Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
624 lines
18 KiB
624 lines
18 KiB
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
|
* All rights reserved. |
|
* |
|
* This package is an SSL implementation written |
|
* by Eric Young (eay@cryptsoft.com). |
|
* The implementation was written so as to conform with Netscapes SSL. |
|
* |
|
* This library is free for commercial and non-commercial use as long as |
|
* the following conditions are aheared to. The following conditions |
|
* apply to all code found in this distribution, be it the RC4, RSA, |
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation |
|
* included with this distribution is covered by the same copyright terms |
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com). |
|
* |
|
* Copyright remains Eric Young's, and as such any Copyright notices in |
|
* the code are not to be removed. |
|
* If this package is used in a product, Eric Young should be given attribution |
|
* as the author of the parts of the library used. |
|
* This can be in the form of a textual message at program startup or |
|
* in documentation (online or textual) provided with the package. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* "This product includes cryptographic software written by |
|
* Eric Young (eay@cryptsoft.com)" |
|
* The word 'cryptographic' can be left out if the rouines from the library |
|
* being used are not cryptographic related :-). |
|
* 4. If you include any Windows specific code (or a derivative thereof) from |
|
* the apps directory (application code) you must include an acknowledgement: |
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* The licence and distribution terms for any publically available version or |
|
* derivative of this code cannot be changed. i.e. this code cannot simply be |
|
* copied and put under another distribution licence |
|
* [including the GNU Public Licence.] */ |
|
|
|
#include <openssl/mem.h> |
|
|
|
#include <assert.h> |
|
#include <errno.h> |
|
#include <limits.h> |
|
#include <stdarg.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
|
|
#include <openssl/err.h> |
|
|
|
#if defined(OPENSSL_WINDOWS) |
|
OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
|
#include <windows.h> |
|
OPENSSL_MSVC_PRAGMA(warning(pop)) |
|
#endif |
|
|
|
#if defined(BORINGSSL_MALLOC_FAILURE_TESTING) |
|
#include <errno.h> |
|
#include <signal.h> |
|
#include <unistd.h> |
|
#endif |
|
|
|
#include "internal.h" |
|
|
|
|
|
#define OPENSSL_MALLOC_PREFIX 8 |
|
static_assert(OPENSSL_MALLOC_PREFIX >= sizeof(size_t), "size_t too large"); |
|
|
|
#if defined(OPENSSL_ASAN) |
|
void __asan_poison_memory_region(const volatile void *addr, size_t size); |
|
void __asan_unpoison_memory_region(const volatile void *addr, size_t size); |
|
#else |
|
static void __asan_poison_memory_region(const void *addr, size_t size) {} |
|
static void __asan_unpoison_memory_region(const void *addr, size_t size) {} |
|
#endif |
|
|
|
// Windows doesn't really support weak symbols as of May 2019, and Clang on |
|
// Windows will emit strong symbols instead. See |
|
// https://bugs.llvm.org/show_bug.cgi?id=37598 |
|
#if defined(__ELF__) && defined(__GNUC__) |
|
#define WEAK_SYMBOL_FUNC(rettype, name, args) \ |
|
rettype name args __attribute__((weak)); |
|
#else |
|
#define WEAK_SYMBOL_FUNC(rettype, name, args) static rettype(*name) args = NULL; |
|
#endif |
|
|
|
// sdallocx is a sized |free| function. By passing the size (which we happen to |
|
// always know in BoringSSL), the malloc implementation can save work. We cannot |
|
// depend on |sdallocx| being available, however, so it's a weak symbol. |
|
// |
|
// This will always be safe, but will only be overridden if the malloc |
|
// implementation is statically linked with BoringSSL. So, if |sdallocx| is |
|
// provided in, say, libc.so, we still won't use it because that's dynamically |
|
// linked. This isn't an ideal result, but its helps in some cases. |
|
WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags)); |
|
|
|
// The following three functions can be defined to override default heap |
|
// allocation and freeing. If defined, it is the responsibility of |
|
// |OPENSSL_memory_free| to zero out the memory before returning it to the |
|
// system. |OPENSSL_memory_free| will not be passed NULL pointers. |
|
// |
|
// WARNING: These functions are called on every allocation and free in |
|
// BoringSSL across the entire process. They may be called by any code in the |
|
// process which calls BoringSSL, including in process initializers and thread |
|
// destructors. When called, BoringSSL may hold pthreads locks. Any other code |
|
// in the process which, directly or indirectly, calls BoringSSL may be on the |
|
// call stack and may itself be using arbitrary synchronization primitives. |
|
// |
|
// As a result, these functions may not have the usual programming environment |
|
// available to most C or C++ code. In particular, they may not call into |
|
// BoringSSL, or any library which depends on BoringSSL. Any synchronization |
|
// primitives used must tolerate every other synchronization primitive linked |
|
// into the process, including pthreads locks. Failing to meet these constraints |
|
// may result in deadlocks, crashes, or memory corruption. |
|
WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size)); |
|
WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr)); |
|
WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr)); |
|
|
|
// kBoringSSLBinaryTag is a distinctive byte sequence to identify binaries that |
|
// are linking in BoringSSL and, roughly, what version they are using. |
|
static const uint8_t kBoringSSLBinaryTag[18] = { |
|
// 16 bytes of magic tag. |
|
0x8c, |
|
0x62, |
|
0x20, |
|
0x0b, |
|
0xd2, |
|
0xa0, |
|
0x72, |
|
0x58, |
|
0x44, |
|
0xa8, |
|
0x96, |
|
0x69, |
|
0xad, |
|
0x55, |
|
0x7e, |
|
0xec, |
|
// Current source iteration. Incremented ~monthly. |
|
3, |
|
0, |
|
}; |
|
|
|
#if defined(BORINGSSL_MALLOC_FAILURE_TESTING) |
|
static CRYPTO_MUTEX malloc_failure_lock = CRYPTO_MUTEX_INIT; |
|
static uint64_t current_malloc_count = 0; |
|
static uint64_t malloc_number_to_fail = 0; |
|
static int malloc_failure_enabled = 0, break_on_malloc_fail = 0, |
|
any_malloc_failed = 0; |
|
|
|
static void malloc_exit_handler(void) { |
|
CRYPTO_MUTEX_lock_read(&malloc_failure_lock); |
|
if (any_malloc_failed) { |
|
// Signal to the test driver that some allocation failed, so it knows to |
|
// increment the counter and continue. |
|
_exit(88); |
|
} |
|
CRYPTO_MUTEX_unlock_read(&malloc_failure_lock); |
|
} |
|
|
|
static void init_malloc_failure(void) { |
|
const char *env = getenv("MALLOC_NUMBER_TO_FAIL"); |
|
if (env != NULL && env[0] != 0) { |
|
char *endptr; |
|
malloc_number_to_fail = strtoull(env, &endptr, 10); |
|
if (*endptr == 0) { |
|
malloc_failure_enabled = 1; |
|
atexit(malloc_exit_handler); |
|
} |
|
} |
|
break_on_malloc_fail = getenv("MALLOC_BREAK_ON_FAIL") != NULL; |
|
} |
|
|
|
// should_fail_allocation returns one if the current allocation should fail and |
|
// zero otherwise. |
|
static int should_fail_allocation() { |
|
static CRYPTO_once_t once = CRYPTO_ONCE_INIT; |
|
CRYPTO_once(&once, init_malloc_failure); |
|
if (!malloc_failure_enabled) { |
|
return 0; |
|
} |
|
|
|
// We lock just so multi-threaded tests are still correct, but we won't test |
|
// every malloc exhaustively. |
|
CRYPTO_MUTEX_lock_write(&malloc_failure_lock); |
|
int should_fail = current_malloc_count == malloc_number_to_fail; |
|
current_malloc_count++; |
|
any_malloc_failed = any_malloc_failed || should_fail; |
|
CRYPTO_MUTEX_unlock_write(&malloc_failure_lock); |
|
|
|
if (should_fail && break_on_malloc_fail) { |
|
raise(SIGTRAP); |
|
} |
|
if (should_fail) { |
|
errno = ENOMEM; |
|
} |
|
return should_fail; |
|
} |
|
|
|
void OPENSSL_reset_malloc_counter_for_testing(void) { |
|
CRYPTO_MUTEX_lock_write(&malloc_failure_lock); |
|
current_malloc_count = 0; |
|
CRYPTO_MUTEX_unlock_write(&malloc_failure_lock); |
|
} |
|
|
|
#else |
|
static int should_fail_allocation(void) { return 0; } |
|
#endif |
|
|
|
void *OPENSSL_malloc(size_t size) { |
|
if (should_fail_allocation()) { |
|
goto err; |
|
} |
|
|
|
if (OPENSSL_memory_alloc != NULL) { |
|
assert(OPENSSL_memory_free != NULL); |
|
assert(OPENSSL_memory_get_size != NULL); |
|
void *ptr = OPENSSL_memory_alloc(size); |
|
if (ptr == NULL && size != 0) { |
|
goto err; |
|
} |
|
return ptr; |
|
} |
|
|
|
if (size + OPENSSL_MALLOC_PREFIX < size) { |
|
// |OPENSSL_malloc| is a central function in BoringSSL thus a reference to |
|
// |kBoringSSLBinaryTag| is created here so that the tag isn't discarded by |
|
// the linker. The following is sufficient to stop GCC, Clang, and MSVC |
|
// optimising away the reference at the time of writing. Since this |
|
// probably results in an actual memory reference, it is put in this very |
|
// rare code path. |
|
uint8_t unused = *(volatile uint8_t *)kBoringSSLBinaryTag; |
|
(void) unused; |
|
goto err; |
|
} |
|
|
|
void *ptr = malloc(size + OPENSSL_MALLOC_PREFIX); |
|
if (ptr == NULL) { |
|
goto err; |
|
} |
|
|
|
*(size_t *)ptr = size; |
|
|
|
__asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); |
|
return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX; |
|
|
|
err: |
|
// This only works because ERR does not call OPENSSL_malloc. |
|
OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE); |
|
return NULL; |
|
} |
|
|
|
void *OPENSSL_zalloc(size_t size) { |
|
void *ret = OPENSSL_malloc(size); |
|
if (ret != NULL) { |
|
OPENSSL_memset(ret, 0, size); |
|
} |
|
return ret; |
|
} |
|
|
|
void OPENSSL_free(void *orig_ptr) { |
|
if (orig_ptr == NULL) { |
|
return; |
|
} |
|
|
|
if (OPENSSL_memory_free != NULL) { |
|
OPENSSL_memory_free(orig_ptr); |
|
return; |
|
} |
|
|
|
void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX; |
|
__asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); |
|
|
|
size_t size = *(size_t *)ptr; |
|
OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX); |
|
|
|
// ASan knows to intercept malloc and free, but not sdallocx. |
|
#if defined(OPENSSL_ASAN) |
|
(void)sdallocx; |
|
free(ptr); |
|
#else |
|
if (sdallocx) { |
|
sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */); |
|
} else { |
|
free(ptr); |
|
} |
|
#endif |
|
} |
|
|
|
void *OPENSSL_realloc(void *orig_ptr, size_t new_size) { |
|
if (orig_ptr == NULL) { |
|
return OPENSSL_malloc(new_size); |
|
} |
|
|
|
size_t old_size; |
|
if (OPENSSL_memory_get_size != NULL) { |
|
old_size = OPENSSL_memory_get_size(orig_ptr); |
|
} else { |
|
void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX; |
|
__asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); |
|
old_size = *(size_t *)ptr; |
|
__asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); |
|
} |
|
|
|
void *ret = OPENSSL_malloc(new_size); |
|
if (ret == NULL) { |
|
return NULL; |
|
} |
|
|
|
size_t to_copy = new_size; |
|
if (old_size < to_copy) { |
|
to_copy = old_size; |
|
} |
|
|
|
memcpy(ret, orig_ptr, to_copy); |
|
OPENSSL_free(orig_ptr); |
|
|
|
return ret; |
|
} |
|
|
|
void OPENSSL_cleanse(void *ptr, size_t len) { |
|
#if defined(OPENSSL_WINDOWS) |
|
SecureZeroMemory(ptr, len); |
|
#else |
|
OPENSSL_memset(ptr, 0, len); |
|
|
|
#if !defined(OPENSSL_NO_ASM) |
|
/* As best as we can tell, this is sufficient to break any optimisations that |
|
might try to eliminate "superfluous" memsets. If there's an easy way to |
|
detect memset_s, it would be better to use that. */ |
|
__asm__ __volatile__("" : : "r"(ptr) : "memory"); |
|
#endif |
|
#endif // !OPENSSL_NO_ASM |
|
} |
|
|
|
void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); } |
|
|
|
int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; } |
|
|
|
int CRYPTO_secure_malloc_initialized(void) { return 0; } |
|
|
|
size_t CRYPTO_secure_used(void) { return 0; } |
|
|
|
void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); } |
|
|
|
void OPENSSL_secure_clear_free(void *ptr, size_t len) { |
|
OPENSSL_clear_free(ptr, len); |
|
} |
|
|
|
int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) { |
|
const uint8_t *a = in_a; |
|
const uint8_t *b = in_b; |
|
uint8_t x = 0; |
|
|
|
for (size_t i = 0; i < len; i++) { |
|
x |= a[i] ^ b[i]; |
|
} |
|
|
|
return x; |
|
} |
|
|
|
uint32_t OPENSSL_hash32(const void *ptr, size_t len) { |
|
// These are the FNV-1a parameters for 32 bits. |
|
static const uint32_t kPrime = 16777619u; |
|
static const uint32_t kOffsetBasis = 2166136261u; |
|
|
|
const uint8_t *in = ptr; |
|
uint32_t h = kOffsetBasis; |
|
|
|
for (size_t i = 0; i < len; i++) { |
|
h ^= in[i]; |
|
h *= kPrime; |
|
} |
|
|
|
return h; |
|
} |
|
|
|
uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); } |
|
|
|
size_t OPENSSL_strnlen(const char *s, size_t len) { |
|
for (size_t i = 0; i < len; i++) { |
|
if (s[i] == 0) { |
|
return i; |
|
} |
|
} |
|
|
|
return len; |
|
} |
|
|
|
char *OPENSSL_strdup(const char *s) { |
|
if (s == NULL) { |
|
return NULL; |
|
} |
|
const size_t len = strlen(s) + 1; |
|
char *ret = OPENSSL_malloc(len); |
|
if (ret == NULL) { |
|
return NULL; |
|
} |
|
OPENSSL_memcpy(ret, s, len); |
|
return ret; |
|
} |
|
|
|
int OPENSSL_isalpha(int c) { |
|
return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); |
|
} |
|
|
|
int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; } |
|
|
|
int OPENSSL_isxdigit(int c) { |
|
return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F'); |
|
} |
|
|
|
int OPENSSL_fromxdigit(uint8_t *out, int c) { |
|
if (OPENSSL_isdigit(c)) { |
|
*out = c - '0'; |
|
return 1; |
|
} |
|
if ('a' <= c && c <= 'f') { |
|
*out = c - 'a' + 10; |
|
return 1; |
|
} |
|
if ('A' <= c && c <= 'F') { |
|
*out = c - 'A' + 10; |
|
return 1; |
|
} |
|
return 0; |
|
} |
|
|
|
int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); } |
|
|
|
int OPENSSL_tolower(int c) { |
|
if (c >= 'A' && c <= 'Z') { |
|
return c + ('a' - 'A'); |
|
} |
|
return c; |
|
} |
|
|
|
int OPENSSL_isspace(int c) { |
|
return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' || |
|
c == ' '; |
|
} |
|
|
|
int OPENSSL_strcasecmp(const char *a, const char *b) { |
|
for (size_t i = 0;; i++) { |
|
const int aa = OPENSSL_tolower(a[i]); |
|
const int bb = OPENSSL_tolower(b[i]); |
|
|
|
if (aa < bb) { |
|
return -1; |
|
} else if (aa > bb) { |
|
return 1; |
|
} else if (aa == 0) { |
|
return 0; |
|
} |
|
} |
|
} |
|
|
|
int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) { |
|
for (size_t i = 0; i < n; i++) { |
|
const int aa = OPENSSL_tolower(a[i]); |
|
const int bb = OPENSSL_tolower(b[i]); |
|
|
|
if (aa < bb) { |
|
return -1; |
|
} else if (aa > bb) { |
|
return 1; |
|
} else if (aa == 0) { |
|
return 0; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
int BIO_snprintf(char *buf, size_t n, const char *format, ...) { |
|
va_list args; |
|
va_start(args, format); |
|
int ret = BIO_vsnprintf(buf, n, format, args); |
|
va_end(args); |
|
return ret; |
|
} |
|
|
|
int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) { |
|
return vsnprintf(buf, n, format, args); |
|
} |
|
|
|
int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args, |
|
int system_malloc) { |
|
void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc; |
|
void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free; |
|
void *(*reallocate)(void *, size_t) = |
|
system_malloc ? realloc : OPENSSL_realloc; |
|
char *candidate = NULL; |
|
size_t candidate_len = 64; // TODO(bbe) what's the best initial size? |
|
|
|
if ((candidate = allocate(candidate_len)) == NULL) { |
|
goto err; |
|
} |
|
va_list args_copy; |
|
va_copy(args_copy, args); |
|
int ret = vsnprintf(candidate, candidate_len, format, args_copy); |
|
va_end(args_copy); |
|
if (ret < 0) { |
|
goto err; |
|
} |
|
if ((size_t)ret >= candidate_len) { |
|
// Too big to fit in allocation. |
|
char *tmp; |
|
|
|
candidate_len = (size_t)ret + 1; |
|
if ((tmp = reallocate(candidate, candidate_len)) == NULL) { |
|
goto err; |
|
} |
|
candidate = tmp; |
|
ret = vsnprintf(candidate, candidate_len, format, args); |
|
} |
|
// At this point this should not happen unless vsnprintf is insane. |
|
if (ret < 0 || (size_t)ret >= candidate_len) { |
|
goto err; |
|
} |
|
*str = candidate; |
|
return ret; |
|
|
|
err: |
|
deallocate(candidate); |
|
*str = NULL; |
|
errno = ENOMEM; |
|
return -1; |
|
} |
|
|
|
int OPENSSL_vasprintf(char **str, const char *format, va_list args) { |
|
return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0); |
|
} |
|
|
|
int OPENSSL_asprintf(char **str, const char *format, ...) { |
|
va_list args; |
|
va_start(args, format); |
|
int ret = OPENSSL_vasprintf(str, format, args); |
|
va_end(args); |
|
return ret; |
|
} |
|
|
|
char *OPENSSL_strndup(const char *str, size_t size) { |
|
size = OPENSSL_strnlen(str, size); |
|
|
|
size_t alloc_size = size + 1; |
|
if (alloc_size < size) { |
|
// overflow |
|
OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE); |
|
return NULL; |
|
} |
|
char *ret = OPENSSL_malloc(alloc_size); |
|
if (ret == NULL) { |
|
return NULL; |
|
} |
|
|
|
OPENSSL_memcpy(ret, str, size); |
|
ret[size] = '\0'; |
|
return ret; |
|
} |
|
|
|
size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) { |
|
size_t l = 0; |
|
|
|
for (; dst_size > 1 && *src; dst_size--) { |
|
*dst++ = *src++; |
|
l++; |
|
} |
|
|
|
if (dst_size) { |
|
*dst = 0; |
|
} |
|
|
|
return l + strlen(src); |
|
} |
|
|
|
size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) { |
|
size_t l = 0; |
|
for (; dst_size > 0 && *dst; dst_size--, dst++) { |
|
l++; |
|
} |
|
return l + OPENSSL_strlcpy(dst, src, dst_size); |
|
} |
|
|
|
void *OPENSSL_memdup(const void *data, size_t size) { |
|
if (size == 0) { |
|
return NULL; |
|
} |
|
|
|
void *ret = OPENSSL_malloc(size); |
|
if (ret == NULL) { |
|
return NULL; |
|
} |
|
|
|
OPENSSL_memcpy(ret, data, size); |
|
return ret; |
|
} |
|
|
|
void *CRYPTO_malloc(size_t size, const char *file, int line) { |
|
return OPENSSL_malloc(size); |
|
} |
|
|
|
void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) { |
|
return OPENSSL_realloc(ptr, new_size); |
|
} |
|
|
|
void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); }
|
|
|