Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1176 lines
45 KiB
1176 lines
45 KiB
// Copyright 2015 The Chromium Authors |
|
// Use of this source code is governed by a BSD-style license that can be |
|
// found in the LICENSE file. |
|
|
|
#include "parse_certificate.h" |
|
|
|
#include "cert_errors.h" |
|
#include "general_names.h" |
|
#include "parsed_certificate.h" |
|
#include "test_helpers.h" |
|
#include "input.h" |
|
#include <gtest/gtest.h> |
|
#include <openssl/pool.h> |
|
|
|
namespace bssl { |
|
|
|
namespace { |
|
|
|
// Pretty-prints a GeneralizedTime as a human-readable string for use in test |
|
// expectations (it is more readable to specify the expected results as a |
|
// string). |
|
std::string ToString(const der::GeneralizedTime& time) { |
|
std::ostringstream pretty_time; |
|
pretty_time << "year=" << int{time.year} << ", month=" << int{time.month} |
|
<< ", day=" << int{time.day} << ", hours=" << int{time.hours} |
|
<< ", minutes=" << int{time.minutes} |
|
<< ", seconds=" << int{time.seconds}; |
|
return pretty_time.str(); |
|
} |
|
|
|
std::string GetFilePath(const std::string& file_name) { |
|
return std::string("testdata/parse_certificate_unittest/") + file_name; |
|
} |
|
|
|
// Loads certificate data and expectations from the PEM file |file_name|. |
|
// Verifies that parsing the Certificate matches expectations: |
|
// * If expected to fail, emits the expected errors |
|
// * If expected to succeeds, the parsed fields match expectations |
|
void RunCertificateTest(const std::string& file_name) { |
|
std::string data; |
|
std::string expected_errors; |
|
std::string expected_tbs_certificate; |
|
std::string expected_signature_algorithm; |
|
std::string expected_signature; |
|
|
|
// Read the certificate data and test expectations from a single PEM file. |
|
const PemBlockMapping mappings[] = { |
|
{"CERTIFICATE", &data}, |
|
{"ERRORS", &expected_errors, true /*optional*/}, |
|
{"SIGNATURE", &expected_signature, true /*optional*/}, |
|
{"SIGNATURE ALGORITHM", &expected_signature_algorithm, true /*optional*/}, |
|
{"TBS CERTIFICATE", &expected_tbs_certificate, true /*optional*/}, |
|
}; |
|
std::string test_file_path = GetFilePath(file_name); |
|
ASSERT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings)); |
|
|
|
// Note that empty expected_errors doesn't necessarily mean success. |
|
bool expected_result = !expected_tbs_certificate.empty(); |
|
|
|
// Parsing the certificate. |
|
der::Input tbs_certificate_tlv; |
|
der::Input signature_algorithm_tlv; |
|
der::BitString signature_value; |
|
CertErrors errors; |
|
bool actual_result = |
|
ParseCertificate(der::Input(data), &tbs_certificate_tlv, |
|
&signature_algorithm_tlv, &signature_value, &errors); |
|
|
|
EXPECT_EQ(expected_result, actual_result); |
|
VerifyCertErrors(expected_errors, errors, test_file_path); |
|
|
|
// Ensure that the parsed certificate matches expectations. |
|
if (expected_result && actual_result) { |
|
EXPECT_EQ(0, signature_value.unused_bits()); |
|
EXPECT_EQ(der::Input(expected_signature), signature_value.bytes()); |
|
EXPECT_EQ(der::Input(expected_signature_algorithm), |
|
signature_algorithm_tlv); |
|
EXPECT_EQ(der::Input(expected_tbs_certificate), tbs_certificate_tlv); |
|
} |
|
} |
|
|
|
// Tests parsing a Certificate. |
|
TEST(ParseCertificateTest, Version3) { |
|
RunCertificateTest("cert_version3.pem"); |
|
} |
|
|
|
// Tests parsing a simplified Certificate-like structure (the sub-fields for |
|
// algorithm and tbsCertificate are not actually valid, but ParseCertificate() |
|
// doesn't check them) |
|
TEST(ParseCertificateTest, Skeleton) { |
|
RunCertificateTest("cert_skeleton.pem"); |
|
} |
|
|
|
// Tests parsing a Certificate that is not a sequence fails. |
|
TEST(ParseCertificateTest, NotSequence) { |
|
RunCertificateTest("cert_not_sequence.pem"); |
|
} |
|
|
|
// Tests that uncomsumed data is not allowed after the main SEQUENCE. |
|
TEST(ParseCertificateTest, DataAfterSignature) { |
|
RunCertificateTest("cert_data_after_signature.pem"); |
|
} |
|
|
|
// Tests that parsing fails if the signature BIT STRING is missing. |
|
TEST(ParseCertificateTest, MissingSignature) { |
|
RunCertificateTest("cert_missing_signature.pem"); |
|
} |
|
|
|
// Tests that parsing fails if the signature is present but not a BIT STRING. |
|
TEST(ParseCertificateTest, SignatureNotBitString) { |
|
RunCertificateTest("cert_signature_not_bit_string.pem"); |
|
} |
|
|
|
// Tests that parsing fails if the main SEQUENCE is empty (missing all the |
|
// fields). |
|
TEST(ParseCertificateTest, EmptySequence) { |
|
RunCertificateTest("cert_empty_sequence.pem"); |
|
} |
|
|
|
// Tests what happens when the signature algorithm is present, but has the wrong |
|
// tag. |
|
TEST(ParseCertificateTest, AlgorithmNotSequence) { |
|
RunCertificateTest("cert_algorithm_not_sequence.pem"); |
|
} |
|
|
|
// Loads tbsCertificate data and expectations from the PEM file |file_name|. |
|
// Verifies that parsing the TBSCertificate succeeds, and each parsed field |
|
// matches the expectations. |
|
// |
|
// TODO(eroman): Get rid of the |expected_version| parameter -- this should be |
|
// encoded in the test expectations file. |
|
void RunTbsCertificateTestGivenVersion(const std::string& file_name, |
|
CertificateVersion expected_version) { |
|
std::string data; |
|
std::string expected_serial_number; |
|
std::string expected_signature_algorithm; |
|
std::string expected_issuer; |
|
std::string expected_validity_not_before; |
|
std::string expected_validity_not_after; |
|
std::string expected_subject; |
|
std::string expected_spki; |
|
std::string expected_issuer_unique_id; |
|
std::string expected_subject_unique_id; |
|
std::string expected_extensions; |
|
std::string expected_errors; |
|
|
|
// Read the certificate data and test expectations from a single PEM file. |
|
const PemBlockMapping mappings[] = { |
|
{"TBS CERTIFICATE", &data}, |
|
{"SIGNATURE ALGORITHM", &expected_signature_algorithm, true}, |
|
{"SERIAL NUMBER", &expected_serial_number, true}, |
|
{"ISSUER", &expected_issuer, true}, |
|
{"VALIDITY NOTBEFORE", &expected_validity_not_before, true}, |
|
{"VALIDITY NOTAFTER", &expected_validity_not_after, true}, |
|
{"SUBJECT", &expected_subject, true}, |
|
{"SPKI", &expected_spki, true}, |
|
{"ISSUER UNIQUE ID", &expected_issuer_unique_id, true}, |
|
{"SUBJECT UNIQUE ID", &expected_subject_unique_id, true}, |
|
{"EXTENSIONS", &expected_extensions, true}, |
|
{"ERRORS", &expected_errors, true}, |
|
}; |
|
std::string test_file_path = GetFilePath(file_name); |
|
ASSERT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings)); |
|
|
|
bool expected_result = !expected_spki.empty(); |
|
|
|
ParsedTbsCertificate parsed; |
|
CertErrors errors; |
|
bool actual_result = |
|
ParseTbsCertificate(der::Input(data), {}, &parsed, &errors); |
|
|
|
EXPECT_EQ(expected_result, actual_result); |
|
VerifyCertErrors(expected_errors, errors, test_file_path); |
|
|
|
if (!expected_result || !actual_result) |
|
return; |
|
|
|
// Ensure that the ParsedTbsCertificate matches expectations. |
|
EXPECT_EQ(expected_version, parsed.version); |
|
|
|
EXPECT_EQ(der::Input(expected_serial_number), parsed.serial_number); |
|
EXPECT_EQ(der::Input(expected_signature_algorithm), |
|
parsed.signature_algorithm_tlv); |
|
|
|
EXPECT_EQ(der::Input(expected_issuer), parsed.issuer_tlv); |
|
|
|
// In the test expectations PEM file, validity is described as a |
|
// textual string of the parsed value (rather than as DER). |
|
EXPECT_EQ(expected_validity_not_before, ToString(parsed.validity_not_before)); |
|
EXPECT_EQ(expected_validity_not_after, ToString(parsed.validity_not_after)); |
|
|
|
EXPECT_EQ(der::Input(expected_subject), parsed.subject_tlv); |
|
EXPECT_EQ(der::Input(expected_spki), parsed.spki_tlv); |
|
|
|
EXPECT_EQ(!expected_issuer_unique_id.empty(), |
|
parsed.issuer_unique_id.has_value()); |
|
if (parsed.issuer_unique_id.has_value()) { |
|
EXPECT_EQ(der::Input(expected_issuer_unique_id), |
|
parsed.issuer_unique_id->bytes()); |
|
} |
|
EXPECT_EQ(!expected_subject_unique_id.empty(), |
|
parsed.subject_unique_id.has_value()); |
|
if (parsed.subject_unique_id.has_value()) { |
|
EXPECT_EQ(der::Input(expected_subject_unique_id), |
|
parsed.subject_unique_id->bytes()); |
|
} |
|
|
|
EXPECT_EQ(!expected_extensions.empty(), parsed.extensions_tlv.has_value()); |
|
if (parsed.extensions_tlv) { |
|
EXPECT_EQ(der::Input(expected_extensions), parsed.extensions_tlv.value()); |
|
} |
|
} |
|
|
|
void RunTbsCertificateTest(const std::string& file_name) { |
|
RunTbsCertificateTestGivenVersion(file_name, CertificateVersion::V3); |
|
} |
|
|
|
// Tests parsing a TBSCertificate for v3 that contains no optional fields. |
|
TEST(ParseTbsCertificateTest, Version3NoOptionals) { |
|
RunTbsCertificateTest("tbs_v3_no_optionals.pem"); |
|
} |
|
|
|
// Tests parsing a TBSCertificate for v3 that contains extensions. |
|
TEST(ParseTbsCertificateTest, Version3WithExtensions) { |
|
RunTbsCertificateTest("tbs_v3_extensions.pem"); |
|
} |
|
|
|
// Tests parsing a TBSCertificate which lacks a version number (causing it to |
|
// default to v1). |
|
TEST(ParseTbsCertificateTest, Version1) { |
|
RunTbsCertificateTestGivenVersion("tbs_v1.pem", CertificateVersion::V1); |
|
} |
|
|
|
// The version was set to v1 explicitly rather than omitting the version field. |
|
TEST(ParseTbsCertificateTest, ExplicitVersion1) { |
|
RunTbsCertificateTest("tbs_explicit_v1.pem"); |
|
} |
|
|
|
// Extensions are not defined in version 1. |
|
TEST(ParseTbsCertificateTest, Version1WithExtensions) { |
|
RunTbsCertificateTest("tbs_v1_extensions.pem"); |
|
} |
|
|
|
// Extensions are not defined in version 2. |
|
TEST(ParseTbsCertificateTest, Version2WithExtensions) { |
|
RunTbsCertificateTest("tbs_v2_extensions.pem"); |
|
} |
|
|
|
// A boring version 2 certificate with none of the optional fields. |
|
TEST(ParseTbsCertificateTest, Version2NoOptionals) { |
|
RunTbsCertificateTestGivenVersion("tbs_v2_no_optionals.pem", |
|
CertificateVersion::V2); |
|
} |
|
|
|
// A version 2 certificate with an issuer unique ID field. |
|
TEST(ParseTbsCertificateTest, Version2IssuerUniqueId) { |
|
RunTbsCertificateTestGivenVersion("tbs_v2_issuer_unique_id.pem", |
|
CertificateVersion::V2); |
|
} |
|
|
|
// A version 2 certificate with both a issuer and subject unique ID field. |
|
TEST(ParseTbsCertificateTest, Version2IssuerAndSubjectUniqueId) { |
|
RunTbsCertificateTestGivenVersion("tbs_v2_issuer_and_subject_unique_id.pem", |
|
CertificateVersion::V2); |
|
} |
|
|
|
// A version 3 certificate with all of the optional fields (issuer unique id, |
|
// subject unique id, and extensions). |
|
TEST(ParseTbsCertificateTest, Version3AllOptionals) { |
|
RunTbsCertificateTest("tbs_v3_all_optionals.pem"); |
|
} |
|
|
|
// The version was set to v4, which is unrecognized. |
|
TEST(ParseTbsCertificateTest, Version4) { |
|
RunTbsCertificateTest("tbs_v4.pem"); |
|
} |
|
|
|
// Tests that extraneous data after extensions in a v3 is rejected. |
|
TEST(ParseTbsCertificateTest, Version3DataAfterExtensions) { |
|
RunTbsCertificateTest("tbs_v3_data_after_extensions.pem"); |
|
} |
|
|
|
// Tests using a real-world certificate (whereas the other tests are fabricated |
|
// (and in fact invalid) data. |
|
TEST(ParseTbsCertificateTest, Version3Real) { |
|
RunTbsCertificateTest("tbs_v3_real.pem"); |
|
} |
|
|
|
// Parses a TBSCertificate whose "validity" field expresses both notBefore |
|
// and notAfter using UTCTime. |
|
TEST(ParseTbsCertificateTest, ValidityBothUtcTime) { |
|
RunTbsCertificateTest("tbs_validity_both_utc_time.pem"); |
|
} |
|
|
|
// Parses a TBSCertificate whose "validity" field expresses both notBefore |
|
// and notAfter using GeneralizedTime. |
|
TEST(ParseTbsCertificateTest, ValidityBothGeneralizedTime) { |
|
RunTbsCertificateTest("tbs_validity_both_generalized_time.pem"); |
|
} |
|
|
|
// Parses a TBSCertificate whose "validity" field expresses notBefore using |
|
// UTCTime and notAfter using GeneralizedTime. |
|
TEST(ParseTbsCertificateTest, ValidityUTCTimeAndGeneralizedTime) { |
|
RunTbsCertificateTest("tbs_validity_utc_time_and_generalized_time.pem"); |
|
} |
|
|
|
// Parses a TBSCertificate whose validity" field expresses notBefore using |
|
// GeneralizedTime and notAfter using UTCTime. Also of interest, notBefore > |
|
// notAfter. Parsing will succeed, however no time can satisfy this constraint. |
|
TEST(ParseTbsCertificateTest, ValidityGeneralizedTimeAndUTCTime) { |
|
RunTbsCertificateTest("tbs_validity_generalized_time_and_utc_time.pem"); |
|
} |
|
|
|
// Parses a TBSCertificate whose "validity" field does not strictly follow |
|
// the DER rules (and fails to be parsed). |
|
TEST(ParseTbsCertificateTest, ValidityRelaxed) { |
|
RunTbsCertificateTest("tbs_validity_relaxed.pem"); |
|
} |
|
|
|
// Parses a KeyUsage with a single 0 bit. |
|
TEST(ParseKeyUsageTest, OneBitAllZeros) { |
|
const uint8_t der[] = { |
|
0x03, 0x02, // BIT STRING |
|
0x07, // Number of unused bits |
|
0x00, // bits |
|
}; |
|
|
|
der::BitString key_usage; |
|
ASSERT_FALSE(ParseKeyUsage(der::Input(der), &key_usage)); |
|
} |
|
|
|
// Parses a KeyUsage with 32 bits that are all 0. |
|
TEST(ParseKeyUsageTest, 32BitsAllZeros) { |
|
const uint8_t der[] = { |
|
0x03, 0x05, // BIT STRING |
|
0x00, // Number of unused bits |
|
0x00, 0x00, 0x00, 0x00, |
|
}; |
|
|
|
der::BitString key_usage; |
|
ASSERT_FALSE(ParseKeyUsage(der::Input(der), &key_usage)); |
|
} |
|
|
|
// Parses a KeyUsage with 32 bits, one of which is 1 (but not in recognized |
|
// set). |
|
TEST(ParseKeyUsageTest, 32BitsOneSet) { |
|
const uint8_t der[] = { |
|
0x03, 0x05, // BIT STRING |
|
0x00, // Number of unused bits |
|
0x00, 0x00, 0x00, 0x02, |
|
}; |
|
|
|
der::BitString key_usage; |
|
ASSERT_TRUE(ParseKeyUsage(der::Input(der), &key_usage)); |
|
|
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DIGITAL_SIGNATURE)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_NON_REPUDIATION)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_ENCIPHERMENT)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DATA_ENCIPHERMENT)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_AGREEMENT)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_CRL_SIGN)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_ENCIPHER_ONLY)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DECIPHER_ONLY)); |
|
} |
|
|
|
// Parses a KeyUsage containing bit string 101. |
|
TEST(ParseKeyUsageTest, ThreeBits) { |
|
const uint8_t der[] = { |
|
0x03, 0x02, // BIT STRING |
|
0x05, // Number of unused bits |
|
0xA0, // bits |
|
}; |
|
|
|
der::BitString key_usage; |
|
ASSERT_TRUE(ParseKeyUsage(der::Input(der), &key_usage)); |
|
|
|
EXPECT_TRUE(key_usage.AssertsBit(KEY_USAGE_BIT_DIGITAL_SIGNATURE)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_NON_REPUDIATION)); |
|
EXPECT_TRUE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_ENCIPHERMENT)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DATA_ENCIPHERMENT)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_AGREEMENT)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_CRL_SIGN)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_ENCIPHER_ONLY)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DECIPHER_ONLY)); |
|
} |
|
|
|
// Parses a KeyUsage containing DECIPHER_ONLY, which is the |
|
// only bit that doesn't fit in the first byte. |
|
TEST(ParseKeyUsageTest, DecipherOnly) { |
|
const uint8_t der[] = { |
|
0x03, 0x03, // BIT STRING |
|
0x07, // Number of unused bits |
|
0x00, 0x80, // bits |
|
}; |
|
|
|
der::BitString key_usage; |
|
ASSERT_TRUE(ParseKeyUsage(der::Input(der), &key_usage)); |
|
|
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DIGITAL_SIGNATURE)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_NON_REPUDIATION)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_ENCIPHERMENT)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DATA_ENCIPHERMENT)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_AGREEMENT)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_CRL_SIGN)); |
|
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_ENCIPHER_ONLY)); |
|
EXPECT_TRUE(key_usage.AssertsBit(KEY_USAGE_BIT_DECIPHER_ONLY)); |
|
} |
|
|
|
// Parses an empty KeyUsage. |
|
TEST(ParseKeyUsageTest, Empty) { |
|
const uint8_t der[] = { |
|
0x03, 0x01, // BIT STRING |
|
0x00, // Number of unused bits |
|
}; |
|
|
|
der::BitString key_usage; |
|
ASSERT_FALSE(ParseKeyUsage(der::Input(der), &key_usage)); |
|
} |
|
|
|
TEST(ParseAuthorityInfoAccess, BasicTests) { |
|
// SEQUENCE { |
|
// SEQUENCE { |
|
// # ocsp with directoryName |
|
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.1 } |
|
// [4] { |
|
// SEQUENCE { |
|
// SET { |
|
// SEQUENCE { |
|
// # commonName |
|
// OBJECT_IDENTIFIER { 2.5.4.3 } |
|
// PrintableString { "ocsp" } |
|
// } |
|
// } |
|
// } |
|
// } |
|
// } |
|
// SEQUENCE { |
|
// # caIssuers with directoryName |
|
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.2 } |
|
// [4] { |
|
// SEQUENCE { |
|
// SET { |
|
// SEQUENCE { |
|
// # commonName |
|
// OBJECT_IDENTIFIER { 2.5.4.3 } |
|
// PrintableString { "ca issuer" } |
|
// } |
|
// } |
|
// } |
|
// } |
|
// } |
|
// SEQUENCE { |
|
// # non-standard method with URI |
|
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.3 } |
|
// [6 PRIMITIVE] { "http://nonstandard.example.com" } |
|
// } |
|
// SEQUENCE { |
|
// # ocsp with URI |
|
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.1 } |
|
// [6 PRIMITIVE] { "http://ocsp.example.com" } |
|
// } |
|
// SEQUENCE { |
|
// # caIssuers with URI |
|
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.2 } |
|
// [6 PRIMITIVE] { "http://www.example.com/issuer.crt" } |
|
// } |
|
// } |
|
const uint8_t der[] = { |
|
0x30, 0x81, 0xc3, 0x30, 0x1d, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, |
|
0x07, 0x30, 0x01, 0xa4, 0x11, 0x30, 0x0f, 0x31, 0x0d, 0x30, 0x0b, 0x06, |
|
0x03, 0x55, 0x04, 0x03, 0x13, 0x04, 0x6f, 0x63, 0x73, 0x70, 0x30, 0x22, |
|
0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x02, 0xa4, 0x16, |
|
0x30, 0x14, 0x31, 0x12, 0x30, 0x10, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, |
|
0x09, 0x63, 0x61, 0x20, 0x69, 0x73, 0x73, 0x75, 0x65, 0x72, 0x30, 0x2a, |
|
0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x03, 0x86, 0x1e, |
|
0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6e, 0x6f, 0x6e, 0x73, 0x74, |
|
0x61, 0x6e, 0x64, 0x61, 0x72, 0x64, 0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, |
|
0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d, 0x30, 0x23, 0x06, 0x08, 0x2b, 0x06, |
|
0x01, 0x05, 0x05, 0x07, 0x30, 0x01, 0x86, 0x17, 0x68, 0x74, 0x74, 0x70, |
|
0x3a, 0x2f, 0x2f, 0x6f, 0x63, 0x73, 0x70, 0x2e, 0x65, 0x78, 0x61, 0x6d, |
|
0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d, 0x30, 0x2d, 0x06, 0x08, 0x2b, |
|
0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x02, 0x86, 0x21, 0x68, 0x74, 0x74, |
|
0x70, 0x3a, 0x2f, 0x2f, 0x77, 0x77, 0x77, 0x2e, 0x65, 0x78, 0x61, 0x6d, |
|
0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x69, 0x73, 0x73, 0x75, |
|
0x65, 0x72, 0x2e, 0x63, 0x72, 0x74}; |
|
|
|
std::vector<AuthorityInfoAccessDescription> access_descriptions; |
|
ASSERT_TRUE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions)); |
|
ASSERT_EQ(5u, access_descriptions.size()); |
|
{ |
|
const auto& desc = access_descriptions[0]; |
|
EXPECT_EQ(der::Input(kAdOcspOid), desc.access_method_oid); |
|
const uint8_t location_der[] = {0xa4, 0x11, 0x30, 0x0f, 0x31, 0x0d, 0x30, |
|
0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, |
|
0x04, 0x6f, 0x63, 0x73, 0x70}; |
|
EXPECT_EQ(der::Input(location_der), desc.access_location); |
|
} |
|
{ |
|
const auto& desc = access_descriptions[1]; |
|
EXPECT_EQ(der::Input(kAdCaIssuersOid), desc.access_method_oid); |
|
const uint8_t location_der[] = { |
|
0xa4, 0x16, 0x30, 0x14, 0x31, 0x12, 0x30, 0x10, 0x06, 0x03, 0x55, 0x04, |
|
0x03, 0x13, 0x09, 0x63, 0x61, 0x20, 0x69, 0x73, 0x73, 0x75, 0x65, 0x72}; |
|
EXPECT_EQ(der::Input(location_der), desc.access_location); |
|
} |
|
{ |
|
const auto& desc = access_descriptions[2]; |
|
const uint8_t method_oid[] = {0x2b, 0x06, 0x01, 0x05, |
|
0x05, 0x07, 0x30, 0x03}; |
|
EXPECT_EQ(der::Input(method_oid), desc.access_method_oid); |
|
const uint8_t location_der[] = { |
|
0x86, 0x1e, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6e, 0x6f, |
|
0x6e, 0x73, 0x74, 0x61, 0x6e, 0x64, 0x61, 0x72, 0x64, 0x2e, 0x65, |
|
0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d}; |
|
EXPECT_EQ(der::Input(location_der), desc.access_location); |
|
} |
|
{ |
|
const auto& desc = access_descriptions[3]; |
|
EXPECT_EQ(der::Input(kAdOcspOid), desc.access_method_oid); |
|
const uint8_t location_der[] = {0x86, 0x17, 0x68, 0x74, 0x74, 0x70, 0x3a, |
|
0x2f, 0x2f, 0x6f, 0x63, 0x73, 0x70, 0x2e, |
|
0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, |
|
0x2e, 0x63, 0x6f, 0x6d}; |
|
EXPECT_EQ(der::Input(location_der), desc.access_location); |
|
} |
|
{ |
|
const auto& desc = access_descriptions[4]; |
|
EXPECT_EQ(der::Input(kAdCaIssuersOid), desc.access_method_oid); |
|
const uint8_t location_der[] = { |
|
0x86, 0x21, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x77, 0x77, 0x77, |
|
0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d, |
|
0x2f, 0x69, 0x73, 0x73, 0x75, 0x65, 0x72, 0x2e, 0x63, 0x72, 0x74}; |
|
EXPECT_EQ(der::Input(location_der), desc.access_location); |
|
} |
|
|
|
std::vector<std::string_view> ca_issuers_uris, ocsp_uris; |
|
ASSERT_TRUE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris, |
|
&ocsp_uris)); |
|
ASSERT_EQ(1u, ca_issuers_uris.size()); |
|
EXPECT_EQ("http://www.example.com/issuer.crt", ca_issuers_uris.front()); |
|
ASSERT_EQ(1u, ocsp_uris.size()); |
|
EXPECT_EQ("http://ocsp.example.com", ocsp_uris.front()); |
|
} |
|
|
|
TEST(ParseAuthorityInfoAccess, NoOcspOrCaIssuersURIs) { |
|
// SEQUENCE { |
|
// SEQUENCE { |
|
// # non-standard method with directoryName |
|
// OBJECT_IDENTIFIER { 1.2.3 } |
|
// [4] { |
|
// SEQUENCE { |
|
// SET { |
|
// SEQUENCE { |
|
// # commonName |
|
// OBJECT_IDENTIFIER { 2.5.4.3 } |
|
// PrintableString { "foo" } |
|
// } |
|
// } |
|
// } |
|
// } |
|
// } |
|
// } |
|
const uint8_t der[] = {0x30, 0x18, 0x30, 0x16, 0x06, 0x02, 0x2a, 0x03, 0xa4, |
|
0x10, 0x30, 0x0e, 0x31, 0x0c, 0x30, 0x0a, 0x06, 0x03, |
|
0x55, 0x04, 0x03, 0x13, 0x03, 0x66, 0x6f, 0x6f}; |
|
|
|
std::vector<AuthorityInfoAccessDescription> access_descriptions; |
|
ASSERT_TRUE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions)); |
|
ASSERT_EQ(1u, access_descriptions.size()); |
|
const auto& desc = access_descriptions[0]; |
|
const uint8_t method_oid[] = {0x2a, 0x03}; |
|
EXPECT_EQ(der::Input(method_oid), desc.access_method_oid); |
|
const uint8_t location_der[] = {0xa4, 0x10, 0x30, 0x0e, 0x31, 0x0c, |
|
0x30, 0x0a, 0x06, 0x03, 0x55, 0x04, |
|
0x03, 0x13, 0x03, 0x66, 0x6f, 0x6f}; |
|
EXPECT_EQ(der::Input(location_der), desc.access_location); |
|
|
|
std::vector<std::string_view> ca_issuers_uris, ocsp_uris; |
|
// ParseAuthorityInfoAccessURIs should still return success since it was a |
|
// valid AuthorityInfoAccess extension, even though it did not contain any |
|
// elements we care about, and both output vectors should be empty. |
|
ASSERT_TRUE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris, |
|
&ocsp_uris)); |
|
EXPECT_EQ(0u, ca_issuers_uris.size()); |
|
EXPECT_EQ(0u, ocsp_uris.size()); |
|
} |
|
|
|
TEST(ParseAuthorityInfoAccess, IncompleteAccessDescription) { |
|
// SEQUENCE { |
|
// # first entry is ok |
|
// SEQUENCE { |
|
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.1 } |
|
// [6 PRIMITIVE] { "http://ocsp.example.com" } |
|
// } |
|
// # second is missing accessLocation field |
|
// SEQUENCE { |
|
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.2 } |
|
// } |
|
// } |
|
const uint8_t der[] = {0x30, 0x31, 0x30, 0x23, 0x06, 0x08, 0x2b, 0x06, 0x01, |
|
0x05, 0x05, 0x07, 0x30, 0x01, 0x86, 0x17, 0x68, 0x74, |
|
0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6f, 0x63, 0x73, 0x70, |
|
0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, |
|
0x63, 0x6f, 0x6d, 0x30, 0x0a, 0x06, 0x08, 0x2b, 0x06, |
|
0x01, 0x05, 0x05, 0x07, 0x30, 0x02}; |
|
|
|
std::vector<AuthorityInfoAccessDescription> access_descriptions; |
|
EXPECT_FALSE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions)); |
|
|
|
std::vector<std::string_view> ca_issuers_uris, ocsp_uris; |
|
EXPECT_FALSE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris, |
|
&ocsp_uris)); |
|
} |
|
|
|
TEST(ParseAuthorityInfoAccess, ExtraDataInAccessDescription) { |
|
// SEQUENCE { |
|
// SEQUENCE { |
|
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.1 } |
|
// [6 PRIMITIVE] { "http://ocsp.example.com" } |
|
// # invalid, AccessDescription only has 2 fields |
|
// PrintableString { "henlo" } |
|
// } |
|
// } |
|
const uint8_t der[] = { |
|
0x30, 0x2c, 0x30, 0x2a, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, |
|
0x30, 0x01, 0x86, 0x17, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6f, |
|
0x63, 0x73, 0x70, 0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, |
|
0x63, 0x6f, 0x6d, 0x13, 0x05, 0x68, 0x65, 0x6e, 0x6c, 0x6f}; |
|
|
|
std::vector<AuthorityInfoAccessDescription> access_descriptions; |
|
EXPECT_FALSE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions)); |
|
|
|
std::vector<std::string_view> ca_issuers_uris, ocsp_uris; |
|
EXPECT_FALSE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris, |
|
&ocsp_uris)); |
|
} |
|
|
|
TEST(ParseAuthorityInfoAccess, EmptySequence) { |
|
// SEQUENCE { } |
|
const uint8_t der[] = {0x30, 0x00}; |
|
|
|
std::vector<AuthorityInfoAccessDescription> access_descriptions; |
|
EXPECT_FALSE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions)); |
|
|
|
std::vector<std::string_view> ca_issuers_uris, ocsp_uris; |
|
EXPECT_FALSE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris, |
|
&ocsp_uris)); |
|
} |
|
|
|
// Test fixture for testing ParseCrlDistributionPoints. |
|
// |
|
// Test data is encoded in certificate files. This fixture is responsible for |
|
// reading and parsing the certificates to get at the extension under test. |
|
class ParseCrlDistributionPointsTest : public ::testing::Test { |
|
public: |
|
protected: |
|
bool GetCrlDps(const char* file_name, |
|
std::vector<ParsedDistributionPoint>* dps) { |
|
std::string cert_bytes; |
|
// Read the test certificate file. |
|
const PemBlockMapping mappings[] = { |
|
{"CERTIFICATE", &cert_bytes}, |
|
}; |
|
std::string test_file_path = GetFilePath(file_name); |
|
EXPECT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings)); |
|
|
|
// Extract the CRLDP from the test Certificate. |
|
CertErrors errors; |
|
std::shared_ptr<const ParsedCertificate> cert = ParsedCertificate::Create( |
|
bssl::UniquePtr<CRYPTO_BUFFER>(CRYPTO_BUFFER_new( |
|
reinterpret_cast<const uint8_t*>(cert_bytes.data()), |
|
cert_bytes.size(), nullptr)), |
|
{}, &errors); |
|
|
|
if (!cert) |
|
return false; |
|
|
|
auto it = cert->extensions().find(der::Input(kCrlDistributionPointsOid)); |
|
if (it == cert->extensions().end()) |
|
return false; |
|
|
|
der::Input crl_dp_tlv = it->second.value; |
|
|
|
// Keep the certificate data alive, since this function will return |
|
// der::Inputs that reference it. Run the function under test (for parsing |
|
// |
|
// TODO(eroman): The use of ParsedCertificate in this test should be removed |
|
// in lieu of lazy parsing. |
|
keep_alive_certs_.push_back(cert); |
|
|
|
return ParseCrlDistributionPoints(crl_dp_tlv, dps); |
|
} |
|
|
|
private: |
|
ParsedCertificateList keep_alive_certs_; |
|
}; |
|
|
|
TEST_F(ParseCrlDistributionPointsTest, OneUriNoIssuer) { |
|
std::vector<ParsedDistributionPoint> dps; |
|
ASSERT_TRUE(GetCrlDps("crldp_1uri_noissuer.pem", &dps)); |
|
|
|
ASSERT_EQ(1u, dps.size()); |
|
const ParsedDistributionPoint& dp1 = dps.front(); |
|
|
|
ASSERT_TRUE(dp1.distribution_point_fullname); |
|
const GeneralNames& fullname = *dp1.distribution_point_fullname; |
|
EXPECT_EQ(GENERAL_NAME_UNIFORM_RESOURCE_IDENTIFIER, |
|
fullname.present_name_types); |
|
ASSERT_EQ(1u, fullname.uniform_resource_identifiers.size()); |
|
EXPECT_EQ(fullname.uniform_resource_identifiers.front(), |
|
std::string("http://www.example.com/foo.crl")); |
|
|
|
EXPECT_FALSE(dp1.distribution_point_name_relative_to_crl_issuer); |
|
EXPECT_FALSE(dp1.reasons); |
|
EXPECT_FALSE(dp1.crl_issuer); |
|
} |
|
|
|
TEST_F(ParseCrlDistributionPointsTest, ThreeUrisNoIssuer) { |
|
std::vector<ParsedDistributionPoint> dps; |
|
ASSERT_TRUE(GetCrlDps("crldp_3uri_noissuer.pem", &dps)); |
|
|
|
ASSERT_EQ(1u, dps.size()); |
|
const ParsedDistributionPoint& dp1 = dps.front(); |
|
|
|
ASSERT_TRUE(dp1.distribution_point_fullname); |
|
const GeneralNames& fullname = *dp1.distribution_point_fullname; |
|
EXPECT_EQ(GENERAL_NAME_UNIFORM_RESOURCE_IDENTIFIER, |
|
fullname.present_name_types); |
|
ASSERT_EQ(3u, fullname.uniform_resource_identifiers.size()); |
|
EXPECT_EQ(fullname.uniform_resource_identifiers[0], |
|
std::string("http://www.example.com/foo1.crl")); |
|
EXPECT_EQ(fullname.uniform_resource_identifiers[1], |
|
std::string("http://www.example.com/blah.crl")); |
|
EXPECT_EQ(fullname.uniform_resource_identifiers[2], |
|
std::string("not-even-a-url")); |
|
|
|
EXPECT_FALSE(dp1.distribution_point_name_relative_to_crl_issuer); |
|
EXPECT_FALSE(dp1.reasons); |
|
EXPECT_FALSE(dp1.crl_issuer); |
|
} |
|
|
|
TEST_F(ParseCrlDistributionPointsTest, CrlIssuerAsDirname) { |
|
std::vector<ParsedDistributionPoint> dps; |
|
ASSERT_TRUE(GetCrlDps("crldp_issuer_as_dirname.pem", &dps)); |
|
|
|
ASSERT_EQ(1u, dps.size()); |
|
const ParsedDistributionPoint& dp1 = dps.front(); |
|
ASSERT_TRUE(dp1.distribution_point_fullname); |
|
const GeneralNames& fullname = *dp1.distribution_point_fullname; |
|
EXPECT_EQ(GENERAL_NAME_DIRECTORY_NAME, fullname.present_name_types); |
|
// Generated by `ascii2der | xxd -i` from the Name value in |
|
// crldp_issuer_as_dirname.pem. |
|
const uint8_t kExpectedName[] = { |
|
0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x55, |
|
0x53, 0x31, 0x1f, 0x30, 0x1d, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x13, 0x16, |
|
0x54, 0x65, 0x73, 0x74, 0x20, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, |
|
0x63, 0x61, 0x74, 0x65, 0x73, 0x20, 0x32, 0x30, 0x31, 0x31, 0x31, 0x22, |
|
0x30, 0x20, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13, 0x19, 0x69, 0x6e, 0x64, |
|
0x69, 0x72, 0x65, 0x63, 0x74, 0x43, 0x52, 0x4c, 0x20, 0x43, 0x41, 0x33, |
|
0x20, 0x63, 0x52, 0x4c, 0x49, 0x73, 0x73, 0x75, 0x65, 0x72, 0x31, 0x29, |
|
0x30, 0x27, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x20, 0x69, 0x6e, 0x64, |
|
0x69, 0x72, 0x65, 0x63, 0x74, 0x20, 0x43, 0x52, 0x4c, 0x20, 0x66, 0x6f, |
|
0x72, 0x20, 0x69, 0x6e, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x43, 0x52, |
|
0x4c, 0x20, 0x43, 0x41, 0x33}; |
|
ASSERT_EQ(1u, fullname.directory_names.size()); |
|
EXPECT_EQ(der::Input(kExpectedName), fullname.directory_names[0]); |
|
|
|
EXPECT_FALSE(dp1.distribution_point_name_relative_to_crl_issuer); |
|
EXPECT_FALSE(dp1.reasons); |
|
|
|
ASSERT_TRUE(dp1.crl_issuer); |
|
// Generated by `ascii2der | xxd -i` from the cRLIssuer value in |
|
// crldp_issuer_as_dirname.pem. |
|
const uint8_t kExpectedCrlIssuer[] = { |
|
0xa4, 0x54, 0x30, 0x52, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, |
|
0x04, 0x06, 0x13, 0x02, 0x55, 0x53, 0x31, 0x1f, 0x30, 0x1d, 0x06, |
|
0x03, 0x55, 0x04, 0x0a, 0x13, 0x16, 0x54, 0x65, 0x73, 0x74, 0x20, |
|
0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x65, |
|
0x73, 0x20, 0x32, 0x30, 0x31, 0x31, 0x31, 0x22, 0x30, 0x20, 0x06, |
|
0x03, 0x55, 0x04, 0x0b, 0x13, 0x19, 0x69, 0x6e, 0x64, 0x69, 0x72, |
|
0x65, 0x63, 0x74, 0x43, 0x52, 0x4c, 0x20, 0x43, 0x41, 0x33, 0x20, |
|
0x63, 0x52, 0x4c, 0x49, 0x73, 0x73, 0x75, 0x65, 0x72}; |
|
EXPECT_EQ(der::Input(kExpectedCrlIssuer), dp1.crl_issuer); |
|
} |
|
|
|
TEST_F(ParseCrlDistributionPointsTest, FullnameAsDirname) { |
|
std::vector<ParsedDistributionPoint> dps; |
|
ASSERT_TRUE(GetCrlDps("crldp_full_name_as_dirname.pem", &dps)); |
|
|
|
ASSERT_EQ(1u, dps.size()); |
|
const ParsedDistributionPoint& dp1 = dps.front(); |
|
|
|
ASSERT_TRUE(dp1.distribution_point_fullname); |
|
const GeneralNames& fullname = *dp1.distribution_point_fullname; |
|
EXPECT_EQ(GENERAL_NAME_DIRECTORY_NAME, fullname.present_name_types); |
|
// Generated by `ascii2der | xxd -i` from the Name value in |
|
// crldp_full_name_as_dirname.pem. |
|
const uint8_t kExpectedName[] = { |
|
0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x55, |
|
0x53, 0x31, 0x1f, 0x30, 0x1d, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x13, 0x16, |
|
0x54, 0x65, 0x73, 0x74, 0x20, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, |
|
0x63, 0x61, 0x74, 0x65, 0x73, 0x20, 0x32, 0x30, 0x31, 0x31, 0x31, 0x45, |
|
0x30, 0x43, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x3c, 0x53, 0x65, 0x6c, |
|
0x66, 0x2d, 0x49, 0x73, 0x73, 0x75, 0x65, 0x64, 0x20, 0x43, 0x65, 0x72, |
|
0x74, 0x20, 0x44, 0x50, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x42, 0x61, 0x73, |
|
0x69, 0x63, 0x20, 0x53, 0x65, 0x6c, 0x66, 0x2d, 0x49, 0x73, 0x73, 0x75, |
|
0x65, 0x64, 0x20, 0x43, 0x52, 0x4c, 0x20, 0x53, 0x69, 0x67, 0x6e, 0x69, |
|
0x6e, 0x67, 0x20, 0x4b, 0x65, 0x79, 0x20, 0x43, 0x41}; |
|
ASSERT_EQ(1u, fullname.directory_names.size()); |
|
EXPECT_EQ(der::Input(kExpectedName), fullname.directory_names[0]); |
|
|
|
EXPECT_FALSE(dp1.distribution_point_name_relative_to_crl_issuer); |
|
EXPECT_FALSE(dp1.reasons); |
|
EXPECT_FALSE(dp1.crl_issuer); |
|
} |
|
|
|
TEST_F(ParseCrlDistributionPointsTest, RelativeNameAndReasonsAndMultipleDPs) { |
|
// SEQUENCE { |
|
// SEQUENCE { |
|
// # distributionPoint |
|
// [0] { |
|
// # nameRelativeToCRLIssuer |
|
// [1] { |
|
// SET { |
|
// SEQUENCE { |
|
// # commonName |
|
// OBJECT_IDENTIFIER { 2.5.4.3 } |
|
// PrintableString { "CRL1" } |
|
// } |
|
// } |
|
// } |
|
// } |
|
// # reasons |
|
// [1 PRIMITIVE] { b`011` } |
|
// } |
|
// SEQUENCE { |
|
// # distributionPoint |
|
// [0] { |
|
// # fullName |
|
// [0] { |
|
// [4] { |
|
// SEQUENCE { |
|
// SET { |
|
// SEQUENCE { |
|
// # commonName |
|
// OBJECT_IDENTIFIER { 2.5.4.3 } |
|
// PrintableString { "CRL2" } |
|
// } |
|
// } |
|
// } |
|
// } |
|
// } |
|
// } |
|
// # reasons |
|
// [1 PRIMITIVE] { b`100111111` } |
|
// } |
|
// } |
|
const uint8_t kInputDer[] = { |
|
0x30, 0x37, 0x30, 0x17, 0xa0, 0x11, 0xa1, 0x0f, 0x31, 0x0d, 0x30, 0x0b, |
|
0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x04, 0x43, 0x52, 0x4c, 0x31, 0x81, |
|
0x02, 0x05, 0x60, 0x30, 0x1c, 0xa0, 0x15, 0xa0, 0x13, 0xa4, 0x11, 0x30, |
|
0x0f, 0x31, 0x0d, 0x30, 0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x04, |
|
0x43, 0x52, 0x4c, 0x32, 0x81, 0x03, 0x07, 0x9f, 0x80}; |
|
|
|
std::vector<ParsedDistributionPoint> dps; |
|
ASSERT_TRUE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps)); |
|
ASSERT_EQ(2u, dps.size()); |
|
{ |
|
const ParsedDistributionPoint& dp = dps[0]; |
|
EXPECT_FALSE(dp.distribution_point_fullname); |
|
|
|
ASSERT_TRUE(dp.distribution_point_name_relative_to_crl_issuer); |
|
// SET { |
|
// SEQUENCE { |
|
// # commonName |
|
// OBJECT_IDENTIFIER { 2.5.4.3 } |
|
// PrintableString { "CRL1" } |
|
// } |
|
// } |
|
const uint8_t kExpectedRDN[] = {0x31, 0x0d, 0x30, 0x0b, 0x06, |
|
0x03, 0x55, 0x04, 0x03, 0x13, |
|
0x04, 0x43, 0x52, 0x4c, 0x31}; |
|
EXPECT_EQ(der::Input(kExpectedRDN), |
|
*dp.distribution_point_name_relative_to_crl_issuer); |
|
|
|
ASSERT_TRUE(dp.reasons); |
|
const uint8_t kExpectedReasons[] = {0x05, 0x60}; |
|
EXPECT_EQ(der::Input(kExpectedReasons), *dp.reasons); |
|
|
|
EXPECT_FALSE(dp.crl_issuer); |
|
} |
|
{ |
|
const ParsedDistributionPoint& dp = dps[1]; |
|
ASSERT_TRUE(dp.distribution_point_fullname); |
|
const GeneralNames& fullname = *dp.distribution_point_fullname; |
|
EXPECT_EQ(GENERAL_NAME_DIRECTORY_NAME, fullname.present_name_types); |
|
// SET { |
|
// SEQUENCE { |
|
// # commonName |
|
// OBJECT_IDENTIFIER { 2.5.4.3 } |
|
// PrintableString { "CRL2" } |
|
// } |
|
// } |
|
const uint8_t kExpectedName[] = {0x31, 0x0d, 0x30, 0x0b, 0x06, |
|
0x03, 0x55, 0x04, 0x03, 0x13, |
|
0x04, 0x43, 0x52, 0x4c, 0x32}; |
|
ASSERT_EQ(1u, fullname.directory_names.size()); |
|
EXPECT_EQ(der::Input(kExpectedName), fullname.directory_names[0]); |
|
|
|
EXPECT_FALSE(dp.distribution_point_name_relative_to_crl_issuer); |
|
|
|
ASSERT_TRUE(dp.reasons); |
|
const uint8_t kExpectedReasons[] = {0x07, 0x9f, 0x80}; |
|
EXPECT_EQ(der::Input(kExpectedReasons), *dp.reasons); |
|
|
|
EXPECT_FALSE(dp.crl_issuer); |
|
} |
|
} |
|
|
|
TEST_F(ParseCrlDistributionPointsTest, NoDistributionPointName) { |
|
// SEQUENCE { |
|
// SEQUENCE { |
|
// # cRLIssuer |
|
// [2] { |
|
// [4] { |
|
// SEQUENCE { |
|
// SET { |
|
// SEQUENCE { |
|
// # organizationUnitName |
|
// OBJECT_IDENTIFIER { 2.5.4.11 } |
|
// PrintableString { "crl issuer" } |
|
// } |
|
// } |
|
// } |
|
// } |
|
// } |
|
// } |
|
// } |
|
const uint8_t kInputDer[] = {0x30, 0x1d, 0x30, 0x1b, 0xa2, 0x19, 0xa4, 0x17, |
|
0x30, 0x15, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, |
|
0x55, 0x04, 0x0b, 0x13, 0x0a, 0x63, 0x72, 0x6c, |
|
0x20, 0x69, 0x73, 0x73, 0x75, 0x65, 0x72}; |
|
|
|
std::vector<ParsedDistributionPoint> dps; |
|
ASSERT_TRUE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps)); |
|
ASSERT_EQ(1u, dps.size()); |
|
const ParsedDistributionPoint& dp = dps[0]; |
|
EXPECT_FALSE(dp.distribution_point_fullname); |
|
|
|
EXPECT_FALSE(dp.distribution_point_name_relative_to_crl_issuer); |
|
|
|
EXPECT_FALSE(dp.reasons); |
|
|
|
ASSERT_TRUE(dp.crl_issuer); |
|
const uint8_t kExpectedDer[] = {0xa4, 0x17, 0x30, 0x15, 0x31, 0x13, 0x30, |
|
0x11, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13, |
|
0x0a, 0x63, 0x72, 0x6c, 0x20, 0x69, 0x73, |
|
0x73, 0x75, 0x65, 0x72}; |
|
EXPECT_EQ(der::Input(kExpectedDer), *dp.crl_issuer); |
|
} |
|
|
|
TEST_F(ParseCrlDistributionPointsTest, OnlyReasons) { |
|
// SEQUENCE { |
|
// SEQUENCE { |
|
// # reasons |
|
// [1 PRIMITIVE] { b`011` } |
|
// } |
|
// } |
|
const uint8_t kInputDer[] = {0x30, 0x06, 0x30, 0x04, 0x81, 0x02, 0x05, 0x60}; |
|
|
|
std::vector<ParsedDistributionPoint> dps; |
|
EXPECT_FALSE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps)); |
|
} |
|
|
|
TEST_F(ParseCrlDistributionPointsTest, EmptyDistributionPoint) { |
|
// SEQUENCE { |
|
// SEQUENCE { |
|
// } |
|
// } |
|
const uint8_t kInputDer[] = {0x30, 0x02, 0x30, 0x00}; |
|
|
|
std::vector<ParsedDistributionPoint> dps; |
|
EXPECT_FALSE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps)); |
|
} |
|
|
|
TEST_F(ParseCrlDistributionPointsTest, EmptyDistributionPoints) { |
|
// SEQUENCE { } |
|
const uint8_t kInputDer[] = {0x30, 0x00}; |
|
|
|
std::vector<ParsedDistributionPoint> dps; |
|
EXPECT_FALSE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps)); |
|
} |
|
|
|
bool ParseAuthorityKeyIdentifierTestData( |
|
const char* file_name, |
|
std::string* backing_bytes, |
|
ParsedAuthorityKeyIdentifier* authority_key_identifier) { |
|
// Read the test file. |
|
const PemBlockMapping mappings[] = { |
|
{"AUTHORITY_KEY_IDENTIFIER", backing_bytes}, |
|
}; |
|
std::string test_file_path = |
|
std::string( |
|
"testdata/parse_certificate_unittest/authority_key_identifier/") + |
|
file_name; |
|
EXPECT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings)); |
|
|
|
return ParseAuthorityKeyIdentifier(der::Input(*backing_bytes), |
|
authority_key_identifier); |
|
} |
|
|
|
TEST(ParseAuthorityKeyIdentifierTest, EmptyInput) { |
|
ParsedAuthorityKeyIdentifier authority_key_identifier; |
|
EXPECT_FALSE( |
|
ParseAuthorityKeyIdentifier(der::Input(), &authority_key_identifier)); |
|
} |
|
|
|
TEST(ParseAuthorityKeyIdentifierTest, EmptySequence) { |
|
std::string backing_bytes; |
|
ParsedAuthorityKeyIdentifier authority_key_identifier; |
|
// TODO(mattm): should this be an error? RFC 5280 doesn't explicitly say it. |
|
ASSERT_TRUE(ParseAuthorityKeyIdentifierTestData( |
|
"empty_sequence.pem", &backing_bytes, &authority_key_identifier)); |
|
|
|
EXPECT_FALSE(authority_key_identifier.key_identifier); |
|
EXPECT_FALSE(authority_key_identifier.authority_cert_issuer); |
|
EXPECT_FALSE(authority_key_identifier.authority_cert_serial_number); |
|
} |
|
|
|
TEST(ParseAuthorityKeyIdentifierTest, KeyIdentifier) { |
|
std::string backing_bytes; |
|
ParsedAuthorityKeyIdentifier authority_key_identifier; |
|
ASSERT_TRUE(ParseAuthorityKeyIdentifierTestData( |
|
"key_identifier.pem", &backing_bytes, &authority_key_identifier)); |
|
|
|
ASSERT_TRUE(authority_key_identifier.key_identifier); |
|
const uint8_t kExpectedValue[] = {0xDE, 0xAD, 0xB0, 0x0F}; |
|
EXPECT_EQ(der::Input(kExpectedValue), |
|
authority_key_identifier.key_identifier); |
|
} |
|
|
|
TEST(ParseAuthorityKeyIdentifierTest, IssuerAndSerial) { |
|
std::string backing_bytes; |
|
ParsedAuthorityKeyIdentifier authority_key_identifier; |
|
ASSERT_TRUE(ParseAuthorityKeyIdentifierTestData( |
|
"issuer_and_serial.pem", &backing_bytes, &authority_key_identifier)); |
|
|
|
EXPECT_FALSE(authority_key_identifier.key_identifier); |
|
|
|
ASSERT_TRUE(authority_key_identifier.authority_cert_issuer); |
|
const uint8_t kExpectedIssuer[] = {0xa4, 0x11, 0x30, 0x0f, 0x31, 0x0d, 0x30, |
|
0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, |
|
0x04, 0x52, 0x6f, 0x6f, 0x74}; |
|
EXPECT_EQ(der::Input(kExpectedIssuer), |
|
authority_key_identifier.authority_cert_issuer); |
|
|
|
ASSERT_TRUE(authority_key_identifier.authority_cert_serial_number); |
|
const uint8_t kExpectedSerial[] = {0x27, 0x4F}; |
|
EXPECT_EQ(der::Input(kExpectedSerial), |
|
authority_key_identifier.authority_cert_serial_number); |
|
} |
|
|
|
TEST(ParseAuthorityKeyIdentifierTest, KeyIdentifierAndIssuerAndSerial) { |
|
std::string backing_bytes; |
|
ParsedAuthorityKeyIdentifier authority_key_identifier; |
|
ASSERT_TRUE(ParseAuthorityKeyIdentifierTestData( |
|
"key_identifier_and_issuer_and_serial.pem", &backing_bytes, |
|
&authority_key_identifier)); |
|
|
|
ASSERT_TRUE(authority_key_identifier.key_identifier); |
|
const uint8_t kExpectedValue[] = {0xDE, 0xAD, 0xB0, 0x0F}; |
|
EXPECT_EQ(der::Input(kExpectedValue), |
|
authority_key_identifier.key_identifier); |
|
|
|
ASSERT_TRUE(authority_key_identifier.authority_cert_issuer); |
|
const uint8_t kExpectedIssuer[] = {0xa4, 0x11, 0x30, 0x0f, 0x31, 0x0d, 0x30, |
|
0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, |
|
0x04, 0x52, 0x6f, 0x6f, 0x74}; |
|
EXPECT_EQ(der::Input(kExpectedIssuer), |
|
authority_key_identifier.authority_cert_issuer); |
|
|
|
ASSERT_TRUE(authority_key_identifier.authority_cert_serial_number); |
|
const uint8_t kExpectedSerial[] = {0x27, 0x4F}; |
|
EXPECT_EQ(der::Input(kExpectedSerial), |
|
authority_key_identifier.authority_cert_serial_number); |
|
} |
|
|
|
TEST(ParseAuthorityKeyIdentifierTest, IssuerOnly) { |
|
std::string backing_bytes; |
|
ParsedAuthorityKeyIdentifier authority_key_identifier; |
|
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( |
|
"issuer_only.pem", &backing_bytes, &authority_key_identifier)); |
|
} |
|
|
|
TEST(ParseAuthorityKeyIdentifierTest, SerialOnly) { |
|
std::string backing_bytes; |
|
ParsedAuthorityKeyIdentifier authority_key_identifier; |
|
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( |
|
"serial_only.pem", &backing_bytes, &authority_key_identifier)); |
|
} |
|
|
|
TEST(ParseAuthorityKeyIdentifierTest, InvalidContents) { |
|
std::string backing_bytes; |
|
ParsedAuthorityKeyIdentifier authority_key_identifier; |
|
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( |
|
"invalid_contents.pem", &backing_bytes, &authority_key_identifier)); |
|
} |
|
|
|
TEST(ParseAuthorityKeyIdentifierTest, InvalidKeyIdentifier) { |
|
std::string backing_bytes; |
|
ParsedAuthorityKeyIdentifier authority_key_identifier; |
|
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( |
|
"invalid_key_identifier.pem", &backing_bytes, &authority_key_identifier)); |
|
} |
|
|
|
TEST(ParseAuthorityKeyIdentifierTest, InvalidIssuer) { |
|
std::string backing_bytes; |
|
ParsedAuthorityKeyIdentifier authority_key_identifier; |
|
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( |
|
"invalid_issuer.pem", &backing_bytes, &authority_key_identifier)); |
|
} |
|
|
|
TEST(ParseAuthorityKeyIdentifierTest, InvalidSerial) { |
|
std::string backing_bytes; |
|
ParsedAuthorityKeyIdentifier authority_key_identifier; |
|
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( |
|
"invalid_serial.pem", &backing_bytes, &authority_key_identifier)); |
|
} |
|
|
|
TEST(ParseAuthorityKeyIdentifierTest, ExtraContentsAfterIssuerAndSerial) { |
|
std::string backing_bytes; |
|
ParsedAuthorityKeyIdentifier authority_key_identifier; |
|
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( |
|
"extra_contents_after_issuer_and_serial.pem", &backing_bytes, |
|
&authority_key_identifier)); |
|
} |
|
|
|
TEST(ParseAuthorityKeyIdentifierTest, ExtraContentsAfterExtensionSequence) { |
|
std::string backing_bytes; |
|
ParsedAuthorityKeyIdentifier authority_key_identifier; |
|
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData( |
|
"extra_contents_after_extension_sequence.pem", &backing_bytes, |
|
&authority_key_identifier)); |
|
} |
|
|
|
TEST(ParseSubjectKeyIdentifierTest, EmptyInput) { |
|
der::Input subject_key_identifier; |
|
EXPECT_FALSE( |
|
ParseSubjectKeyIdentifier(der::Input(), &subject_key_identifier)); |
|
} |
|
|
|
TEST(ParseSubjectKeyIdentifierTest, Valid) { |
|
// OCTET_STRING {`abcd`} |
|
const uint8_t kInput[] = {0x04, 0x02, 0xab, 0xcd}; |
|
const uint8_t kExpected[] = {0xab, 0xcd}; |
|
der::Input subject_key_identifier; |
|
EXPECT_TRUE( |
|
ParseSubjectKeyIdentifier(der::Input(kInput), &subject_key_identifier)); |
|
EXPECT_EQ(der::Input(kExpected), subject_key_identifier); |
|
} |
|
|
|
TEST(ParseSubjectKeyIdentifierTest, ExtraData) { |
|
// OCTET_STRING {`abcd`} |
|
// NULL |
|
const uint8_t kInput[] = {0x04, 0x02, 0xab, 0xcd, 0x05}; |
|
der::Input subject_key_identifier; |
|
EXPECT_FALSE( |
|
ParseSubjectKeyIdentifier(der::Input(kInput), &subject_key_identifier)); |
|
} |
|
|
|
} // namespace |
|
|
|
} // namespace net
|
|
|