|
std::shared_ptr<const ParsedCertificate> root1_cross = |
|
ReadCertFromFile(test_dir + "root1_cross.pem"); |
|
ASSERT_TRUE(root1_cross); |
|
std::shared_ptr<const ParsedCertificate> target = |
|
ReadCertFromFile(test_dir + "target.pem"); |
|
ASSERT_TRUE(target); |
|
|
|
SimplePathBuilderDelegate delegate( |
|
1024, SimplePathBuilderDelegate::DigestPolicy::kWeakAllowSha1); |
|
der::GeneralizedTime verify_time = {2017, 3, 1, 0, 0, 0}; |
|
|
|
TrustStoreInMemory trust_store; |
|
trust_store.AddTrustAnchor(root1); |
|
trust_store.AddTrustAnchor(root1_cross); |
|
CertPathBuilder path_builder( |
|
target, &trust_store, &delegate, verify_time, KeyPurpose::ANY_EKU, |
|
InitialExplicitPolicy::kFalse, {der::Input(kAnyPolicyOid)}, |
|
InitialPolicyMappingInhibit::kFalse, InitialAnyPolicyInhibit::kFalse); |
|
path_builder.SetExploreAllPaths(true); |
|
|
|
CertPathBuilder::Result result = path_builder.Run(); |
|
EXPECT_TRUE(result.HasValidPath()); |
|
|
|
// Path builder should have built paths to both trusted roots. |
|
ASSERT_EQ(2U, result.paths.size()); |
|
|
|
// |root1| should have been preferred because it is self-issued, even though |
|
// the notBefore date is older than |root1_cross|. |
|
EXPECT_TRUE(result.paths[0]->IsValid()); |
|
ASSERT_EQ(2U, result.paths[0]->certs.size()); |
|
EXPECT_EQ(target, result.paths[0]->certs[0]); |
|
EXPECT_EQ(root1, result.paths[0]->certs[1]); |
|
|
|
EXPECT_TRUE(result.paths[1]->IsValid()); |
|
ASSERT_EQ(2U, result.paths[1]->certs.size()); |
|
EXPECT_EQ(target, result.paths[1]->certs[0]); |
|
EXPECT_EQ(root1_cross, result.paths[1]->certs[1]); |
|
} |
|
|
|
} // namespace |
|
|
|
} // namespace net
|
|
|